Supplemental Materials

Proof to Lemma 1

Proof. Denote supp(Pq(oo,)(W)) and supp(Po(s,¢)(W)) by A and B respectively for short. We first prove B C A.
Suppose B € A, then we can find an element b € B but b ¢ A. Without the loss of generality, we assume that b is
in a certain group g. Since AN g contains the indices of the t, largest (magnitude) elements of group g, there exists at
least one element a € AN g and a ¢ B N g (otherwise |B N g|> t, + 1). Replacing b by a in B, the constraints are
still satisfied, but we can get a better solution since [w,|> |wy|. This contradicts B = supp(Pgs,¢)(W)).
Because we already know B C A, we can construct B by selecting the A’s elements corresponding to the largest s
(magnitude) elements. Therefore, supp(Pq s ¢)(W)) = supp(Po(s,00) (Po(oo,t) (W))), which proves Lemma 1. O

Lemma 5. Vsupp(w — w) C S, S € Q(s,t), if 2n — n?ps(s,t)) > 0, then

lw =% =0V f(w) = VF(W)]slIP< (1 = 2np— (s, t) + 170 (5,£)p (5, 1)) | w — w]|*. (6)
Proof.
lw =W — 5[V f(w) = Vf(w)]s]|?

=llw = w(*+n* [V f(w) = Vf(%)]s]|*=2n{w — W, [V f(w) = Vf(%)]5)

<|lw = W2+ (s, t) = 20)(w — W, [V f(w) = VF(W)]s)

<lw = w (2= (21 = 1?p4 (5,))p— (s, t) [ w — w]|?

=(1 = 2np(5,t) +1°p. (s, t)p-(s,1)) [w — %|]*.
It completes the proof. O

Proof to Theorem 2

Proof. Let us prove the first claim.

WA = (wh = f(w)) 2
B WP — (wh = gV (wE) 2wt - w - (wh - gV f(wh)))?

=|lw

Define 2 = supp(w), Q41 = supp(w**1), and Q1 = QU Qg . From [|[wht! — (wk — nV f(wh))||2< [|[w —
(wh —nV f(wk))||?, we have

W = wi* < 2(wt T — W, wh -V (W) — w)
= 2w —w, [wh — 9V f(w") —wlg, )
< 2wt —wl]|[w" — V(W) — wlq,

It follows
[whth — w|| < 2||[wF -V f(wF) — W],
=2||[w* =V f(w") =W +nVf(W) =V f(W)]g, ., |
< 2w =V f(WF) =W + YV f(W)]a,,, [+20] [V f(%)]a,,. |
< 2w =V f(WF) =W + YV f(W)]a,.,,u0, 1 +201 [V F(®)]a, |

flw
=2l|w" — W — n[Vf(w") - Vf(w )]Qkﬂuﬂk||+277H[Vf(w)]ﬂk+1”~



From the inequality of Lemma 5, we have

W™ = w| < allw* — wl+2n[[V f(#)]a, ., |

< afwh — wll+2n max|[[VFf(W)l, . |

< al|w® —w||+2nA. (7)

Since A is constant, using the recursive relation of (7), we have

k
[wh — w| < of|w’ — V’VII+277AZof
1=0
1— k
= oF|w® - w|+2pa-—2
l1—«
1
< o||wP — wl+2nA—. (8)

Then we move to (2), when k& > [log (lfa)er(SiAfSt)Hwofv’vH /log ], from the conclusion of (1), we have

4A
F oWl < ||WF — W< ) 9
R B e ravE ey ©
For any j € €,
W — Wl > [[w" —w];
> —[[w"]; [+ w5
So
w1 = [[w];|=1w"* = Wl
> |-
w);|— )
- ’ (1 70‘)/’—5—(35330
Therefore, [w*]; is non-zero if |[W];[> Wﬁ(&sﬁﬂ’ and (2) is proved. O
Lemma 6. The value of A is bounded by
1 log1/n’ max,cg lo t, +logl/y
A < min O(\/s ogp + log /77)’0 \/ e glglzgeg g gl/n 7 (10)
n n

with high probability 1 — 1/'.

Proof. We introduce the following notation for matrix and it is different from the vector notation. For a matrix
X in R™*?, X, will be a R"*!"I matrix that only keep the columns corresponding to the index set h. Here we
restrict h by w;, € (s, t) for any w € RP. We denote &), = X hT X, For the theorem, we can first show that

X, ell< \/ﬁ( |h| + \/2p+(2s, 2t) log(%)) with probability 1 — 7. To this end, we have to point out that our
columns of X are normalized to /1 and hence X, e will be a L _variate Gaussian random variable with n on the

diagonal of covariance matrix. We further use \; as the eigenvalues of ¥;, with decreasing order, i.e., A; being the
largest, or equivalently, Ay = ||| spec-




Also, using the trick that ¢r(37) = A{ + A3 + - + A7}, and Proposition 1.1 from [16], we have

k| |1l
e ZPr | [IX elP> ) N+ 24| D> A+ 20t
=1 =1
|h] k]
>Pr | [1X]elP> ) N +24( 2> Aidat +2Mt
i=1 i=1
|1l
>Pr | [1X]el|> | DN+ V2t |
i=1

Substitute ¢ with log(L) and the facts that 3°/")) \; = |aln and Ay = || 3l|spec< npy (25, 2t), we have

1XTell< v (VIR + v/204 (25, 26)Tog(1/1))
with probability 1 — 7).

