
Supplementary Material
Summary Transfer: Exemplar-based Subset Selection for Video Summarization

Ke Zhang∗, Wei-Lun Chao∗

University of Southern California
Los Angeles, CA 90089

{zhang.ke,weilunc}@usc.edu

Fei Sha
University of California
Los Angeles, CA 90095
feisha@cs.ucla.edu

Kristen Grauman
University of Texas at Austin

Austin, TX 78701
grauman@cs.utexas.edu

In this Supplementary Material, we give out details omit-
ted in the main text: learning parameters in section 1 (sec-
tion 3.3 in the main text), datasets, features and evaluation
metrics for our experimental studies in section 2, and 3 (sec-
tion 4.1 in the main text), analysis and results in section 4
(section 4.2 in the main text), and further discussions in sec-
tion 5.

1. Learning

1.1. Maximum Likelihood Estimation

We use gradient descent to maximize the log-likelihood∑R
q=1 logP (yq; L̂q), defined in (13) of the main text, w.r.t.

α and Ω:

(α∗,Ω∗) = arg max
α,Ω

R∑
q=1

logP (yq; L̂q). (1)

For brevity, we ignore the subscript q in the following. The
corresponding partial derivatives w.r.t. α and Ω are shown
below, according to the chain rule:

∂ logP (y; L̂)

∂αr

=
∑
m,n

∑
k,l

∂ logP (y; L̂)

∂(L̂)mn

∂(L̂)mn

∂Lr,kl

∂Lr,kl

∂αr
(2)

∂ logP (y; L̂)

∂Ω

=

R∑
r=1

∑
m,n

∑
k,l

∂ logP (y; L̂)

∂(L̂)mn

∂(L̂)mn

∂Sr,kl

∂Sr,kl

∂Ω
(3)

∗ Equal contributions

To ease the computation in what follows, we define M as
a matrix with the same size of L̂, and My = (L̂y)−1. All
the other entries ofM are zero.

1.2. Gradients with respect to the scale parameters

∂ logP (y; L̂)

∂αr

=
∑
m,n

∑
k,l

∂ logP (y; L̂)

∂(L̂)mn

∂(L̂)mn

∂Lr,kl

∂Lr,kl

∂αr

= 1>{
(
Sr
>(M − (L̂+ I)−1)Sr

)
◦ Ir}1,

(4)

where ◦ is the element-wise product. Ir is a diagonal matrix
(of the same size as Lr), with entries indexed by yr as one;
otherwise, zero. 1 is the all one vector with a suitable size.

1.3. Gradients with respect to the transformation
matrix

∂ logP (y; L̂)

∂Ω

=

R∑
r=1

∑
m,n

∑
k,l

∂ logP (y; L̂)

∂(L̂)mn

∂(L̂)mn

∂Sr,kl

∂Sr,kl

∂Ω

= 4Ω
(
ΦCrΦr

> + ΦrC
>
r Φ>

− (ΦC(1)
r Φ> + ΦrC

(2)
r Φr

>)
)
,

(5)

where Cr,C
(1)
r ,C

(2)
r are defined as:

Cr = ((M − (L̂+ I)−1)SrLr) ◦ Sr,

C(1)
r = diag(Cr1)

C(2)
r = diag(1>Cr).

(6)

Φr and Φ are the column-wise concatenation (matrices) of
{φr} and {φ}, respectively.

1



1.4. Extension for sequential modeling

Prior work seqDPP [3] shows that the vanilla DPP is in-
adequate in capturing the sequential nature of video data.
In particular, DPP models a bag of items such that permu-
tation will not affect selected subsets. Clearly, video frames
cannot be randomly permuted without losing the semantic
meaning of the video. The authors propose the sequential
DPP (seqDPP), which sequentially extracts summaries from
video sequences.

