Supplemental Materials

Proof to Lemma 1

Proof. Denote $\operatorname{supp}\left(\mathrm{P}_{\Omega(\infty, \mathbf{t})}(\mathbf{w})\right)$ and $\operatorname{supp}\left(\mathrm{P}_{\Omega(s, \mathbf{t})}(\mathbf{w})\right)$ by A and B respectively for short. We first prove $B \subseteq A$.
Suppose $B \nsubseteq A$, then we can find an element $b \in B$ but $b \notin A$. Without the loss of generality, we assume that b is in a certain group g. Since $A \cap g$ contains the indices of the \mathbf{t}_{g} largest (magnitude) elements of group g, there exists at least one element $a \in A \cap g$ and $a \notin B \cap g$ (otherwise $|B \cap g| \geq \mathbf{t}_{g}+1$). Replacing b by a in B, the constraints are still satisfied, but we can get a better solution since $\left|\mathbf{w}_{a}\right|>\left|\mathbf{w}_{b}\right|$. This contradicts $B=\operatorname{supp}\left(\mathrm{P}_{\Omega(s, \mathbf{t})}(\mathbf{w})\right)$.

Because we already know $B \subseteq A$, we can construct B by selecting the A 's elements corresponding to the largest s (magnitude) elements. Therefore, $\operatorname{supp}\left(\mathrm{P}_{\Omega(s, \mathbf{t})}(\mathbf{w})\right)=\operatorname{supp}\left(\mathrm{P}_{\Omega(s, \infty)}\left(\mathrm{P}_{\Omega(\infty, \mathbf{t})}(\mathbf{w})\right)\right)$, which proves Lemma 1.

Lemma 5. $\forall \operatorname{supp}(\mathbf{w}-\overline{\mathbf{w}}) \subseteq S, S \in \Omega(s, \mathbf{t})$, if $\left.2 \eta-\eta^{2} \rho_{+}(s, \mathbf{t})\right)>0$, then

$$
\begin{equation*}
\left\|\mathbf{w}-\overline{\mathbf{w}}-\eta[\nabla f(\mathbf{w})-\nabla f(\overline{\mathbf{w}})]_{S}\right\|^{2} \leq\left(1-2 \eta \rho_{-}(s, \mathbf{t})+\eta^{2} \rho_{-}(s, \mathbf{t}) \rho_{+}(s, \mathbf{t})\right)\|\mathbf{w}-\overline{\mathbf{w}}\|^{2} . \tag{6}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& \left\|\mathbf{w}-\overline{\mathbf{w}}-\eta[\nabla f(\mathbf{w})-\nabla f(\overline{\mathbf{w}})]_{S}\right\|^{2} \\
= & \|\mathbf{w}-\overline{\mathbf{w}}\|^{2}+\eta^{2}\left\|[\nabla f(\mathbf{w})-\nabla f(\overline{\mathbf{w}})]_{S}\right\|^{2}-2 \eta\left\langle\mathbf{w}-\overline{\mathbf{w}},[\nabla f(\mathbf{w})-\nabla f(\overline{\mathbf{w}})]_{S}\right\rangle \\
\leq & \|\mathbf{w}-\overline{\mathbf{w}}\|^{2}+\left(\eta^{2} \rho_{+}(s, \mathbf{t})-2 \eta\right)\left\langle\mathbf{w}-\overline{\mathbf{w}},[\nabla f(\mathbf{w})-\nabla f(\overline{\mathbf{w}})]_{S}\right\rangle \\
\leq & \|\mathbf{w}-\overline{\mathbf{w}}\|^{2}-\left(2 \eta-\eta^{2} \rho_{+}(s, \mathbf{t})\right) \rho_{-}(s, \mathbf{t})\|\mathbf{w}-\overline{\mathbf{w}}\|^{2} \\
= & \left(1-2 \eta \rho_{-}(s, \mathbf{t})+\eta^{2} \rho_{+}(s, \mathbf{t}) \rho_{-}(s, \mathbf{t})\right)\|\mathbf{w}-\overline{\mathbf{w}}\|^{2} .
\end{aligned}
$$

It completes the proof.

