
Joint Unsupervised Learning of Deep Representations and Image Clusters
Supplementary materials

Jianwei Yang, Devi Parikh, Dhruv Batra
Virginia Tech

{jw2yang, parikh, dbatra}@vt.edu

Abstract

This supplementary materials explain some implemen-
tation details and present additional experiments that
are complementary to our main paper ”Joint Unsu-
pervised Learning of Deep Representations and Image
Clusters”. The source code for this work can be
downloaded from https://github.com/jwyang/
joint-unsupervised-learning.

1. Affinity Measure for Clusters

In this paper, we employ the affinity measure in [13]

A(Ci, Cj) = A(Cj → Ci) +A(Ci → Cj)

=
1

|Ci|2
1T
|Ci|WCi,CjWCj ,Ci1|Ci|

+
1

|Cj |2
1T
|Cj |WCj ,CiWCi,Cj1|Cj |

(1)

where W is the affinity matrix for samples, and WCi,Cj ∈
R|Ci|×|Cj | is the submatrix in W pointing from samples in
Ci to samples in Cj , and WCj ,Ci ∈ R|Cj |×|Ci| is the one
pointing from Cj to Ci. 1|Ci| and 1|Cj | are two vectors with
all |Ci| and |Cj | elements be 1, respectively. Therefore, we
have A(Ci, Cj) = A(Cj , Ci).

According to (1), we can derive

A((Cm ∪ Cn)→ Ci) = A(Cm → Ci) +A(Cn → Ci) (2)

which has also been shown in [13]. Meanwhile,

A(Ci → (Cm ∪ Cn))
= β1T

|Cm|+|Cn|WCm∪Cn,CiWCi,Cm∪Cn1|Cm|+|Cn|

= β1T
|Cm|WCm,CiWCi,Cm1|Cm| + β1T

|Cn|WCn,CiWCi,Cn1|Cn|

+ β1T
|Cm|WCm,CiWCi,Cn1|Cn| + β1T

|Cn|WCn,CiWCi,Cm1|Cm|
(3)

where β = 1/(|Cm|+ |Cn|)2.

2. Approximated Affinity Measure
During agglomerative clustering, we need to re-compute

the affinity between the merged cluster to all other clusters
based on 2 and 3 repeatedly. It is simple to compute 2.
However, to get A(Ci → (Cm∪Cn)), we need a lot of com-
putations. These time costs become dominant and remark-
able when we have a large-scale dataset. To accelerate the
computations, we introduce an approximation method. At
the right side of (3), we assume samples in Cm and Cn have
similar affinities to Ci. This assumption is mild because the
condition to merge Cm and Cn is that they are similar to
each other. In this case, the ratio betweenWCi,Cm1|Cm| and
WCi,Cn1|Cn| is analogy to the ratio between the number of
samples in two set, i.e.,

WCi,Cm1|Cm| =
|Cm|
|Cn|

WCi,Cn1|Cn| (4)

Based on (4), we can re-formulate (3) to

A(Ci → (Cm ∪ Cn))

=
1

(|Cm|2 + |Cm||Cn|)
1T
|Cm|WCm,CiWCi,Cm1|Cm|

+
1

(|Cm||Cn|+ |Cn|2)
1T
|Cn|WCn,CiWCi,Cn1|Cn|

(5)
Therefore, we have

A(Ci → (Cm ∪ Cn)) =
|Cm|

|Cm|+ |Cn|
A(Ci → Cm)

+
|Cn|

|Cm|+ |Cn|
A(Ci → Cn)

(6)

Consequently, we have

A(Cm ∪ Cn, Ci) = A(Cm → Ci) +A(Cn → Ci)

+
|Cm|

|Cm|+ |Cn|
A(Ci → Cm)

+
|Cn|

|Cm|+ |Cn|
A(Ci → Cn)

(7)

1

https://github.com/jwyang/joint-unsupervised-learning
https://github.com/jwyang/joint-unsupervised-learning

Figure 1: Performance of agglomerative clustering with approximations. Left one is NMI metric, and right one is AC metric.
The first column is without acceleration. For the other columns from left to right, α = {−0.2,−0.1, 0, 0.1, 0.2, 0.3, 0.5}.