Extending our approach to this type of sequential mod-
eling is straightforward due to its non-parametric nature.
Briefly, we segment each video in the training dataset into
smaller chunks and treat each chunk as a separate “train-
ing” video containing a subset of the original summary. We
follow the same procedure as described above to formulate
the base summarization kernels for those shorter videos and
their associated summaries. Likewise, we learn the param-
eters α and Ω for each segment.

During testing time when we need to summarize a new
video Y , we segment the video Y in temporal order: Y =
Y1∪Y2 · · · YT . We then perform the sequential summariza-
tion procedure in the seqDPP method. Specifically, at time
t, we formulate the ground set as Ut = Yt ∪ yt−1, i.e., the
union of the video segment t and the selected subset in the
immediate past. For the ground setUt, we calculate its ker-
nel matrix using the (segmented) training videos and their
summaries. We then perform the extraction. The recursive
extraction process is exactly the same as in [3] and we hence
omit it here.

In our experiments, we use sequential modeling for
the Kodak, OVP, YouTube and SumMe datasets. For the
MED dataset and subshot-based experiments on YouTube
dataset, we directly perform our model on each video with-
out sequential modeling as the number of subshots for each
dataset is few. We perform KTS [9] to divide a video into
segments.

2. Datasets
We validate our approach on five benchmark datasets. In

this section we give detailed descriptions for each of them.

2.1. Kodak, OVP and YouTube dataset

We perform keyframe-based video summarization on
three video datasets: the Open Video Project (OVP) [1, 2],
the YouTube dataset [2], and the Kodak consumer video
dataset [8]. They contain 50, 39, and 18 videos, respec-
tively. In the main text, to investigate the effectiveness of
category-specific prior, we use Category Sports (16 videos)
and News (15 videos), i.e., 31 out of 39 videos. The OVP
and YouTube datasets have five human-created frame-level
summaries per video, while Kodak has one per video. Thus,
for the first two datasets, we follow the procedure described

in [3] to create an oracle summary per video. The oracle
summaries are then used to optimize model parameters of
various methods.

As suggested in [2], we pre-process the video frames
as follows. We uniformly sample one frame per second
for OVP and YouTube, two frames per second for Kodak
(as the videos are shorter) to create the ground set Y for
each video. We then prune away obviously uninforma-
tive frames, such as transition frames close to shot bound-
aries and near-monotone frames. On average, the resulting
ground set per video contains 84, 128, and 50 frames for
OVP, YouTube, and Kodak, respectively. We replace each
frame in the human-annotated summary with the temporally
closest one from the ground set, if that is not already con-
tained in the ground set.

2.2. SumMe dataset

The SumMe dataset [4, 5] consists of 25 videos, with the
average length being 2m40s. Similar to [9], each video is
cut and summarized by 15 to 18 people, and the average
length of the ground-truth (shot-based) summary is 13.1%
of the original video. We thus perform subshot-based sum-
marization on this dataset.

The video contents in SumMe dataset is heterogeneous
and it does not come with pre-defined categories. However,
some of them have various degrees of relatedness. For ex-
ample, videos with title ’Kids playing in leaves’ and ’Play-
ing on water slide’ are about children playing. Thus, it is
interesting to investigate if category prior can help improve
summarization on this dataset.

Instead of manually labeling each video, we propose
two synthetic categories and split videos into two parti-
tions. We first collapse the 10 video categories in the dataset
TVSum1 [10] into two super-categories, denoted as Super-
category I and II, respectively. Super-category I includes
activities such as attempting bike tricks, flash mob gather-
ing, park tour and parade, which mostly have raw videos
with crowds, and Super-category II includes the rest types
of activities with much less people interaction. These two
super-categories are semantically similar within each other,
though they do not have obvious visual similarity to videos
in the SumMe. We then build a binary classifier trained on
TVSum videos but classify the videos in SumMe as Super-
category I and Super-category II, and then proceed as if they
are ground-truth categories, as in MED and YouTube.