Proof to Theorem 2

Proof. Let us prove the first claim.

$$
\begin{aligned}
& \left\|\mathbf{w}^{k+1}-\left(\mathbf{w}^{k}-\eta \nabla f\left(\mathbf{w}^{k}\right)\right)\right\|^{2} \\
= & \left\|\mathbf{w}^{k+1}-\overline{\mathbf{w}}\right\|^{2}+\left\|\overline{\mathbf{w}}-\left(\mathbf{w}^{k}-\eta \nabla f\left(\mathbf{w}^{k}\right)\right)\right\|^{2}+2\left\langle\mathbf{w}^{k+1}-\overline{\mathbf{w}}, \overline{\mathbf{w}}-\left(\mathbf{w}^{k}-\eta \nabla f\left(\mathbf{w}^{k}\right)\right)\right\rangle ?
\end{aligned}
$$

Define $\bar{\Omega}=\operatorname{supp}(\overline{\mathbf{w}}), \Omega_{k+1}=\operatorname{supp}\left(\mathbf{w}^{k+1}\right)$, and $\bar{\Omega}_{k+1}=\bar{\Omega} \cup \Omega_{k+1}$. From $\left\|\mathbf{w}^{k+1}-\left(\mathbf{w}^{k}-\eta \nabla f\left(\mathbf{w}^{k}\right)\right)\right\|^{2} \leq \| \overline{\mathbf{w}}-$ $\left(\mathbf{w}^{k}-\eta \nabla f\left(\mathbf{w}^{k}\right)\right) \|^{2}$, we have

$$
\begin{aligned}
\left\|\mathbf{w}^{k+1}-\overline{\mathbf{w}}\right\|^{2} & \leq 2\left\langle\mathbf{w}^{k+1}-\overline{\mathbf{w}}, \mathbf{w}^{k}-\eta \nabla f\left(\mathbf{w}^{k}\right)-\overline{\mathbf{w}}\right\rangle \\
& =2\left\langle\mathbf{w}^{k+1}-\overline{\mathbf{w}},\left[\mathbf{w}^{k}-\eta \nabla f\left(\mathbf{w}^{k}\right)-\overline{\mathbf{w}}\right]_{\bar{\Omega}_{k+1}}\right\rangle \\
& \leq 2\left\|\mathbf{w}^{k+1}-\overline{\mathbf{w}}\right\|\left\|\left[\mathbf{w}^{k}-\eta \nabla f\left(\mathbf{w}^{k}\right)-\overline{\mathbf{w}}\right]_{\bar{\Omega}_{k+1}}\right\| .
\end{aligned}
$$

It follows

$$
\begin{aligned}
\left\|\mathbf{w}^{k+1}-\overline{\mathbf{w}}\right\| & \leq 2\left\|\left[\mathbf{w}^{k}-\eta \nabla f\left(\mathbf{w}^{k}\right)-\overline{\mathbf{w}}\right]_{\bar{\Omega}_{k+1}}\right\| \\
& =2\left\|\left[\mathbf{w}^{k}-\eta \nabla f\left(\mathbf{w}^{k}\right)-\overline{\mathbf{w}}+\eta \nabla f(\overline{\mathbf{w}})-\eta \nabla f(\overline{\mathbf{w}})\right]_{\bar{\Omega}_{k+1}}\right\| \\
& \leq 2\left\|\left[\mathbf{w}^{k}-\eta \nabla f\left(\mathbf{w}^{k}\right)-\overline{\mathbf{w}}+\eta \nabla f(\overline{\mathbf{w}})\right]_{\bar{\Omega}_{k+1}}\right\|+2 \eta\left\|[\nabla f(\overline{\mathbf{w}})]_{\bar{\Omega}_{k+1}}\right\| \\
& \leq 2\left\|\left[\mathbf{w}^{k}-\eta \nabla f\left(\mathbf{w}^{k}\right)-\overline{\mathbf{w}}+\eta \nabla f(\overline{\mathbf{w}})\right]_{\bar{\Omega}_{k+1} \cup \Omega_{k}}\right\|+2 \eta\left\|[\nabla f(\overline{\mathbf{w}})]_{\bar{\Omega}_{k+1}}\right\| \\
& =2\left\|\mathbf{w}^{k}-\overline{\mathbf{w}}-\eta\left[\nabla f\left(\mathbf{w}^{k}\right)-\nabla f(\overline{\mathbf{w}})\right]_{\bar{\Omega}_{k+1} \cup \Omega_{k}}\right\|+2 \eta\left\|[\nabla f(\overline{\mathbf{w}})]_{\bar{\Omega}_{k+1}}\right\|
\end{aligned}
$$

