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1. Content
This supplementary material provides a more detailed

view of some of the aspects presented in the main paper.

• Section 2 gives details of the RotatedFilters de-
tector we used for our experiments (section 2.2 in main
paper).

• Section 3 provides the detailed curves behind the sum-
mary bar plots for different test set subsets (see figure
3 and section 3.1 in main paper).

• Section 4 shows examples for each error type from the
analysed detector, discusses the scale, blur and contrast
evaluations, and revisits the oracle cases experiments
in more detail (section 3.2 in main paper).

• Section 5 shows examples of how the new training an-
notations improve over the original ones (section 3.3
in main paper).

• Section 6 discuss the impact of new annotations on
the evaluation of existing methods (MR ranking and
recall-versus-IoU curves) (section 4.1 in main paper).

• Section 7 shows the effects of automatically aligning
10× data with 1×data (section 4.1 in main paper).

• Figure 16 summarises our final detection results both
in original and new annotations.

Other than this text we provide as supplementary material
an annotations inspection tool described in section 5.1.
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2. Rotated filters detector
For our experiments we re-implement the filtered chan-

nel feature Checkerboards detector [5] using the LDCF
[4] codebase. The training procedure turns out to be slow
due to the large number of filters (61 filters per channel).
To accelerate the training and test procedures, we design a
small set of 9 filters per channel that still provides good per-
formance. We call our new filtered channel feature detector;
RotatedFilters (see figure 1d).

The rotated filters are inspired by the filterbank of LDCF
(obtained by applying PCA to each feature channel). The
first three filters of LDCF of each features channel are the
constant filter and two step functions in orthogonal dir-
ections, with the particularities that the oriented gradient
channels also have rotated filters (see figure 1b). Our rotated
filters are stylised versions of LDCF. The resulting Rota-
tedFilters filterbank is somewhat intuitive, while fil-
ters from Checkerboards, are less systematic and less
clear in their function (see figure 1c).

To integrate richer local information, we repeat each fil-
ter per channel over multiple scales, in the same spirit as
SquaresChnFtrs [1] (figure 1a).

On the Caltech validation set, RotatedFilters ob-
tains 31.6% MRO

−2 using one scale (4x4); and 28.9% MRO
−2

using three scales (4x4, 8x8 and 16x16). Therefore, we se-
lect this 3-scale structure in our experiments. On the test set,
the performance of RotatedFilters is 19.2% MRO

−2,
i.e. a less than 1% loss with respect to Checkerboards,
yet it is ~6x faster at feature computation.

In this paper, we use RotatedFilters for all experi-
ments involving training a new model.

3. Results per test subset
Figure 2 contains the detailed curves behind figure 3 in

the main paper (“subsets bar plot”). We can see that Che-
ckerboards and RotatedFilters show good per-
formance across all subsets. The few cases where they are
not top ranked (e.g. figures 2e and 2h) all methods ex-
hibit low detection quality, and thus all have similarly poor
scores.

Figure 2 shows that Checkerboards is not optim-
ised for the most common case on the Caltech dataset, but
instead shows good performance across a variety of situ-
ations; and is thus an interesting method to analyse.

(a) SquaresChntrs [1] filters

(b) Some of the LDCF [4] filters. Each
column shows filters for one channel.

(c) Some examples of the 61 Checkerboards filters (from [5])

L U V ||·||

(d) Illustration of Rotated filters applied on each feature channel

Figure 1: Comparison of filters between some filtered chan-
nels detector variants.
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(a) Reasonable setting (IoU >= 0.5)
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(b) Reasonable setting (IoU >= 0.8)
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(c) Pedestrians larger than 80px in height
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(d) Pedestrian height between 50px and 80px
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(e) Pedestrian height between 30px and 50px
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(f) Non-occluded pedestrians
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(g) Pedestrians occluded by up to 35%
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(h) Pedestrians occluded by more than 35% and less
than 80%.

Figure 2: Detection quality of top-performing methods on experimental settings depicted in “subsets bar plot” figure in the
main paper.



4. Checkerboards errors analysis

Error examples Figure 7, 8, 9 and 10, show four ex-
amples for each error type considered in the analysis of the
main paper (for both false positives and false negatives).

Blur and contrast measures To enable our analysis re-
garding blur and contrast, we define two automated meas-
ures. We measure blur using the method from [3], while
contrast is measured via the difference between the top and
bottom quantiles of the grey scale intensity of the pedestrian
patch.
Figures 5 and 6 show pedestrians ranked by our blur and
contrast measures. One can observe that our quantitative
measures correlate well with the qualitative notions of blur
and contrast.

Scale, blur, or contrast? For false negatives, a major
source of error is small scale, but we find small pedestrians
are often of low contrast or blurred. In order to investig-
ate the three factors separately, we observe the correlation
between size/contrast/blur and score, as shown in figure 4.
We can see that the overlap between false positive and true
positive is equally distributed across different levels of con-
trast and blur; while for scale, the overlap is quite dense at
small scale. To this end, we conclude that small scale is the
main factor negatively impacting detection quality; and that
blur and contrast are uninformative measures for the detec-
tion task.