Since the shot boundaries given by users vary even for
the same video, to create an oracle summary of each video
for training, we first score each frame by the number of user
summaries containing it. We then obtain our shot bound-
aries based on KTS [9] and compute the shot-level scores
by averaging the frame scores within each shot. Finally we

1We choose this one as it has raw videos for us to extract features and
have a larger number of labeled videos for us to build a category classifier.



rank the shots and select the top ones that are combined to
have around 15% of the original video to be the oracle sum-
mary for each video.

2.3. MED dataset

The MED dataset, developed in [9], is a subset of the
TRECVid 2011 MED dataset. The dataset has 12,249
videos: 2,389 videos in the following 10 categories (namely
Birthday party, Changing a vehicle tire, Flash mob gather-
ing, Getting a vehicle unstuck, Grooming an animal, Mak-
ing a sandwich, Parade, Parkour, Repairing an appliance,
and Working on a sewing project) and 9,860 from none of
those (labeled as ’null’). 160 videos from the above 2,389
videos are annotated with summaries. For each video in the
dataset, an annotator is asked to cut and score all the shots
in a video (from 0 to 3). We thus perform subshot-based
summarization on this dataset.

There are several constraints in using this dataset: the
dataset does not provide the original videos, only bound-
aries of previously segmented shots and pre-computed fea-
tures (on average 27 shots per video and their Fisher vec-
tors). Those shot boundaries are often different from the
shots determined by human annotators.

To use this dataset for subshot-based summarization, we
first need to combine all the human annotators’ shot scores
into oracle summaries for training. To this end, we first map
each users’ annotations to the pre-determined shots — in
particular, each frame in its pre-determined shot “inherents”
the importance scores from the human annotators’ scores
of the subshots if the subshots contain the frame. We then
compute shot-level importance scores by taking an average
of the frame importances with in each pre-determined sub-
shot. We then select shots having the top K% importance
scores as ground-truth. We then use this ground-truth for
training. In this paper, we test our model under different
summary length, i.e. K = 15 and 30.

2.4. Features

For the Kodak, OVP, and YouTube datasets, we extract
Fisher vectors, color histograms, and CNN features (based
on GoogLeNet [11]). In our experiments, we use Fisher
vectors and color histogram for these three dataset, except
the comparison in section 4.4. For the MED dataset, as the
author didn’t provide the raw video, we use the Fisher vec-
tors given in the dataset. For SumMe dataset, we use the
output of layer-6 of AlexNet [6] as features.

3. Evaluation protocols

In all our experiments, we evaluate automatic sum-
marization results (A) by comparing them to the human-
created summaries (B) and reporting the F-score (F), preci-
sion (P), and recall (R), shown as follows:

Precision =
#matched pairs

#frames (shots) in A
× 100%, (7)

Recall =
#matched pairs

#frames (shots) in B
× 100%, (8)

F-score =
P ·R

0.5(P +R)
× 100%. (9)

For datasets with multiple human-created summaries, we
average or take the maximum over the number of human-
created summaries to obtain the evaluation metrics for each
video. We then average over the number of videos to obtain
the metrics for the datasets.

3.1. Kodak, OVP and YouTube datasets

We utilize the VSUMM package [2] to evaluate video
summarization results. Given two sets of summaries, one
formed by an algorithm and the other by human annota-
tors, this package outputs the maximum number of matched
pairs of frames between them. Two frames are qualified to
be a matched pair if their visual difference2 is below a cer-
tain threshold, while each frame of one summary can be
matched to at most one frame of the other summary. We
then can measure F-score based on these matched pairs.

3.2. SumMe

We follow the protocol in [4, 5]. As they constrain the
summary length to≤ 15% of the video duration, we take the
shots selected by our model (and if their duration exceeds
15%, we further rank them by their values on the diagonal
of L-kernel matrix — higher values imply more important
items, in our probabilistic framework for subset selection).
We then take the highest ranked shots and stop when their
total length exceeds 15% of the video duration.

In computing the F-score, [4, 5] use the same formula-
tion in comparing the summarization result to a user sum-
mary. However, when dealing with multiple user summaries
on one video, instead of taking the average as in [4], [5] re-
ports the highest F-score compared to all the users. In this
paper, we follow [5].