From the inequality of Lemma 5, we have

$$
\begin{align*}
\left\|\mathbf{w}^{k+1}-\overline{\mathbf{w}}\right\| & \leq \alpha\left\|\mathbf{w}^{k}-\overline{\mathbf{w}}\right\|+2 \eta\left\|[\nabla f(\overline{\mathbf{w}})]_{\bar{\Omega}_{k+1}}\right\| \\
& \leq \alpha\left\|\mathbf{w}^{k}-\overline{\mathbf{w}}\right\|+2 \eta \max _{j}\left\|[\nabla f(\overline{\mathbf{w}})]_{\bar{\Omega}_{j+1}}\right\| \\
& \leq \alpha\left\|\mathbf{w}^{k}-\overline{\mathbf{w}}\right\|+2 \eta \Delta \tag{7}
\end{align*}
$$

Since Δ is constant, using the recursive relation of (7), we have

$$
\begin{align*}
\left\|\mathbf{w}^{k}-\overline{\mathbf{w}}\right\| & \leq \alpha^{k}\left\|\mathbf{w}^{0}-\overline{\mathbf{w}}\right\|+2 \eta \Delta \sum_{i=0}^{k} \alpha^{i} \\
& =\alpha^{k}\left\|\mathbf{w}^{0}-\overline{\mathbf{w}}\right\|+2 \eta \Delta \frac{1-\alpha^{k}}{1-\alpha} \\
& \leq \alpha^{k}\left\|\mathbf{w}^{0}-\overline{\mathbf{w}}\right\|+2 \eta \Delta \frac{1}{1-\alpha} \tag{8}
\end{align*}
$$

Then we move to (2), when $k \geq\left\lceil\log \frac{2 \Delta}{(1-\alpha) \rho_{+}(3 s, 3 t)\left\|\mathbf{w}^{0}-\overline{\mathbf{w}}\right\|} / \log \alpha\right\rceil$, from the conclusion of (1), we have

$$
\begin{equation*}
\left\|\mathbf{w}^{k}-\overline{\mathbf{w}}\right\|_{\infty} \leq\left\|\mathbf{w}^{k}-\overline{\mathbf{w}}\right\| \leq \frac{4 \Delta}{(1-\alpha) \rho_{+}(3 s, 3 t)} \tag{9}
\end{equation*}
$$

For any $j \in \bar{\Omega}$,

$$
\begin{aligned}
\left\|\mathbf{w}^{k}-\overline{\mathbf{w}}\right\|_{\infty} & \geq\left|\left[\mathbf{w}^{k}-\overline{\mathbf{w}}\right]_{j}\right| \\
& \geq-\left|\left[\mathbf{w}^{k}\right]_{j}\right|+\left|[\overline{\mathbf{w}}]_{j}\right|
\end{aligned}
$$

So

$$
\begin{aligned}
\left|\left[\mathbf{w}^{k}\right]_{j}\right| & \geq\left|[\overline{\mathbf{w}}]_{j}\right|-\left\|\mathbf{w}^{k}-\overline{\mathbf{w}}\right\|_{\infty} \\
& \geq\left|[\overline{\mathbf{w}}]_{j}\right|-\frac{4 \Delta}{(1-\alpha) \rho_{+}(3 s, 3 t)} .
\end{aligned}
$$

Therefore, $\left[\mathbf{w}^{k}\right]_{j}$ is non-zero if $\left|[\overline{\mathbf{w}}]_{j}\right|>\frac{4 \Delta}{(1-\alpha) \rho_{+}(3 s, 3 t)}$, and (2) is proved.
Lemma 6. The value of Δ is bounded by

$$
\begin{equation*}
\Delta \leq \min \left(O\left(\sqrt{\frac{s \log p+\log 1 / \eta^{\prime}}{n}}\right), O\left(\sqrt{\frac{\max _{g \in \mathcal{G}} \log |g| \sum_{g \in \mathcal{G}} \mathbf{t}_{g}+\log 1 / \eta^{\prime}}{n}}\right)\right) \tag{10}
\end{equation*}
$$