Above approximation provides us a potential way to re-
duce the computational complexity of agglomerative clus-
tering. Though we computed A(Ci → (C ∪ Cn)) based on
(3) in all our experiments, we found the approximation ver-
sion achieves analogy performance while costs much less
time than the original one. In our experiments, we further
simplify the computation by assuming a constant ratio α
between the terms in 3:

1T
|Cm|WCm,CiWCi,Cn1|Cn| = α1T

|Cm|WCm,CiWCi,Cm1|Cm|
(8a)

1T
|Cn|WCn,CiWCi,Cm1|Cm| = α1T

|Cn|WCn,CiWCi,Cn1|Cn|
(8b)

Figure 2: Time cost for different values of α. The
first column is the time cost without acceleration.
For the other columns from left to right, α =
{−0.2,−0.1, 0, 0.1, 0.2, 0.3, 0.5}.

Based on above assumption,

A(Cm ∪ Cn, Ci) = A(Cm → Ci) +A(Cn → Ci)

+
(1 + α)|Cm|2

(|Cm|+ |Cn|)2
A(Ci → Cm)

+
(1 + α)|Cn|2

(|Cm|+ |Cn|)2
A(Ci → Cn)

(9)

We test various values for α, which are
{−0.2,−0.1, 0, 0.1, 0.2, 0.3, 0.5}. By conducting ex-
periments on various datasets, we find a valid range
[0, 0.1] for α which helps achieve analogous or even better
performance to the one without acceleration. We show the
quantitative comparison in Fig. 1. We use image intensities
as input to rule out all random factors. The original AC-
GDL algorithm is used as the baseline. Also, we compare
the time cost between original AC-GDL algorithm and
accelerated one in Fig. 2. It is clear that our approximation
algorithm has much lower computational complexity.

3. Cluster-based to Sample-based Loss
In this part, we explain how to convert cluster-based loss

to sample-based loss. Because it depends on specific ag-
glomerative clustering processes, we use a toy example in
Fig. 3 for illustration. We set Kc be 2 for simplicity. In
Fig. 3, there are six time steps, and thus T = 6. We assume
they are in a single partial unrolled period. The leaf nodes
represent single samples. For simplicity, we omit λ

Kc−1 in
(10) in the main paper, obtaining the overall loss

L(θ|Y∗, I) =
6∑

t=1

(
λ′A(Ct∗,NKc

Ct∗
[1])−A(Ct∗,NKc

Ct∗
[2])
)
(10)

Given above loss function, we decompose it from first
time step (t = 1) to the most recent time step (t = 6):

2

a b c d e f g h

i j

l

n

k

m

t=1

t=2

t=3 t=4

t=5

t=6

Figure 3: A illustration of agglomerative clustering.

• t=1: C1∗ = Ca,N 2
C1∗
[1] = Cb andN 2

C1∗
[2] = Cc. We have

L(θ|y1
∗, I) = − (λ′A(Ca, Cb)−A(Ca, Cc)) (11)

Clearly, above is sample-based weighted triplet loss
function, where samples a and b are positive pair and
a and c are negative pair.

• t=2: C2∗ = Ci,N 2
C2∗
[1] = Cc andN 2

C2∗
[2] = Cd. We have

L(θ|{y1
∗,y

2
∗}, I) = L(θ|y1

∗, I)−(λ′A(Ci, Cc)−A(Ci, Cd))
(12)

Since Ci = Ca ∪ Cb, we use Eq. (7) for approximation

A(Ci, Cc) = A(Ca → Cc) +A(Cb → Cc)

+
1

2
A(Cc → Ca) +

1

2
A(Cc → Cb)

(13)

A(Ci, Cd) = A(Ca → Cd) +A(Cb → Cd)

+
1

2
A(Cd → Ca) +

1

2
A(Cd → Cb)

(14)

Thus,

L(θ|{y1
∗,y

2
∗}, I)

= −λ′A(Ca, Cb)− (λ′ − 1)A(Ca → Cc)− λ′A(Cb → Cc)

− (
λ′

2
− 1)A(Cc → Ca)−

λ′

2
A(Cc → Cb)

+A(Ca → Cd) +A(Cb → Cd)

+
1

2
A(Cd → Ca) +

1

2
A(Cd → Cb)

(15)

At current time step, sample a, b and c belong to the
same cluster Cl, while sample d is from another cluster.
(15) computes the sample-based weighted triplet loss
for samples in Cl and sample d. Except Cl, the other
clusters all have merely one sample. No need to com-
pute triplet loss for them. It should be pointed out that
λ′ in above loss function should be not less than 2 so
that the affinities for all pairs in Cl are enlarged.