4.1. Oracle cases

In figure 11, we show the standard evaluation and or-
acle evaluation curves for state-of-the-art methods. For
the localisation oracle, false positives that overlap with the
ground truth are not considered; for the background-versus-
foreground oracle, false positives that do not overlap with
the ground truth are not considered. Based on the curves,
we have the following findings:

• All methods are significantly improved in each oracle
evaluation.

• The ranking of all methods stays relatively stable in
each oracle case.

• In terms of MRO
−4, the improvement is comparable

for localisation or background-versus-foreground or-
acle tests; the detection performance can be boosted
by fixing either problem.

We also show some examples of objects with similar scores
in figure 3. In both low-scoring and high-scoring groups,
we can see both pedestrians and background objects, which
shows that the detector fails to rank foreground and back-
ground adequately.

(a) Low-scoring objects

(b) High-scoring objects

Figure 3: Failure cases of Checkerboards detector [5]. Each
group shows image patches of similar scores: some back-
ground objects are of high scores; while some persons are
of low scores. We aim to understand when the detector fails
through analysis.

4.2. Log scale visual distortion

In the paper we show results for so called oracle exper-
iments that emulate the case in which we do not make one
type of error: we remove either mistakes that touch annot-
ated pedestrians (localisation oracle) or mistakes that are
located on background (background oracle).

It is important to note that these are the only two types of
false positives. If we remove both types the only mistakes
that remain stem from missing recall and the result would
be a horizontal line with very low miss rate.

Because of the double log scale in the performance plots
on Caltech the curves look like both oracles improve per-
formance slightly but the bulk of mistakes arise from a dif-
ferent type of mistakes, which is not the case.

In figure 12 we illustrate how much double log scales
distort areas. We often think of the average miss rate as the
area under the curve, so we colour code the false positives in
the plots by their type: the plot shows the ratio between loc-
alisation (blue) and background (green) mistakes at every
point on the miss rate, but also for the entire curve. Both
curves, 12b and 12c show the same data with the only dif-
ference that one shows localisations on the left and the other
one on the right. Due to the double log scale, the error type
that is plotted on the left seems to dominate the metric.



(a) Size versus score

(b) Contrast versus score

(c) Blur versus score

Figure 4: Correlation between size/contrast/blur and score.
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Figure 5: Examples for images with different levels of blur.
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Figure 6: Examples for images with different levels of contrast.



(a) Double detection

(b) Body parts

(c) Too large bounding boxes

Figure 7: Example localisation errors, a subset of false positives. False positives in red, original annotations in blue, ignore
annotations in dashed blue, true positives in green, and ignored detections in dashed green (because they overlap with ignore
annotations).



(a) Vertical structures

(b) Traffic lights

(c) Car parts

(d) Tree leaves

(e) Other background

Figure 8: Example background errors, a subset of false positives. False positives in red, original annotations in blue, ignore
annotations in dashed blue, true positives in green, and ignored detections in dashed green (because they overlap with ignore
annotations).



(a) Fake humans

(b) Missing annotations

(c) Confusing

Figure 9: Example annotation errors, a subset of false positives. False positives in red, original annotations in blue, ignore
annotations in dashed blue, true positives in green, and ignored detections in dashed green (because they overlap with ignore
annotations).
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h=55

(a) Small scale

h=81
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(b) Side view
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(c) Cyclists

h=327
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(d) Occlusion

h=57
h=58h=51
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(e) Annotation errors

h=64
h=64h=94
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(f) Others

Figure 10: Example errors for different error types of false negatives. False positives in red, original annotations in blue,
ignore annotations in dashed blue, true positives in green, and ignored detections in dashed green (because they overlap with
ignore annotations).
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(a) Standard evaluation (reasonable subset)
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(b) Localisation oracle
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(c) Background-vs-foreground oracle

Figure 11: Caltech test set error with standard and oracle
case evaluations. Both localisation and background-versus-
foreground show important room for improvement. Both
MRO

−2 and MRO
−4 are shown for each method at each eval-

uation.
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(a) Original and two oracle curves for Checkerboards de-
tector.

(b) Localisation FPs on the left.

(c) Background FPs on the left.

Figure 12: Checkerboards performance on standard
Caltech annotations, when considering oracle cases . Loc-
alisation mistakes are blue, background mistakes green.



5. Improved annotations
In figure 13 we show original (red) and new annotations

(green) on example frames from the test set. From the
comparison, we can see that the new annotations are bet-
ter aligned to the pedestrians. This results from the fact that
head and feet are closer to the centre of the new bounding
boxes.

5.1. Visualisation tool

We provide a Matlab visualisation tool (which in-
cludes part of Piotr Dollar’s toolbox) to inspect the
difference between original and new annotations. You
can download the Caltech sequences from http://
www.vision.caltech.edu/Image_Datasets/
CaltechPedestrians/datasets/USA/ and run
“visualize_annotations(’/path’)”.