with high probability $1-\eta^{\prime}$.
Proof. We introduce the following notation for matrix and it is different from the vector notation. For a matrix X in $\mathbb{R}^{n \times p}$, X_{h} will be a $\mathbb{R}^{n \times|h|}$ matrix that only keep the columns corresponding to the index set h. Here we restrict h by $\mathbf{w}_{h} \in \Omega(s, \mathbf{t})$ for any $\mathbf{w} \in \mathbb{R}^{p}$. We denote $\Sigma_{h}=X_{h}^{\top} X_{g}$, For the theorem, we can first show that $\left\|X_{h}^{\top} \epsilon\right\| \leqslant \sqrt{n}\left(\sqrt{|h|}+\sqrt{2 \rho_{+}(2 s, 2 \mathbf{t}) \log \left(\frac{1}{\eta}\right)}\right)$ with probability $1-\eta$. To this end, we have to point out that our columns of X are normalized to \sqrt{n} and hence $X_{h}^{\top} \epsilon$ will be a $\frac{p}{m}$-variate Gaussian random variable with n on the diagonal of covariance matrix. We further use λ_{i} as the eigenvalues of Σ_{h} with decreasing order, i.e., λ_{1} being the largest, or equivalently, $\lambda_{1}=\left\|\Sigma_{h}\right\|_{\text {spec }}$.

Also, using the trick that $\operatorname{tr}\left(\Sigma_{h}^{2}\right)=\lambda_{1}^{2}+\lambda_{2}^{2}+\cdots+\lambda_{|h|}^{2}$ and Proposition 1.1 from [16], we have

$$
\begin{aligned}
e^{-t} & \geqslant \operatorname{Pr}\left(\left\|X_{h}^{\top} \epsilon\right\|^{2}>\sum_{i=1}^{|h|} \lambda_{i}+2 \sqrt{\sum_{i=1}^{|h|} \lambda_{i}^{2} t}+2 \lambda_{1} t\right) \\
& \geqslant \operatorname{Pr}\left(\left\|X_{h}^{\top} \epsilon\right\|^{2}>\sum_{i=1}^{|h|} \lambda_{i}+2 \sqrt{2 \sum_{i=1}^{|h|} \lambda_{i} \lambda_{1} t}+2 \lambda_{1} t\right) \\
& \geqslant \operatorname{Pr}\left(\left\|X_{h}^{\top} \epsilon\right\| \geqslant \sqrt{\sum_{i=1}^{|h|} \lambda_{i}}+\sqrt{2 \lambda_{1} t}\right) .
\end{aligned}
$$

Substitute t with $\log \left(\frac{1}{\eta}\right)$ and the facts that $\sum_{i=1}^{|h|} \lambda_{i}=|h| n$ and $\lambda_{1}=\|\Sigma\|_{\text {spec }} \leqslant n \rho_{+}(2 s, 2 \mathbf{t})$, we have

$$
\left\|X_{h}^{\top} \epsilon\right\| \leqslant \sqrt{n}\left(\sqrt{|h|}+\sqrt{2 \rho_{+}(2 s, 2 \mathbf{t}) \log (1 / \eta)}\right)
$$

with probability $1-\eta$.
For the least square loss, we have $\nabla f(\overline{\mathbf{w}})=\frac{1}{n} X^{\top}(X \overline{\mathbf{w}}-y)=\frac{1}{n} X^{\top} \epsilon$. To estimate the upper bound of $\left\|\mathrm{P}_{\Omega(2 s, 2 \mathbf{t})}(\nabla f(\mathbf{w}))\right\|$, we use the following fact

$$
\left\|\mathrm{P}_{\Omega(2 s, 2 \mathbf{t})}(\nabla f(\overline{\mathbf{w}}))\right\|=\left\|\mathrm{P}_{\Omega(2 s, 2 \mathbf{t})}\left(X^{\top} \epsilon\right)\right\| \leq \min \left(\left\|\mathrm{P}_{\Omega(2 s, \infty)}\left(X^{\top} \epsilon\right)\right\|,\left\|\mathrm{P}_{\Omega(\infty, 2 \mathbf{t})}\left(X^{\top} \epsilon\right)\right\|\right)
$$