• t=3: C3∗ = Cd, N 2
C3∗
[1] = Ce and N 2

C3∗
[2] = Cf . We

have

L(θ|{y1
∗,y

2
∗,y

3
∗}, I) = L(θ|{y1

∗,y
2
∗}, I)

− λ′ (A(Cd, Ce)−A(Cd, Cf))
(16)

Besides the loss L(θ|{y1
∗,y

2
∗}, I) for Cl, we also com-

pute the loss for Cj in (16) because it contains two sam-
ples, d and e.

• t=4: C4∗ = Cf , N 2
C4∗
[1] = Cg and N 2

C4∗
[2] = Ch. We

have

L(θ|{y1
∗, ...,y

4
∗}, I) = L(θ|{y1

∗,y
2
∗,y

3
∗}, I)

− (λ′A(Cf , Cg)−A(Cf , Ch))
(17)

Here, we additionally compute the weighted triplet
loss for cluster Ck since it contains two samples.

• t=5: C5∗ = Ck, N 2
C5∗
[1] = Ch and N 2

C5∗
[2] = Cj . We

have

L(θ|{y1
∗, ...,y

5
∗}, I)

= L(θ|{y1
∗, ...,y

4
∗}, I)− (λ′A(Ck, Ch)−A(Ck, Cj))

(18)

Because Ck = Cf ∪ Cg , we have

A(Ck, Ch) = A(Cf → Ch) +A(Cg → Ch)

+
1

2
A(Ch → Cf) +

1

2
A(Ch → Cg)

(19)

A(Ck, Cj) = A(Cf → Cj) +A(Cg → Cj)

+
1

2
A(Cj → Cf) +

1

2
A(Cj → Cg)

(20)

Since Cj = Cd ∪ Ce, we further transform above equa-
tion to

A(Ck, Cj) =
1

2
A(Cf → Cd) +

1

2
A(Cf → Ce)

+
1

2
A(Cg → Cd) +

1

2
A(Cg → Ce)

+
1

2
A(Cd → Cf) +

1

2
A(Ce → Cf)

+
1

2
A(Cd → Cg) +

1

2
A(Ce → Cg)

(21)

Similar to the relation between sample a and c at time
steps t = 1, 2, sample f and h belong to the same clus-
ter Cm at current time step while they are from different
clusters at time step t = 4. Based on the approxima-
tion, the terms A(Cf → Ch) and A(Ch → Cf) in two
time steps will be merged. As a result, the final loss is
computed on intra-cluster pairs and inter-cluster pairs
sampled from three clusters Cl, Cj and Cm.

3

• t=6: C6∗ = Cl, N 2
C6∗
[1] = Cj and N 2

C6∗
[2] = Cm. Thus

L(θ|{y1
∗, ...,y

6
∗}, I) = L(θ|{y1

∗, ...,y
5
∗}, I)

− (λ′A(Cl, Cj)−A(Cl, Cm))
(22)

Similar to the decomposition procedures above, both
A(Cl, Cj) and A(Cl, Cm) can be transformed to
sample-based affinities. Because Cl and Cj are re-
garded as different clusters previously, sample pairs
from both of them are with positive weights in the loss
function. However, it will be diminished by positive
pairs (with negative weights) at current time step.

Though we use a toy example to show that the cluster-
based loss can be transformed to sample-based loss above,
the reduction is general to any possible agglomerative clus-
tering processes because the loss for clusters at high-level
can always be decomposed to the losses on clusters at low-
level until it reaches to single samples. The difference
among various processes lies on the different weights asso-
ciated with sample-based affinities. At this point, we should
know that sample pairs from the same cluster may be with
positive weights. One way to avoid this is increase λ′. In
our implementation, we aim to increase affinities between
samples from the same clusters, while decrease the affini-
ties between samples from different clusters. And the clus-
ters are determined by cluster ids at current step. Therefore,
we assign a consistent weight γ to any affinities from the
same cluster and 1 to any affinities from different clusters.
Because we use SGD for batch optimization, the scales for
affinities do not affect much on the performance. It is the
signs affect much. Accordingly, at any given time step T ,
the overall loss is approximated to

