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Abstract

In this supplementary material, we provide the details of
our Iterative Projection Method for solving the optimization
problem (Eq. 4) in the main text, and present the theoretical
substantiation for its convergence. Moreover, the complex-
ity of our algorithm is analyzed. Finally, more experiment
results such as the qualitative tracking results for the “nurs-
ing home long” data set and the analysis of how face recog-
nition errors affect final tracking performance are shown.

1. Details of Our Iterative Projection Algo-
rithm

We want to solve the following optimization problem:

min
G
f(a′) =

∥∥G− a′
∥∥2
2
s.t. ‖G‖p ≤ 1, (1)

where a′,G ∈ Rc, a′ = (a1, a2, · · · , ac)T is the known
reference point and G is the queried projection point on `p
ball ‖G‖p ≤ 1.

The details of our iterative projection algorithm for solv-
ing (1) are as follows:

1: If ‖a′‖p ≤ 1, then output G = a′, and terminate
the entire procedure. Otherwise, record s =sign(a′) and
reformulate a′ = s � a′ to make all its elements non-
negative (i.e. to let a′ located at the first quadrant). Ini-
tialize G(1) = (g

(1)
1 , g

(1)
2 , · · · , g(1)c )T as the intersection of

line segment connecting a′ and the origin and the boundary
of the `p ball ‖G‖p = 1. This intersection can be found
efficiently by the binary search strategy. Set l = 1 and ε as
a small threshold value.

2: Repeat:
3: Compute the tangent plane of the `p ball boundary

curve ‖G‖p = 1 at G(l) as:

π(l) = {v|w(l)T (G−G(l)) = 0},

where

w(l) =
(
∇‖G‖p

)
G(l)

= (p(g
(l)
1 )p−1, p(g

(l)
2 )p−1, · · · , p(g(l)c )p−1)T ,

where g(l)i is the ith element of G(l). Calculate the projec-
tion point of a′ to π(l) as

x(l) = a′ − w(l)Ta′ −w(l)TG(l)∥∥w(l)
∥∥2
2

w(l).

Complexity of this step is O(c).
4. If x(l) is located in the first quadrant (i.e., x(l) � 0),

then draw a line segment z(t) between a′ and x(l) as

z(t) = (x(l) − a′)t+ a′, 0 ≤ t ≤ 1,

and compute its intersection point G(l+1) with the `p ball
boundary curve ‖G‖p = 1 using binary search. Then let
l = l + 1, and go to the next iteration. Complexity of this
step is O (c+ log(c)), where binary search contributes to
the log(c). The iteration count of binary search is a constant
and not explicity written in the complexity formula.

5. If x(l) is located outside the first quadrant, then calcu-
late

t∗ = min
i

(t∗i ), t∗i =
ai

ai − xi
,

where ai and xi are the ith elements of a′ and x(l), re-
spectively. If z(t∗) = (x(l) − a′)t∗ + a′ satisfies that
‖z(t∗)‖p ≤ 1, then use the similar binary search strategy
as step 4 to calculate the projection point G(l+1). Then let
l = l + 1, and go to the next iteration. Complexity of this
step is O (c+ log(c)).

6. If ‖z(t∗)‖p > 1, this means that there is no inter-
section of the line segment z(t) (0 ≤ t ≤ 1) and the `p
ball boundary curve ‖G‖p = 1. Calculate the critical point
y(s∗) where

y(s) = (x(l) −G(l))s+ G(l), 0 ≤ s ≤ 1,
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and

s∗ = min
i

(s∗i ), s∗i =
g
(1)
i

g
(1)
i − xi

.

And then draw a line segment z(t) between a′ and y(s∗)
and compute its intersection point G(l+1) with the `p ball
boundary curve ‖G‖p = 1 using the binary search strategy.
Then let l = l + 1, and go to the next iteration. Complexity
of this step is O (c+ log(c)).

7. End Repeat when
∥∥G(l) −G(l−1)

∥∥ < ε

8. Output the projection point G = s�G(l).
In sum, the complexity of the above steps is

O (c+ log(c)) × MaxIter = O (c+ log(c)). Also, com-
puting a′ requires O ((k + q)c), where k is the number of
neighbors for the current observation (stored in the Lapla-
cian matrices K and L, and q is the number of constraints
the current observation has. So the combined complexity of
the iterative projection method used to solve Equation 6 in
the main paper is O ((k + q + log(c))c).