We consider the upper bounds of $\left\|\mathrm{P}_{\Omega(2 s, \infty)}\left(X^{\top} \epsilon\right)\right\|$ and $\left\|\mathrm{P}_{\Omega(\infty, 2 \mathrm{t})}\left(X^{\top} \epsilon\right)\right\|$ respectively:

$$
\begin{aligned}
& \operatorname{Pr}\left(\left\|\operatorname{P}_{\Omega(2 s, \infty)}\left(X^{\top} \epsilon\right)\right\| \geq n^{-1 / 2}\left(\sqrt{2 s}+\sqrt{2 \rho_{+}(2 s, 2 \mathbf{t}) \log (1 / \eta)}\right)\right) \\
= & \operatorname{Pr}\left(\max _{|h|=2 s}\left\|X_{h}^{\top} \epsilon\right\| \geq n^{-1 / 2}\left(\sqrt{2 s}+\sqrt{2 \rho_{+}(2 s, 2 \mathbf{t}) \log (1 / \eta)}\right)\right) \\
\leq & \sum_{|h|=2 s} \operatorname{Pr}\left(\left\|X_{h}^{\top} \epsilon\right\| \geq n^{-1 / 2}\left(\sqrt{2 s}+\sqrt{2 \rho_{+}(2 s, 2 \mathbf{t}) \log (1 / \eta)}\right)\right) \\
\leq & \binom{p}{2 s} \eta .
\end{aligned}
$$

By taking $\eta^{\prime}=\eta\binom{p}{2 s}$, we obtain

$$
\begin{aligned}
\eta^{\prime} & \geq \mathbf{P r}\left(\left\|\operatorname{P}_{\Omega(2 s, \infty)}\left(X^{\top} \epsilon\right)\right\| \geq n^{-1 / 2}\left(\sqrt{2 s}+\sqrt{2 \rho_{+}(2 s, 2 \mathbf{t}) \log \left(\binom{p}{2 s} / \eta^{\prime}\right)}\right)\right) \\
& \geq \mathbf{P r}\left(\left\|\operatorname{P}_{\Omega(2 s, \infty)}\left(X^{\top} \epsilon\right)\right\| \geq O\left(\sqrt{\frac{s \log (p)+\log 1 / \eta^{\prime}}{n}}\right)\right),
\end{aligned}
$$

where the last inequality uses the fact that $\rho_{+}(2 s, 2 \mathbf{t})$ is bounded by a constant with high probability.

Next we consider the upper bound of $\left\|\mathrm{P}_{\Omega(\infty, 2 \mathrm{t})}\left(X^{\top} \epsilon\right)\right\|$. Similarly, we have

$$
\left.\left.\begin{array}{rl}
& \operatorname{Pr}\left(\left\|\mathrm{P}_{\Omega(\infty, 2 \mathbf{t})}\left(X^{\top} \epsilon\right)\right\| \geq n^{-1 / 2}\left(\sqrt{2 \sum_{g \in \mathcal{G}} g}+\sqrt{2 \rho_{+}(2 s, 2 \mathbf{t}) \log (1 / \eta)}\right)\right) \\
= & \operatorname{Pr}\left(\max _{|h \cap g|=2 \mathbf{t}_{g}} \forall g \in \mathcal{G}\right.
\end{array}\left\|X_{h}^{\top} \epsilon\right\| \geq n^{-1 / 2}\left(\sqrt{2 \sum_{g \in \mathcal{G}} g}+\sqrt{2 \rho_{+}(2 s, 2 \mathbf{t}) \log (1 / \eta)}\right)\right), ~\left(\left\|X_{h}^{\top} \epsilon\right\| \geq n^{-1 / 2}\left(\sqrt{2 \sum_{g \in \mathcal{G}} g}+\sqrt{2 \rho_{+}(2 s, 2 \mathbf{t}) \log (1 / \eta)}\right)\right)\right)
$$

Thus, by taking $\eta^{\prime}=\eta \prod_{g \in \mathcal{G}}\binom{|g|}{2 \mathbf{t}_{g}}$, we have

$$
\left.\left.\begin{array}{rl}
\eta^{\prime} & \geq \operatorname{Pr}\left(\left\|\mathrm{P}_{\Omega(\infty, 2 \mathbf{t})}\left(X^{\top} \epsilon\right)\right\| \geq n^{-1 / 2}\left(\sqrt{2 \sum_{g \in \mathcal{G}} \mathbf{t}_{g}}+\sqrt{2 \rho_{+}(2 s, 2 \mathbf{t}) \log \left(\prod_{g \in \mathcal{G}}\binom{|g|}{2 \mathbf{t}_{g}} / \eta^{\prime}\right)}\right)\right.
\end{array}\right)\right) .
$$