L(θ|yT∗ , I) = −
λ

Kc − 1

∑
i,j,k

(γA(xi,xj)−A(xi,xk))

(23)
Note that we replace Y∗ in (23) by yT∗ in (23) be-

cause it is merely determined by current yT , regardless
of {y1

∗, ...,y
T−1
∗ }. As a result, we do not need to record

{y1
∗, ...,y

T−1
∗ }. This simplifies the batch optimization for

CNN. Concretely, given a sample xi, we randomly select
a sample xj which belongs to the same cluster, while se-
lect neighbours of xi that from other clusters to be xk. To
omit the case that A(xi,xj) is much larger than A(xi,xk),
we also add a margin threshold like the triplet loss function
used in [8, 11].

4. Detailed CNN Architectures in our Paper
In this paper, the CNN architectures vary from dataset

to dataset. As we mentioned in the main paper, we stacked
different number of layers for different datasets so that the
size of most top layer response map is about 10×10. In

Table 1, we list the architectures for the datasets used in our
paper. ”conv” means convolutional layer. ”bn” means batch
normalization layer. ”wt-loss” means weighted triplet loss
layer. X means the layer is used, while − means the layer
is not used.

5. Performance Evaluated by Accuracy

In this section, we evaluate the performance of differ-
ent algorithms based on clustering accuracy (AC) metric,
as a supplement to the NMI metric used in our main pa-
per. As we can see from table 2, the proposed method out-
perform other methods on all datasets, which has similar
trend as evaluated using NMI. Meanwhile, according to ta-
ble 3, all other clustering algorithms are boosted after using
the learned representation as evaluated on AC. These re-
sults further prove the proposed method is superior to other
clustering algorithms and also learns powerful deep repre-
sentations that generalize well across different clustering al-
gorithms.

6. Robustness Analysis
We choose the two most important parameters: unfold-

ing rate η and Ks for evaluating the robustness of our ap-
proach to variations in these parameters. In these experi-
ments, we set all the other parameters except for the tar-
get one to default values listed in Table 2 in the main pa-
per. As we can see from Fig. 4, when the unfolding rate
increases, the performance is not affected much for most
of the datasets. For Ks, the performance is stable when
Ks <= 50 for all datasets. It drops with larger values of
Ks for a few datasets. Increasing Ks also result in similar
degradation in the agglomerative clustering algorithms we
compare to. This suggests that Ks should not be set to very
large value in general.

7. Reliability Analysis

We evaluate the reliability by measuring the purity of
samples at the beginning of our algorithm. Because we use
agglomerative clustering, there are very few samples in each
cluster at the beginning (average is about 4 in our experi-
ments). Most samples in the same cluster tend to belong
to the same category. Quantitatively, for each sample in a
dataset, we count the number of samples (Km) that belong
to the same category within its K nearest neighbours, and
then compute the precision Km/K for it. In Fig. 5, we re-
port the average precision across all samples. As we can
see, based on raw image data, all datasets have high ratios
when K is smaller, and the ratios increase further when us-
ing our learned deep representations. Consequently, when
K is small, the pseudo-labels are reliable enough to learn
plausible deep representations.

4

Table 1: CNN architectures for different datasets in our paper.

Dataset COIL20 COIL100 USPS MNIST-test MNIST-full UMist FRGC CMU-PIE YTF

conv1 X X X X X X X X X
bn1 X X X X X X X X X
relu1 X X X X X X X X X
pool1 X X X X X X X X X
conv2 X X − X X X X X X
bn2 X X − X X X X X X
relu2 X X − X X X X X X
pool2 X X − − − X X X X
conv3 X X − − − X − − −
bn3 X X − − − X − − −
relu3 X X − − − X − − −
pool3 X X − − − X − − −
conv4 X X − − − − − − −
bn4 X X − − − − − − −
relu4 X X − − − − − − −
pool4 X X − − − − − − −
ip1 X X X X X X X X X
l2-norm X X X X X X X X X
wt-loss X X X X X X X X X

Table 2: Quantitative clustering performance (AC) for different algorithms using image intensities as input.

