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Proof to Lemma 1

Proof. Denote supp(P⌦(1,t)(w)) and supp(P⌦(s,t)(w)) by A and B respectively for short. We first prove B ✓ A.
Suppose B 6✓ A, then we can find an element b 2 B but b 62 A. Without the loss of generality, we assume that b is

in a certain group g. Since A\ g contains the indices of the tg largest (magnitude) elements of group g, there exists at
least one element a 2 A \ g and a 62 B \ g (otherwise |B \ g|� tg + 1). Replacing b by a in B, the constraints are
still satisfied, but we can get a better solution since |wa|> |wb|. This contradicts B = supp(P⌦(s,t)(w)).

Because we already know B ✓ A, we can construct B by selecting the A’s elements corresponding to the largest s
(magnitude) elements. Therefore, supp(P⌦(s,t)(w)) = supp(P⌦(s,1)(P⌦(1,t)(w))), which proves Lemma 1.

Lemma 5. 8supp(w � ¯w) ✓ S, S 2 ⌦(s, t), if 2⌘ � ⌘2⇢+(s, t)) > 0, then

kw � ¯w � ⌘[rf(w)�rf( ¯w)]Sk2 (1� 2⌘⇢�(s, t) + ⌘2⇢�(s, t)⇢+(s, t))kw � ¯wk2. (6)

Proof.

kw � ¯w � ⌘[rf(w)�rf( ¯w)]Sk2

=kw � ¯wk2+⌘2k[rf(w)�rf( ¯w)]Sk2�2⌘hw � ¯w, [rf(w)�rf( ¯w)]Si
kw � ¯wk2+(⌘2⇢+(s, t)� 2⌘)hw � ¯w, [rf(w)�rf( ¯w)]Si
kw � ¯wk2�(2⌘ � ⌘2⇢+(s, t))⇢�(s, t)kw � ¯wk2

=(1� 2⌘⇢�(s, t) + ⌘2⇢+(s, t)⇢�(s, t))kw � ¯wk2.

It completes the proof.

Proof to Theorem 2

Proof. Let us prove the first claim.
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It follows
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From the inequality of Lemma 5, we have

kwk+1 � ¯wk  ↵kwk � ¯wk+2⌘k[rf( ¯w)]⌦̄k+1
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 ↵kwk � ¯wk+2⌘max
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Since � is constant, using the recursive relation of (7), we have
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Then we move to (2), when k � dlog 2�
(1�↵)⇢+(3s,3t)kw0�w̄k/log↵e, from the conclusion of (1), we have

kwk � ¯wk1 kwk � ¯wk 4�
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For any j 2 ¯

⌦,
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� �|[wk

]j |+|[ ¯w]j |.
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|[wk
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.

Therefore, [wk
]j is non-zero if |[ ¯w]j |> 4�

(1�↵)⇢+(3s,3t) , and (2) is proved.
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with high probability 1� ⌘0.

Proof. We introduce the following notation for matrix and it is different from the vector notation. For a matrix
X in Rn⇥p, Xh will be a Rn⇥|h| matrix that only keep the columns corresponding to the index set h. Here we
restrict h by wh 2 ⌦(s, t) for any w 2 Rp. We denote ⌃h = X>

h Xg , For the theorem, we can first show that
kX>

h ✏k6 p
n
⇣

p

|h|+
q

2⇢+(2s, 2t) log(
1
⌘ )

⌘

with probability 1 � ⌘. To this end, we have to point out that our

columns of X are normalized to
p
n and hence X>

h ✏ will be a p
m -variate Gaussian random variable with n on the

diagonal of covariance matrix. We further use �i as the eigenvalues of ⌃h with decreasing order, i.e., �1 being the
largest, or equivalently, �1 = k⌃hkspec.



Also, using the trick that tr(⌃2
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Substitute t with log(

1
⌘ ) and the facts that

P|h|
i=1 �i = |h|n and �1 = k⌃kspec6 n⇢+(2s, 2t), we have
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For the least square loss, we have rf( ¯w) =
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where the last inequality uses the fact that ⇢+(2s, 2t) is bounded by a constant with high probability.



Next we consider the upper bound of kP⌦(1,2t)(X
>✏)k. Similarly, we have
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Summarizing two upper bounds, we have with high probability (1� 2⌘0)
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Lemma 7. For the least square loss, assume that matrix X to be sub-Gaussian with zero mean and has independent
rows or columns. If the number of samples n is more than
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Thus, ↵ defined in (3) is less than 1 by appropriately choosing ⌘ (for example, ⌘ = 1/⇢+(3s, 3t)).



Proof. For the linear regression loss, we have
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It indicates that if n � O(
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Proof to Theorem 3

Proof. Since n is large enough as shown in (4), from Lemma 7, we have ↵ < 1 and are allowed to apply Theorem 2.
Since � = 0 for the noiseless case, we prove the theorem by letting ¯w be w⇤.

Proof to Theorem 4

Proof. Since n is large enough as shown in (4), from Lemma 7, we have ↵ < 1 and are allowed to apply Theorem 2.
From Lemma 6, we obtain the upper bound for �. When the number of iterations k is large enough such that
↵kkw0 � ¯wk reduces the magnitude of �, we can easily prove the error bound of wk letting ¯w be w⇤. The second
claim can be similarly proven by applying the second claim in Theorem 2.


