
Supplementary Material for Fast Zero-Shot Image Tagging

Yang Zhang, Boqing Gong, and Mubarak Shah
Center for Research in Computer Vision, University of Central Florida, Orlando, FL 32816

yangzhang@knights.ucf.edu, bgong@crcv.ucf.edu, shah@crcv.ucf.edu

Due to the page limit, we have omitted some details and
experiments from the main text.. We use this document to
supplement the discussions in the main text.

Section A presents the formulation of ranking SVM [9, 8]
used in Sections 3 and 4.2 of the main text.

Section B shows some additional experimental results on
the IAPRTC-12 dataset [6] following the same proto-
col in Section 5 of the main text.

Section C includes more qualitative results obtained by our
Fast0Tag and other methods.

A. The formulation of ranking SVM
Ranking SVM plays a vital role in Section 3 of the main

text to verify our hypothesis and in Section 4.2 to develop
our linear Fast0Tag model. We use the implementation of
solving ranking SVM in the primal [2] with the following
formulation:

min
w

λ

2
‖w‖2 +

∑
yi∈Ym

∑
yj∈Ym

max(0, 1−wyi +wyj)

(1)

where λ is the hyper-parameter controlling the trade-off be-
tween the objective and the regularization. In the main text,
Figure 3 shows how λ could impact the existence and gener-
alization of the principal directions inferred from the rank-
ing SVMs.

B. Experiments on IAPRTC-12
We present another set of experiments conducted on the

widely used IAPRTC-12 [6] dataset. We use the same tag
annotation and image training-test split as described in [7]
for our experiments.

There are 291 unique tags and 19627 images in IAPRTC-
12. The dataset is split to 17341 training images and 2286
testing images. We further separate 15% from the training
images as our validation set.

Table 1: Comparison results of the conventional image tag-
ging with 291 tags on IAPRTC-12.

Method % MiAP
K = 3 K = 5

P R F1 P R F1
TagProp [7] 52 54 29 38 46 41 43
WARP [5] 48 50 27 35 43 38 40
FastTag [3] 48 53 28 36 44 39 41
Fast0Tag (lin.) 46 52 28 37 43 38 40
Fast0Tag (net.) 56 58 31 41 50 44 47

B.1. Configuration

Just like the experiments presented in the main text, we
evaluate our methods in three different tasks: conventional
tagging, zero-shot tagging, and seen/unseen tagging.

Unlike NUS-WIDE where a relatively small set (81 tags)
is considered as the groundtruth annotation, all the 291 tags
of IAPRTC-12 are usually used in the previous work to
compare different methods. We thus also use all of them
conventional tagging.

As for zero-shot and seen/unseen tagging tasks, we ex-
clude 20% from the 291 tags as unseen tags. At the end, we
have 233 seen tags and 58 unseen tags.

The visual features, evaluation metrics, word vectors,
and baseline methods remain the same as described in the
main text.

B.2. Results

Table 1 and 2 show the results of all the three image
tagging scenarios (conventional, zero-shot, and seen/unseen
tagging). The proposed Fast0Tag still outperforms the other
competitive baselines in this new IAPRTC-12 dataset.

A notable phenomenon, which is yet less observable on
NUS-WIDE probably due to its noisier seen tags, is that the
gap between LabelEM+ and LabelEM is significant. It in-
dicates that the traditional zero-shot classification methods
are not suitable for either zero-shot or seen/unseen image
tagging task. Whereas we can improve the performance by
tweaking LabelEM and by carefully removing the terms in
its formulation involving the comparison of identical im-
ages.



Table 2: Comparison results of the zero-shot and seen/unseen image tagging tasks with 58 unseen tags and 233 seen tags.

Method %
Zero-shot image tagging Seen/unseen image tagging

MiAP K = 3 K = 5 MiAP K = 3 K = 5
P R F1 P R F1 P R F1 P R F1

Random 8.1 2.0 4.5 2.8 2.2 2.2 8.1 3.5 2.2 1.2 1.5 1.9 1.7 1.8
Seen2Unseen 15.6 6.1 13.5 8.4 5.3 19.5 8.4 7.2 3.6 1.9 2.5 4.2 3.7 3.9
LabelEM [1] 11.5 3.6 7.9 4.9 3.6 13.3 5.7 13.8 3.1 1.7 2.2 4.4 3.9 8.7
LabelEM+ [1] 17.6 7.3 16.1 10.0 6.4 23.4 10.0 20.1 13.9 7.4 9.7 13.2 11.8 12.5
ConSE [10] 24.1 9.7 21.3 13.3 8.9 32.5 13.9 32.5 38.8 20.6 26.9 31.1 27.6 29.2
Fast0Tag (lin.) 23.1 11.3 24.9 15.6 9.0 33.2 14.2 42.9 50.6 27.0 35.2 40.8 36.2 38.4
Fast0Tag (net.) 20.3 8.5 18.6 11.6 7.2 26.4 11.3 45.9 48.2 25.7 33.5 42.2 37.4 39.7
RankSVM 21.6 10.2 22.6 14.1 8.6 31.7 13.6 – – – – – – –
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Figure 1: The top five tags for exemplar images in [4](a) and [6](b) returned by Fast0Tag on the conventional, zero-
shot, seen/unseen and 4,093 zero-shot image tagging tasks, and by TagProp for conventional tagging. (Correct tags: green;
mistaken tags: red and italic)

C. Qualitative Results

In this section, we provide more qualitative results of dif-
ferent tagging methods on both the NUS-WIDE, shown in
Figure 1.(a) supplementing Figure 5 in main text, and the
IAPRTC-12, shown in Figure 1.(b).

Due to incompletion and noise of tag groundtruth, many
actually correct tag predictions are often evaluated as mis-

taken predictions since they mismatch with groundtruth.
This phenomenon becomes especially apparent in 4k zero-
shot tagging results in Figure 1.(a) where plentiful diverse
tag candidates are considered.
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