Dataset COIL20 COIL100 USPS MNIST-test MNIST-full UMist FRGC CMU-PIE YTF

K-means [5] 0.665 0.580 0.467 0.560 0.564 0.419 0.327 0.246 0.548
SC-NJW [6] 0.641 0.544 0.413 0.220 0.502 0.551 0.178 0.255 0.551
SC-ST [12] 0.417 0.300 0.308 0.454 0.311 0.411 0.358 0.293 0.290
SC-LS [10] 0.717 0.609 0.659 0.740 0.714 0.568 0.407 0.549 0.544
N-Cuts [9] 0.544 0.577 0.314 0.304 0.327 0.550 0.235 0.155 0.536
AC-Link [3] 0.251 0.269 0.421 0.693 0.657 0.398 0.175 0.201 0.547
AC-Zell [15] 0.867 0.811 0.575 0.693 0.112 0.517 0.266 0.765 0.519
AC-GDL [13] 0.865 0.797 0.867 0.933 0.113 0.563 0.266 0.842 0.430
AC-PIC [14] 0.855 0.840 0.855 0.920 0.115 0.576 0.320 0.797 0.472
NMF-LP [1] 0.621 0.553 0.522 0.479 0.471 0.365 0.259 0.229 0.546
OURS-SF 1.000 0.894 0.922 0.940 0.959 0.809 0.461 0.980 0.684
OURS-RC 1.000 0.916 0.950 0.961 0.964 0.809 0.461 1.000 0.684

Table 3: Quantitative clustering performance (AC) for different algorithms using our learned representations as inputs.

Dataset COIL20 COIL100 USPS MNIST-test MNIST-full UMist FRGC CMU-PIE YTF

K-means [5] 0.821 0.751 0.776 0.957 0.969 0.761 0.476 0.834 0.660
SC-NJW [6] 0.738 0.659 0.716 0.868 0.972 0.707 0.485 0.776 0.521
SC-ST [12] 0.851 0.705 0.661 0.960 0.958 0.697 0.496 0.896 0.575
SC-LS [10] 0.867 0.735 0.792 0.960 0.973 0.733 0.502 0.802 0.571
N-Cuts [9] 0.888 0.626 0.634 0.959 0.971 0.798 0.504 0.981 0.441
AC-Link [3] 0.678 0.539 0.773 0.955 0.964 0.795 0.495 0.947 0.602
AC-Zell [15] 1.000 0.931 0.879 0.879 0.969 0.790 0.449 1.000 0.644
AC-GDL [13] 1.000 0.920 0.949 0.961 0.878 0.790 0.461 1.000 0.677
AC-PIC [14] 1.000 0.950 0.955 0.958 0.882 0.790 0.438 1.000 0.652
NMF-LP [1] 0.769 0.603 0.778 0.955 0.970 0.725 0.481 0.504 0.575

5

Figure 4: Clustering performance (NMI) with different η (left) and Ks (right).

Figure 5: Average purity of K-nearest neighbour for varying values of K. Left is computed using raw image data, while right
is computed using our learned representation.

8. Clustering based on Hand-Crafted Features

We also evaluate the performance of clustering based on
image features, instead of image intensities. We choose
three different types of datasets for testing: COIL100,
MNIST-test and UMist, and three types of clustering algo-
rithms including SC-LS [10], N-Cuts [9] and AC-PIC [14]
for comparison since their better performance among all the
algorithms. For these three datasets, we use spatial pyra-
mid descriptor [4]1, histogram of oriented gradient (HOG)
[2]2 and local binary pattern (LBP) [7] for representation,
respectively. We report the results in Table 4. ↓ means

1http://slazebni.cs.illinois.edu/research/
SpatialPyramid.zip

2http://www.robots.ox.ac.uk/˜vgg/research/
caltech/phog.html

Table 4: Clustering performance (NMI) based on hand-
crafted features.

Dataset COIL100 MNIST-test UMist FRGC

SC-LS [10] 0.733↓ 0.625↓ 0.752↓ 0.338↓
N-Cuts [9] 0.722↓ 0.423↑ 0.420↓ 0.238↓
AC-PIC [14] 0.878↓ 0.735↓ 0.734↓ 0.322↓

performance become worse, and ↑ means it become bet-
ter. Almost all algorithms perform worse than using origi-
nal image as input. It indicates hand-crafted features should
be designed dataset by dataset. In contrast, directly learn-
ing from image intensities is more straightforward and also
achieves better performance.