For the least square loss, we have Vf(w) = 1XT(Xw —y) = LXTe. To estimate the upper bound of
[IPo(2s,2¢) (V.f(W))]|, we use the following fact

IPaas 26) (V (W)= [Paas,26) (X T €)|< min (|[Pozs,c0) (X €)lls [Paos,26) (X T€)l]) -

We consider the upper bounds of [|Pg 2 00) (X T €)|| and |[Pgco 26) (X " €)]| respectively:

Pr ([[Paas,e) (X T)lZ 0722 (V25 + /204 (25, 2¢) log(1/n) ) )

—Pr (ﬁ%{sHXhTeHZ n=1/?2 (\/% + /204 (25, 2t) log(l/n)))
< 30 P (] ell> 02 (Vs + /20, (25, 26) log(1/1)))

|h|=2s
p
<
- (25) G

By taking ' = (5;), we obtain

v (ot (5 e (1))
>Pr <|PQ(28,00)(XT6)||2 10 <\/510g(p) :bg 1/77’>> ’

where the last inequality uses the fact that p (2s, 2t) is bounded by a constant with high probability.




Next we consider the upper bound of ||Pg (oo 2¢) (X "€)||. Similarly, we have

Pr | |[Pogoon (X T e)=n "2 [ 23,4 /204 (25, 2t) log(1/n)
geg
=Pr max XTell>n" 2 |2 +1/2p4 (25, 2t) log(1
g T vgegH n€ll= gezgg V204 ( ) log(1/n)

< > P |IXSel=n 2 237+ /205 (25,2) log(1/n)
|hNg|<2ty VgeG geyg
2 (g|> '

9€g

Thus, by taking 7 = 0[], g <2|i| ) we have
g

T ~1/2 91
o >Pr | [Pogan (X Te)> nV @ 22520108 1;[g<2tg> o
g g

>Pr | [|Pooo26) (X €)||> n~ /2 QZtg—F\/4p+(23,2t)Ztglog|g|+2¢+(1)log1/n’

geg geg
>Pr { [[Pogeoze(X o) 072 [ 25 ¢, + \/4p+ (25,2¢) maxloglg| 3 ¢, + 20+ (1) log 1/
geg geg
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Summarizing two upper bounds, we have with high probability (1 — 27)

1 log1/n’ maxgeg lo ty +logl/n
[Paee (V)< min o<\/ i) o ¢ oo 80 e by L RE LT

n n

O

Lemma 7. For the least square loss, assume that matrix X to be sub-Gaussian with zero mean and has independent
rows or columns. If the number of samples n is more than

O | min < slogp, log(max|g| Zt ,
geg

then with high probability, we have with high probability

p—(3s,3t) > 12)

N = DN W

Thus, o defined in (3) is less than 1 by appropriately choosing 1) (for example, n = 1/p(3s, 3t)).



Proof. For the linear regression loss, we have

I Xwl

/2
2(3s,3t) < 1
V1 weQ(3s,3t) lwl| — |ni<ss, \hmg\<t
X
1/2(3 3t) > min X min (1 X7
\/ﬁ weQ(3s,3t) ||w|| 1<|h|<3s,[hng|<t,

From the random matrix theory [35, Theorem 5.39], we have

Pr (132 it + 0(v39) + Ofy oz 1) < 0(a)

Pr (\/ﬁpi/2(3s, 3t) > vn+ O(v/s) + O(y/log ;))

1
< > 1
=Pr (h<3£nhﬁg<tg|Xh” Vn+O0(Vs) +0(/log 77)>

<|{h | |h|= 3s)[Pr (nXhz Vit + 0(V3) +0<,/1og}7>>

(2)m(m w oo sofu) <o((2)

which implies (by taking 7' = (?i, ) n):

Pr (fpl/z(gs,:at) > \/n+0(slogp) + 0 <\/10g7)> <1

Taking n = O(slogp), we have p + (35 3t) < \/g with high probability. Next, we consider it from a different

perspective.
Pr | vnp'/?(3s5,3t) > Vn+ 0 >ty | +0 (,/1og1>
geg K
<Pr \/ﬁp1+/2(+oo,3t)2\/ﬁ+0 /Ztg —&-O(,/logi)
9eg

—Pr max || X3]|>vVn+O Zt +0
|hNg|<ty,9€G 9€g
1
<11 ('f') Pr { [ X5]1> v+ 0 \/ﬂ o (\/@))
g IS4

geg

<n H (|g|> < nlogmax|g|zt

geg

Then we have

=

Pr fp1/2(3s,3t) >\/n+0 \/Zitlogmaﬂg +0 <log?7> <7
9€g



1/2

It indicates that if n > O(}° .ty max,eglg|), then we have p,/”(3s,3t) < \/g with high probability as well.

geG
Similarly, we can prove pl_/ 2(33, 3t) < \/g with high probability. O

Proof to Theorem 3

Proof. Since n is large enough as shown in (4), from Lemma 7, we have oo < 1 and are allowed to apply Theorem 2.
Since A = 0 for the noiseless case, we prove the theorem by letting w be w*. O

Proof to Theorem 4

Proof. Since n is large enough as shown in (4), from Lemma 7, we have o < 1 and are allowed to apply Theorem 2.
From Lemma 6, we obtain the upper bound for A. When the number of iterations & is large enough such that
a¥||w® — w|| reduces the magnitude of A, we can easily prove the error bound of w* letting W be w*. The second
claim can be similarly proven by applying the second claim in Theorem 2. O