3.3. MED

For MED, we conduct subshot-based summarization.
We follow the same procedure to align each user’s anno-
tation with pre-determined shot boundaries in the dataset
(cf. section 2.3 in this Suppl. Material) to create user sum-
maries. We then evaluate similarly as we have done on the
Kodak, OVP and YouTube datasets, treating subshots as
“frames”. Since the KVS algorithm [9] cannot decide the
summarization length but only scores each shot, we simply

2VSUMM computes the visual difference automatically based on the
color histograms.



Table 1. For our method, better frame-based visual similarities im-
prove summarization quality. We report 100-round results for Ko-
dak, OVP and 5-round results for the remaining.

sim1 sim2 sim3

Kodak 76.6±0.6 80.2±0.3 82.3±0.3

OVP 71.4±0.3 75.3±0.3 76.5±0.4

YouTube soft 58.9±1.7 60.6 ±1.4 60.9±1.3

YouTube hard 59.6±1.4 61.5±1.5 61.5±1.5

Table 2. Results on YouTube dataset (39 videos), all based on 100
rounds.

VSUMM1 [2] seqDPP [3] Ours
YouTube 56.9±0.5 60.3±0.5 60.2±0.7

take the top 15% or 30% shots (ordered by scores) to be the
summary of KVS.

4. Detailed experimental results and analysis

4.1. Benefits of learning visual similarity

We further examine the effect of employing different
measures of visual similarity. As shown in Table 1, non-
linear similarity with the Gaussian-RBF kernel (sim2) gen-
erally outperforms linear similarity (sim1), while learning a
non-identity metric Ω (sim3) improves only marginally the
performance. In the following experiments, we use sim2.

4.2. Results on the complete YouTube dataset

The original YouTube dataset [2], after excluding the
cartoon videos as in [3], contains 39 videos with 8 of them
in neither Sports nor News category. In the main text, we
have used 31 videos mainly for the purpose to compare to
summarization results exploiting category prior.

For maximum comparability to prior work on this
dataset, we provide our summarization results on the 39
videos and compare to previous published results, as in Ta-
ble 2.

4.3. Detailed results with category prior

The results for the YouTube, SumMe and MED datasets
are shown in Table 3, 4 and 5, respectively.

We can see that both the soft category-specific and the
hard category-specific outperform the no category-specific
setting in most cases. For example, a ’birthday party’ video
is likely to share structures with an ’outdoor activity’ video,
thus helping to summarize each other.

Additionally, even when the ground-truth categories for
the testing videos are unknown and need to be determined
with a category classifier, the category prior can still help.

Table 4. Category-specific experimental results on SumMe dataset.
SP I and SP II stands for super-category I and II, respectively. We
report 5-round results.

Setting Testing Category determined by a classifier

SumMe
SP I 38.6±0.5

39.2±0.7
SP II 40.7±0.7

SumMe soft
SP I 39.2±0.6

40.2±0.7
SP II 41.9±0.7

SumMe hard
SP I 39.8±0.8

40.9±0.9
SP II 43.3±0.9

Table 6. The comparison of shallow and deep features for summa-
rization. We report 5-round results.

Shallow Deep
Kodak 80.2±0.3 79.1±0.4

YouTube 60.0±1.3 59.3±1.5

YouTube soft 60.6±1.4 59.6±1.6

YouTube hard 61.5±1.5 61.0±1.6

4.4. Comparison between deep and shallow features

Here we present results on contrasting deep to shallow
features to show that deep features for visual recognition do
not help much over shallow features. As shown in Table 6.
We compare Fisher vector and color histogram with state-
of-the-art CNN features by GoogLeNet [11].

4.5. Comparison to seqDPP

Our method outperforms seqDPP [3] on Kodak and
YouTube (cf. Table 2 in the main text), whose contents are
more diverse and more challenging than OVP. We suspect
that since videos in OVP are edited and thus less redun-
dant, methods with higher precision such as seqDPP might
be able to perform better than methods with higher recall
(such as the proposed approach).