Summarizing two upper bounds, we have with high probability ($1-2 \eta^{\prime}$)

$$
\left\|\mathrm{P}_{\Omega(2 s, 2 \mathbf{t})}(\nabla f(\overline{\mathbf{w}}))\right\| \leq \min \left(O\left(\sqrt{\frac{s \log p+\log 1 / \eta^{\prime}}{n}}\right), O\left(\sqrt{\frac{\max _{g \in \mathcal{G}} \log |g| \sum_{g \in \mathcal{G}} \mathbf{t}_{g}+\log 1 / \eta^{\prime}}{n}}\right)\right)
$$

Lemma 7. For the least square loss, assume that matrix X to be sub-Gaussian with zero mean and has independent rows or columns. If the number of samples n is more than

$$
O\left(\min \left\{s \log p, \log \left(\max _{g \in \mathcal{G}}|g|\right) \sum_{g \in \mathcal{G}} \mathbf{t}_{g}\right\}\right)
$$

then with high probability, we have with high probability

$$
\begin{align*}
\rho_{+}(3 s, 3 \mathbf{t}) & \leq \frac{3}{2} \tag{11}\\
\rho_{-}(3 s, 3 \mathbf{t}) & \geq \frac{1}{2} \tag{12}
\end{align*}
$$

Thus, α defined in (3) is less than 1 by appropriately choosing η (for example, $\eta=1 / \rho_{+}(3 s, 3 \mathbf{t})$).

Proof. For the linear regression loss, we have

$$
\begin{aligned}
& \rho_{+}^{1 / 2}(3 s, 3 \mathbf{t}) \leq \frac{1}{\sqrt{n}} \max _{\mathbf{w} \in \Omega(3 s, 3 \mathbf{t})} \frac{\|X \mathbf{w}\|}{\|\mathbf{w}\|}=\max _{|h| \leq 3 s,|h \cap g| \leq \mathbf{t}_{g}}\left\|X_{h}\right\| \\
& \rho_{-}^{1 / 2}(3 s, 3 \mathbf{t}) \geq \frac{1}{\sqrt{n}} \min _{\mathbf{w} \in \Omega(3 s, 3 \mathbf{t})} \frac{\|X \mathbf{w}\|}{\|\mathbf{w}\|}=\min _{1 \leq|h| \leq 3 s,|h \cap g| \leq \mathbf{t}_{g}}\left\|X_{h}\right\|
\end{aligned}
$$

From the random matrix theory [35, Theorem 5.39], we have

$$
\operatorname{Pr}\left(\left\|X_{h}\right\| \geq \sqrt{n}+O(\sqrt{3 s})+O\left(\sqrt{\log \frac{1}{\eta}}\right) \leq O(\eta)\right.
$$

Then we have

$$
\begin{aligned}
& \operatorname{Pr}\left(\sqrt{n} \rho_{+}^{1 / 2}(3 s, 3 \mathbf{t}) \geq \sqrt{n}+O(\sqrt{s})+O\left(\sqrt{\log \frac{1}{\eta}}\right)\right) \\
\leq & \operatorname{Pr}\left(\max _{|h| \leq 3 s,|h \cap g| \leq \mathbf{t}_{g}}\left\|X_{h}\right\| \geq \sqrt{n}+O(\sqrt{s})+O\left(\sqrt{\log \frac{1}{\eta}}\right)\right) \\
\leq & \left|\left\{h||h|=3 s\} \left\lvert\, \operatorname{Pr}\left(\left\|X_{h}\right\| \geq \sqrt{n}+O(\sqrt{s})+O\left(\sqrt{\log \frac{1}{\eta}}\right)\right)\right.\right.\right. \\
= & \binom{p}{3 s} \operatorname{Pr}\left(\left\|X_{h}\right\| \geq \sqrt{n}+O(\sqrt{s})+O\left(\sqrt{\log \frac{1}{\eta}}\right)\right) \leq O\left(\binom{p}{3 s} \eta\right)
\end{aligned}
$$

which implies (by taking $\eta^{\prime}=\binom{p}{3 s} \eta$):

$$
\operatorname{Pr}\left(\sqrt{n} \rho_{+}^{1 / 2}(3 s, 3 \mathbf{t}) \geq \sqrt{n}+O(\sqrt{s \log p})+O\left(\sqrt{\log \frac{1}{\eta^{\prime}}}\right)\right) \leq \eta^{\prime}
$$