2. Theoretical Principle of Our Algorithm
We use step-by-step remarks to explain the theoretical

principle underlying our algorithm in detail.

2.1. Remarks for steps 1 and 8

Remark 1: When ‖a′‖p > 1, it is easy to prove that its
projection on the `p ball ‖G‖p ≤ 1 (the solution of (1)) is
located on its boundary ‖G‖p = 1. Furthermore, its projec-
tion lies on the same quadrant with a′ [1].

Remark 2: Due to the symmetry property of the `2 ob-
jective and the `p constraint of (1), we can equivalently
solve this optimization problem by getting the solution G
for f(|a′|), where |a′| = s � a′ and s = sign(a′) (step
1), and then transfer G (with all positive elements accord-
ing to Remark 1) back to G = s�G (step 8). Here � is
the Hadamard product meaning the element-wise multipli-
cation between two vectors.

Remark 3: When ‖a′‖p > 1 , since ‖0‖p < 1, the
intersection of line segment connecting a′ and the origin 0
and the unit `p ball boundary ‖G‖p = 1 can definitely be
found.

2.2. Remark for step 3

Remark 4: In the first quadrant, it is evident that the unit
`p ball boundary curve ‖G‖p = 1 is convex. This means
that the tangent plane of this curve at G(l) is below it. See
Figure 1 for better understanding.

2.3. Remark for step 4

Remark 5: Since ‖a′‖p > 1 and
∥∥x(l)

∥∥
p
≤ 1 (based

on Remark 4), the intersection G(l+1) of the line seg-
ment z(t) (0 ≤ t ≤ 1) and ‖G‖p = 1 definitely exists.

Figure 1: Principle illustration for Remark 4.

Since x(l) is the projection of a′ on π(l) and G(l) is lo-
cated on π(l), we have

∥∥x(l)−a′
∥∥2
2
≤

∥∥G(l)−a′
∥∥2
2
. Be-

sides, since G(l+1) is obtained at z(t′) for certain 0 ≤
t′ ≤ 1 and x(l) and a′ are the two end points of z(t),
we have

∥∥G(l+1)−a′
∥∥2
2
≤

∥∥x(l)−a′
∥∥2
2
. It thus holds that∥∥G(l+1)−a′

∥∥2
2
≤

∥∥G(l)−a′
∥∥2
2
. See Figure 2 for better un-

derstanding.

Figure 2: Principle illustration for Remark 5.

2.4. Remark for steps 5 and 6:

Remark 6: Along the line segment z(t) (0 ≤ t ≤ 1)
connecting a′ and x(l), the critical point of its ith element
varying from positive to negative can be calculated by:

(xi − ai)t∗i + ai = 0 =⇒ t∗i =
ai

ai − xi
.

Then it is evident that the critical point of z(t) varying out
from the first quadrant at

t∗ = min
i

(t∗i ).

We then have:



(i) When ‖z(t∗)‖p ≤ 1, since ‖a′‖p > 1, the intersec-
tion of z(t) (0 ≤ t ≤ 1) and ‖G‖p = 1 exists in the first
quadrant. Thus we can use binary search to find this inter-
section point. Based on the similar proof as Remark 5, we
have

∥∥G(l+1)−a′
∥∥2
2
≤

∥∥G(l)−a′
∥∥2
2
. Please see Figure 3

for better understanding.

Figure 3: Principle illustration for Remark 6(i).

(ii) When ‖z(t∗)‖p > 1, we know that z(t∗) is not in-
side the `p ball Ω = {G| ‖G‖p ≤ 1}. Since Ω in the first
quadrant is convex (equivalent to that its boundary curve
‖G‖p = 1 in the first quadrant is convex) and a′ ∈ Ω, it
holds that the entire line segment z(t) (0 ≤ t ≤ 1) is in Ω
and has no intersection with the curve ‖G‖p = 1 in the first
quadrant. We thus utilize the following strategy to find the
next iteration point.