At testing time, our model requires more computation.
On YouTube, it takes 1 second on average per video, slower
than 0.5 second by seqDPP. However, our model is far ad-
vantageous in training. First, it learns much fewer parame-
ters (cf. in the main text, about 9,000 for α in eq. (5) and
diagonal Ω in eq. (4)), while seqDPP requires tuning 80,000
parameters. Our model thus learns well even on small train-
ing datasets, shown on Kodak (cf. in section 4.3 of the main
text). Secondly, learning seqDPP is computationally very
intensive — according to its authors, a great deal of hy-
perparameter tuning and model selection was performed.
Learning our model is noticeably faster. For example, on
Youtube, our model takes about 1 minute per configuration
of hyperparameters, while seqDPP takes 9 minutes.

4.6. Qualitative comparisons

We provide exemplar video summaries in Fig. 1 (and at-
tached movies), along with the human-created summaries.



Table 3. Exploiting category prior with YouTube dataset, which contains totally 31 videos in Sport and News categories. We report F-score
in each category as well as on the whole dataset, averaging over 5 rounds of experiments.

Setting Testing video’s category Category prior not used

YouTube
Sports 53.5±1.5

News 66.9±1.2

Combined 60.0±1.3

Ground-truth category is used Category determined by a classifier

YouTube soft

Sports 53.4±1.5 53.4±1.5

News 68.2±1.4 67.5±1.6

Combined 60.6±1.4 60.2±1.6

YouTube hard

Sports 54.4±1.6 54.4±1.6

News 69.1±1.4 68.3±1.8

combined 61.5±1.5 61.1±1.8

Table 5. Category-specific experimental results on MED summaries dataset with 10 categories. We consider two settings, K = 15 and
K = 30, as mentioned in section 2.3 and 3.3. We report 5-round results.

(a) User summaries at K = 15

Setting Category prior not used
MED 28.9±0.8

Ground-truth category is used Category determined by a classifier
MED soft 30.7±1.0 29.4±1.2

MED hard 30.4±1.0 28.5±1.3

(b) User summaries at K = 30

Setting Category prior not used
MED 47.2±0.7

Ground-truth category is used Category determined by a classifier
MED soft 48.6±0.8 45.9±1.0

MED hard 48.1±1.1 44.5±1.1

Since OVP and YouTube have five human-created sum-
maries per video, we display the merged oracle summary
(see section 2.1) for brevity.

In general, our approach provides summaries most sim-
ilar to those created by humans. We attribute this to two
factors. Firstly, employing supervised learning helps iden-
tify representative contents. VSUMM1 [2], though achiev-
ing diversity via unsupervised clustering, fails to capture
such a notion of representativeness, resulting in a poor F-
score and a drastically different number of summarized
frames compared to the oracle/human annotations. Sec-
ondly, through non-parametrically transferring the underly-
ing criteria of summarization, the proposed approach arrives
at better summarization kernel matrices L than seqDPP,
further eliminating several uninformative frames from the
summaries (thus improving precision). The bottom failure
case, however, suggests how to improve the method further,
in the direction of increasing recall rate. We believe those
missing frames (thus, shorter summaries) can be recalled if
we could consider jointly the kernel computed explicitly on
the test videos (such as seqDPP) and the kernel computed
by our method.

5. Detailed discussions

5.1. Computational complexity and practicality

Section 3.5 of the main text discusses the computational
cost and ways for reducing it. Specifically, the cost depends
on (1) the length of the training and testing videos; (2) the
number of training videos.

For (1), we can down-sample the videos to reduce the
number of frames (cf. section 3.5 of the main text and
section 2.1 for details), and exploit subshot-based transfer
(section. 3.4 of the main text). For the latter, the size of L
(eq. (11) of the main text) depends only on the number of
subshots (not frames), and the subshot-to-subshot similarity
further reduces computational cost, without worsening the
performance (cf. Table 5 of the main text). Moreover, the
sequential modeling trick in [3] can also be used to reduce
the cost (see section 1.4).