6

http://slazebni.cs.illinois.edu/research/SpatialPyramid.zip
http://slazebni.cs.illinois.edu/research/SpatialPyramid.zip
http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.html
http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.html

9. Visualizing Learned Deep Representations
We show the first three principle components of learned

representations in Fig. 6 and Fig. 7 at different stages. For
comparison, we show the image intensities at the first col-
umn. We use different colors for representing different clus-
ters that we predict during the algorithm. At the bottom of
each plot, we give the number of clusters at the correspond-
ing stage. At the final stage, the number of cluster is same to
the number of categories in the dataset. After a number of
iterations, we can learn more discriminative representations
for the datasets, and thus facilitate more precise clustering
results.

References
[1] D. Cai, X. He, X. Wang, H. Bao, and J. Han. Locality

preserving nonnegative matrix factorization. In IJCAI, vol-
ume 9, pages 1010–1015, 2009. 5

[2] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference
on, volume 1, pages 886–893. IEEE, 2005. 6

[3] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering:
a review. ACM computing surveys (CSUR), 31(3):264–323,
1999. 5

[4] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In Computer Vision and Pattern Recogni-
tion, 2006 IEEE Computer Society Conference on, volume 2,
pages 2169–2178. IEEE, 2006. 6

[5] J. MacQueen et al. Some methods for classification and anal-
ysis of multivariate observations. In Proceedings of the fifth
Berkeley symposium on mathematical statistics and proba-
bility, volume 1, pages 281–297. Oakland, CA, USA., 1967.
5

[6] A. Y. Ng, M. I. Jordan, Y. Weiss, et al. On spectral clustering:
Analysis and an algorithm. Advances in neural information
processing systems, 2:849–856, 2002. 5

[7] T. Ojala, M. Pietikäinen, and D. Harwood. A comparative
study of texture measures with classification based on fea-
tured distributions. Pattern recognition, 29(1):51–59, 1996.
6

[8] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-
fied embedding for face recognition and clustering. arXiv
preprint arXiv:1503.03832, 2015. 4

[9] J. Shi and J. Malik. Normalized cuts and image segmen-
tation. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 22(8):888–905, 2000. 5, 6

[10] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 5, 6

[11] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang,
J. Philbin, B. Chen, and Y. Wu. Learning fine-grained image
similarity with deep ranking. In Computer Vision and Pat-
tern Recognition (CVPR), 2014 IEEE Conference on, pages
1386–1393. IEEE, 2014. 4

[12] L. Zelnik-Manor and P. Perona. Self-tuning spectral cluster-
ing. pages 1601–1608, 2004. 5

[13] W. Zhang, X. Wang, D. Zhao, and X. Tang. Graph de-
gree linkage: Agglomerative clustering on a directed graph.
In Computer Vision–ECCV 2012, pages 428–441. Springer,
2012. 1, 5

[14] W. Zhang, D. Zhao, and X. Wang. Agglomerative clustering
via maximum incremental path integral. Pattern Recogni-
tion, 46(11):3056–3065, 2013. 5, 6

[15] D. Zhao and X. Tang. Cyclizing clusters via zeta function
of a graph. In Advances in Neural Information Processing
Systems, pages 1953–1960, 2009. 5

7

(a) Initial stage (421) (b) Middle stage (42) (c) Final stage (20)

(d) Initial stage (2162) (e) Middle stage (216) (f) Final stage (100)

(g) Initial stage (2232) (h) Middle stage (22) (i) Final stage (10)

(j) Initial stage (1762) (k) Middle stage (22) (l) Final stage (10)

(m) Initial stage (11521) (n) Middle stage (115) (o) Final stage (10)

Figure 6: Learned representations at different stages on five datasets. From top to bottom, they are COIL20, COIL100,
USPS and MNIST-test and MNIST-full. The first column are image intensities. For MNIST-test, we show another view point
different from Fig.1 in the main paper.

8

(a) Initial stage (188) (b) Middle stage (60) (c) Final stage (20)

(d) Initial stage (775) (e) Middle stage (128) (f) Final stage (20)

(g) Initial stage (775) (h) Middle stage (200) (i) Final stage (68)

(j) Initial stage (2814) (k) Middle stage (300) (l) Final stage (41)

Figure 7: Learned representations as different stages on four datasets. From top to bottom, they are UMist, FRGC, CMU-PIE
and YTF. The first column are image intensities.

9