This tool will show the original and new annotations
side by side. Instructions for how to run it can be found
in “GT-visualization/readme.txt” in the supple-
mentary material archive file.

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/datasets/USA/
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/datasets/USA/
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/datasets/USA/


Figure 13: Examples of differences between original (red) and new annotations (green). Ignore regions are drawn with dashed
lines. These are the top 150 annotations, when sorted from smallest to largest IoU between original and new annotations.



6. Evaluation on original and new annotations
Ranking Figure 15 presents the ranking of all published
Caltech methods up to CVPR 2015 when evaluated on
MRO

−2 (original annotations), or on MRN
−2 (proposed new

annotations). Although there are a few changes in ranking
(e.g. JointDeep versus SDN), the overall trend is pre-
served. This is a good sign that the improved annotations
are not a radical departure from previous ones. As discussed
in the paper (and in other sections of the supplementary ma-
terial), improved annotations matter most for future meth-
ods (going further down in MR), and for the low FPPI re-
gion of the curves (high confidence mistakes).

RotatedFilters Figures 16a and 16b show the res-
ults of our methods RotatedFilters, Rotated-
Filters-New10x, and RotatedFilters-New10x-
+VGG; on the original and new annotations respectively.
Using improved annotations during training (-New10x)
does improve results both on original and new annotations.

MR versus IoU Section 3.3 (and table 3) of the main pa-
per discuss an empirical measure of how the new annota-
tions are better aligned. Here we provide some more details.
Figure 14 plots MRO

−2 and MRN
−2 of top performing meth-

ods versus the overlap criterion for accepting detections
as true positives (IoU threshold). The standard evaluation
uses IoU threshold 0.5. On these plots methods trained on
INRIA have continuous lines, methods trained on Caltech
dashed ones (see also figure 15).
In figure 14a (original annotations) the ranking of the meth-
ods remains stable as the overlap threshold becomes stricter
(consistent with the observations in [2]). Interestingly we
observe a different trend in figure 14b (new annotations).
When evaluating MRN

−2(new annotations) we see that meth-
ods training on INRIA, albeit having a poor performance at
IoU = 0.5, perform comparatively well at higher IoU, even-
tually overpassing all methods trained on raw Caltech data.
We attribute this to the fact that INRIA training data is of
better quality (better aligned training samples), and thus the
detectors have learnt to localise better. This difference in
trend between original and new annotations confirms that
our improved annotations are better with respect to local-
ization. Table 3 in the main paper provides a summarised
version of figure 14.

7. Impact of aligning Caltech10×
We can see from 14b that using our semi-automatically

aligned Caltech 10× training data provides a significant
boost in localization quality. From RotatedFilters to
RotatedFilters-New10x the MRN

−2 improves across
the full IoU range. Figure 17 shows qualitative results for
the alignment procedure done over the 10× training data.

0.4 0.5 0.6 0.7 0.8 0.9 1.05

.10

.20

.30

.40

.50

.64

.80

1

overlap threshold

lo
g−

av
er

ag
e 

m
is

s 
ra

te

CrossTalk
DBN−Isol
ACF
SquaresChnFtrs−INRIA
Franken
MultiResC
Roerei
MOCO
MultiSDP
ACF−Caltech
WordChannels
MT−DPM
JointDeep
SDN
MT−DPM+Context
ACF+SDt
SquaresChnFtrs
InformedHaar
AlexNet
ACF−Caltech+
SpatialPooling
LDCF
Katamari
SpatialPooling+
TA−CNN
RotatedFilters
RotatedFilters−New10×
Checkerboards

(a) Original annotations, MRO
−2
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Figure 14: Plot of log-average miss rate versus overlap
threshold (IoU) for the top-performing methods on the
“reasonable” experimental setting. Methods trained on IN-
RIA are represented with solid curves. On the new annota-
tions, these behave better than methods trained on Caltech-
USA original when we apply a stricter overlap criterion.
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WordChannels DF 40.3

MT-DPM DPM 37.6
SDN DN 36.9

MT-DPM+Context DPM 35.2
ACF+SDt DF 35.0

JointDeep DN 31.5
InformedHaar DF 31.5

SquaresChnFtrs DF 30.0
SpatialPooling DF 24.9

LDCF DF 22.6
Katamari DF 20.9
AlexNet DN 20.6

SpatialPooling+ DF 20.1
TA-CNN DN 17.8

   Checkerboards DF 16.1
Human baseline H 0.8

Detection methods on Caltech-USA reasonable set

INRIA training
Caltech-USA training
Other training

(b) MRN
−2 Ranking of methods

Figure 15: Ranking of Caltech methods (CVPR 2015 snapshot) with original and new annotations. DF: decision forest,
DPM: deformable parts model, DN: deep network.
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(a) Evaluation on original annotations. Legend indicates MRO
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Figure 16: Performance of top detectors evaluated on original and new annotations.



Figure 17: Examples of original annotations before (red bounding boxes) and after automatic alignment (yellow bounding
boxes) using the RotatedFilters detector.
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