For (2), the proposed hard category-specific transfer (cf.
section 3.4 of the main text) enables transferring from fewer
training videos with improved performance.



Oracle 

VSUMM1 

(F = 69) 

seqDPP 

(F = 74) 

Ours 

(F = 84) 

OVP
(Video 60)

Oracle 

VSUMM1 

(F = 54) 

seqDPP 

(F = 57) 

Ours 

(F = 74) 

YouTube
(Video 76)

Oracle 

VSUMM1 

(F = 87) 

seqDPP 

(F = 88) 

Ours 

(F = 73) 

OVP
(Video 25)

Figure 1. Exemplar video summaries generated by VSUMM1 [2], seqDPP [3], and ours (sim3), along with the (merged) human-created
summaries. We index videos following [2]. On two videos, our approach reaches the highest agreement with the oracle/human-created
summaries compared to the other methods. The failure case on the bottom hints the limitation, however. See texts for details.

5.2. Applicability to long egocentric videos

Egocentric video is challenging due to its length and di-
verse content (e.g., multiple events). One possible strategy
is to apply existing techniques to detect and segment the
videos into shorter events and then perform our approach on
shorter segments, or use methods described in [7] to zoom
into frames surrounding the occurrence of important people
and objects.

5.3. Mechanisms to check for failure

It is interesting to investigate when our approach will fail
in practice. As our approach is non-parametric by transfer-
ring the summarization structures from annotated videos,
the visual similarities between the testing and annotated
videos might be a useful cue. We conduct analysis (cf.
Fig. 2) and show that there is indeed positive correlation
between visual similarity and summarization quality. A pre-
liminary fail-safe mechanism thus would be thresholding on
the similarity.

References
[1] Open video project. http://www.open-video.org/.

2

0 5 10 15

Rank

0

0.5

1

F
 s

co
re

Youtube_Sports

0 5 10 15

Rank

0.5

1

F
 s

c
o

re

Youtube_News

Figure 2. Visual similarity (x-axis, smaller ranks imply stronger
similarity) between the testing and annotated videos is positively
correlated to summarization quality (F-score on y-axis). Results
are from summarizing YouTube via hard transfer.

[2] S. E. F. de Avila, A. P. B. Lopes, A. da Luz, and A. de Albu-
querque Araújo. Vsumm: A mechanism designed to produce
static video summaries and a novel evaluation method. Pat-
tern Recognition Letters, 32(1):56–68, 2011. 2, 3, 4, 5, 6

[3] B. Gong, W.-L. Chao, K. Grauman, and F. Sha. Diverse
sequential subset selection for supervised video summariza-
tion. In NIPS, 2014. 2, 4, 5, 6

[4] M. Gygli, H. Grabner, H. Riemenschneider, and L. Van Gool.
Creating summaries from user videos. In ECCV, 2014. 2, 3

[5] M. Gygli, H. Grabner, and L. Van Gool. Video summa-
rization by learning submodular mixtures of objectives. In
CVPR, 2015. 2, 3

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In

http://www.open-video.org/


NIPS, 2012. 3
[7] Y. J. Lee, J. Ghosh, and K. Grauman. Discovering important

people and objects for egocentric video summarization. In
CVPR, 2012. 6

[8] J. Luo, C. Papin, and K. Costello. Towards extracting se-
mantically meaningful key frames from personal video clips:
from humans to computers. Circuits and Systems for Video
Technology, IEEE Transactions on, 19(2):289–301, 2009. 2

[9] D. Potapov, M. Douze, Z. Harchaoui, and C. Schmid.
Category-specific video summarization. In ECCV, 2014. 2,
3

[10] Y. Song, J. Vallmitjana, A. Stent, and A. Jaimes. Tvsum:
Summarizing web videos using titles. In CVPR, 2015. 2

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CVPR, 2015. 3, 4