By connecting the last iteration point G(l) and the pro-
jection point x(l), we can formulate a line segment y(t)
(0 ≤ t ≤ 1). Using the similar strategy like (i), we can
find the critical point y(s∗) at which y(t) goes out from the
first quadrant, where

s∗ = min
i

(s∗i ), s∗i =
g
(1)
i

g
(l)
i − xi

,

where g(l)i and xi are the ith element of G(l) and x(l), re-
spectively. Since both y(s∗) and G(l) are on the tangent
plane π(l), and y(s∗) is closer to the projection point x(l) of
a′ than G(l), we have that ‖y(s∗)−a′‖22 ≤

∥∥G(l)−a′
∥∥2
2
.

Since π(l) is below the curve ‖G‖p = 1 based on
Remark 4, we know that ‖y(s∗)‖p ≤ 1. Then to-
gether with ‖a′‖p > 1, it holds that the intersection
G(l+1) of the line segment connecting a′ and y(s∗)
and ‖G‖p = 1 definitely exists in the first quadrant,

and
∥∥G(l+1)−a′

∥∥2
2
≤ ‖y(s∗)−a′‖22. We thus have∥∥G(l+1)−a′

∥∥2
2
≤

∥∥G(l)−a′
∥∥2
2
. The aforementioned can

be easily understood by observing Figure 4.

Figure 4: Principle illustration for Remark 6(ii).

Based on the aforementioned Remarks 4, 5 and 6,
we know that during the iterative process of our algo-
rithm, the objective

∥∥G(l)−a′
∥∥2
2

is monotonically decreas-
ing with respect to the iteration number l under the con-
straint

∥∥G(l)
∥∥
p
≤ 1. Our algorithm is thus convergent

and expected to get a rational local minimum of the orig-
inal problem.

3. Computational Complexity of Solution Path
Optimization

For clarity, the following equations were copied from the
main paper. The final loss function we are solving is as
follows:

min
F
Tr

(
FT (L + K)F

)
s.t. ∀(a, b) ∈ Y, Fab = 1, ‖Fr‖0 ≤ 1, 1 ≤ r ≤ n
∀(i, j) ∈ T ,

∥∥[Fil Fjl

]∥∥
0
≤ 1, 1 ≤ l ≤ c.

(2)

If we focus on the variables of a single observation, then
Equation 2 becomes:

min
Gi

1

2
‖Gi − a‖22 s.t. ‖Gi‖p ≤ 1,

(i,∀j) ∈ T ,
∥∥[Gil, Gjl

]∥∥
p
≤ 1, 1 ≤ l ≤ c,

(3)

We optimize Equation 2 by updating Gi with Equation 3 for
each of the n observations. As proved in Section 1 of the
supplementary materials, the iterative projection algorithm
requires O (c(k + q + log(c))) per iteration, where q is the
average number of constraints per observation, and k is the
number of nearest neighbors of each observation. Thus,
solving Equation 2 is O (nc(k + q + log(c)) ∗MaxIter),
which is efficient as it is approximately linear in the number
of observations (n), classes (c), nearest neighbors (k), and
constraints (q).

4. Qualitative Tracking Results
Due to space constraints, the qualitative tracking results

for the nursing home long data set are shown in Figure 5.



Figure 5: Snapshots of tracking results on nursing home
long data set. Not all arrows are drawn for clarity.

5. Face Recognition Accuracy and Tracking
Performance

Figure 6: Effect of face errors on tracking performance for
nursing home short.

Our tracker utilizes the output of the face recognizer
to perform tracking, but face recognizers are not perfect.

Therefore, we analyzed the effect of face recognition er-
rors on tracking performance. We focused on nursing home
short sequence, where manual verification shows around
2% face recognition error rate. The high accuracy is due to
1) limited number of people in the scene and 2) we manu-
ally mapped face clusters computed by the PittPatt toolkit
into each individual. In other scenarios, we may not be
able to achieve such high face recognition accuracy, thus
experiments were performed where we randomly corrupted
face recognition results by changing a face recognition re-
sult from one individual to the other. Results are shown in
Figure 6, At each error rate, the experiment was repeated
3 times, and the 95% confidence interval is drawn. Results
show that errors in face recognition significantly hurt per-
formance, and when the face recognition error rate is less
than 70%, a 25% accuracy drop in face recognition will
cause around 10% drop in tracking F1-score.
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