Taking $n=O(s \log p)$, we have $\rho_{+}^{1 / 2}(3 s, 3 \mathbf{t}) \leq \sqrt{\frac{3}{2}}$ with high probability. Next, we consider it from a different perspective.

$$
\begin{aligned}
& \operatorname{Pr}\left(\sqrt{n} \rho_{+}^{1 / 2}(3 s, 3 \mathbf{t}) \geq \sqrt{n}+O\left(\sqrt{\sum_{g \in \mathcal{G}} \mathbf{t}_{g}}\right)+O\left(\sqrt{\log \frac{1}{\eta}}\right)\right) \\
\leq & \operatorname{Pr}\left(\sqrt{n} \rho_{+}^{1 / 2}(+\infty, 3 \mathbf{t}) \geq \sqrt{n}+O\left(\sqrt{\sum_{g \in \mathcal{G}} \mathbf{t}_{g}}\right)+O\left(\sqrt{\log \frac{1}{\eta}}\right)\right) \\
= & \operatorname{Pr}\left(\max _{|h \cap g| \leq \mathbf{t}_{g}, g \in \mathcal{G}}\left\|X_{h}\right\| \geq \sqrt{n}+O\left(\sqrt{\sum_{g \in \mathcal{G}} \mathbf{t}_{g}}\right)+O\left(\sqrt{\log \frac{1}{\eta}}\right)\right) \\
\leq & \prod_{g \in \mathcal{G}}\binom{|g|}{\mathbf{t}_{g}} \operatorname{Pr}\left(\left\|X_{h}\right\| \geq \sqrt{n}+O\left(\sqrt{\sum_{g \in \mathcal{G}} \mathbf{t}_{g}}\right)+O\left(\sqrt{\log \frac{1}{\eta}}\right)\right) \\
\leq & \eta \prod_{g \in \mathcal{G}}\binom{|g|}{\mathbf{t}_{g}} \leq \eta \log \max _{g \in \mathcal{G}}|g| \sum_{g \in \mathcal{G}} \mathbf{t}_{g} \\
\Rightarrow & \\
& \operatorname{Pr}\left(\sqrt{n} \rho_{+}^{1 / 2}(3 s, 3 \mathbf{t}) \geq \sqrt{n}+O\left(\sqrt{\sum_{g \in \mathcal{G}} \mathbf{t}_{g}} \log \max _{g \in \mathcal{G}}|g|\right)+O\left(\log \frac{1}{\eta^{\prime}}\right)\right) \leq \eta^{\prime}
\end{aligned}
$$

It indicates that if $n \geq O\left(\sum_{g \in \mathcal{G}} \mathbf{t}_{g} \max _{g \in \mathcal{G}}|g|\right)$, then we have $\rho_{+}^{1 / 2}(3 s, 3 \mathbf{t}) \leq \sqrt{\frac{3}{2}}$ with high probability as well. Similarly, we can prove $\rho_{-}^{1 / 2}(3 s, 3 \mathbf{t}) \leq \sqrt{\frac{1}{2}}$ with high probability.

Proof to Theorem 3

Proof. Since n is large enough as shown in (4), from Lemma 7, we have $\alpha<1$ and are allowed to apply Theorem 2. Since $\Delta=0$ for the noiseless case, we prove the theorem by letting $\overline{\mathbf{w}}$ be \mathbf{w}^{*}.

Proof to Theorem 4

Proof. Since n is large enough as shown in (4), from Lemma 7, we have $\alpha<1$ and are allowed to apply Theorem 2. From Lemma 6, we obtain the upper bound for Δ. When the number of iterations k is large enough such that $\alpha^{k}\left\|\mathbf{w}^{0}-\overline{\mathbf{w}}\right\|$ reduces the magnitude of Δ, we can easily prove the error bound of \mathbf{w}^{k} letting $\overline{\mathbf{w}}$ be \mathbf{w}^{*}. The second claim can be similarly proven by applying the second claim in Theorem 2.

