
Supplementary Material:

Unconstrained Salient Object Detection via Proposal Subset Optimization

1. Proof of the Submodularity

According to Eqns. 10-12 in our paper, the objective

function of the proposed optimization formulation can be

represented as:

h(O) =
n∑

i=1

max
xi∈Õ∪{0}

wi(xi)− φ|O| −
γ

2

∑

i,j∈Õ:i 6=j

Kij ,

(1)

where wi(j) , logP (xi = j|I) and Kij is shorthand for

the bounding box similarity measure K(Bi, Bj). Õ denotes

the index set corresponding to the selected windows in O.

Proposition 1. h(O) is a submodular function.

Proof. Let

h(O) =

n∑

i=1

Ai(O) + φB(O) + γC(O), (2)

where

Ai(O) = max
xi∈Õ∪{0}

wi(xi),

B(O) = −|O|,

C(O) = −
1

2

∑

i,j∈Õ:i 6=j

Kij .

Because φ and γ are non-negative, it suffices to show

Ai(O), B(O) and C(O) are all submodular, since the class

of submodular functions is closed under non-negative linear

combinations.

Recall that O ⊆ B = {Bi}
n
1

, where B is the overall

window proposal set. Let X and Y denote two subsets of

B, and X ⊆ Y . Also, let x denote an arbitrary window

proposal such that x ∈ B \ Y .

To show a function f is submodular, we just need to

prove that f(X ∪ {x}) − f(X) ≥ f(Y ∪ {x}) − f(Y )
[6, p. 766].

First, B(O) is submodular because

B(X ∪ {x})− B(X) = −|X ∪ {x}|+ |X|

= −|Y ∪ {x}|+ |Y |

= B(Y ∪ {x})− B(Y ).

Second, C(O) is submodular because

C(X ∪ {x})− C(X) = −
∑

i∈X̃

K(Bi, Bx̃)

≥ −
∑

i∈Ỹ

K(Bi, Bx̃)

≥ C(Y ∪ {x})− C(Y ),

where X̃ , Ỹ and x̃ are the corresponding indices of X , Y

and x w.r.t. B. Note that K(Bi, Bx̃) is a similarity measure,

and it is non-negative.

Lastly, we show that Ai(O) is submodular. Note that

Ai is a monotone set function, so Ai(Y ) ≥ Ai(X). Fur-

thermore, Ai(X ∪{x}) = max{Ai(X),Ax
i }, where Ax

i ,

Ai({x}). Thus,

Ai(Y ∪ {x})−Ai(X ∪ {x})

=max {Ai(Y ),Ax
i } −max {Ai(X),Ax

i }

≤Ai(Y )−Ai(X).

It is easy to see the last inequality by checking the cases

when Ax
i ≤ Ai(X), Ai(X) < Ax

i ≤ Ai(Y ) and Ai(Y ) <
Ax

i respectively. Then it follows that

Ai(X ∪ {x})−Ai(X) ≥ Ai(Y ∪ {x})−Ai(Y ).

Therefore, Ai is submodular.

2. Merging Annotated Bounding Boxes

The MSRA [5] and DUT-O [9] datasets provide raw

bounding box annotations from different subjects. To ob-

tain a set of ground truth windows for each image, we use

a greedy algorithm to merge bounding box annotations la-

beled by different subjects.

Let B = {Bi}
n
i denote the bounding box annotations

for an image. For each bounding box Bi, we calculate an

overlap score:

Si =
∑

j:j 6=i

IOU(Bi, Bj).

Based on the overlap score, we do a greedy non-maximum-

suppression with the IOU threshold of 0.5 to get a set
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of candidate windows. To suppress outlier annotations, a

candidate window Bi is removed if there are fewer than

two other windows in B that significantly overlap with Bi

(IOU > 0.5). The remaining candidates are output as the

ground truth windows for the given image.

3. CNN Model Training Details

We generate 100 exemplar windows by doing K-means

clustering on the bounding box annotations of the SOS

training set. The training images are resized to 224 × 224
regardless of their original dimensions. Training images are

augmented by flipping and random cropping. Bounding box

annotations that overlap with the cropping window by less

than 50% are discarded. We use Caffe [3] to train the CNN

model with a minibatch size of 8 and a fixed base learn-

ing rate of 10−4. We fine-tune all the fully-connected lay-

ers together with conv5 1, conv5 2 and conv5 3 layers by

backpropagation. Other training settings are the same as in

[7]. We fine-tune the model on the ILSVRC-2014 detec-

tion dataset for 230K iterations, when the validation error

plateaus. Then we continue to fine-tune the model on the

SOS training dataset for 2000 iterations, where the iteration

number is chosen via 5-fold cross validation. Fine-tuning

takes about 20 hours on the ILSVRC dataset, and 20 mins

on the SOS dataset using a single NVIDIA K40C GPU.

4. The Maximum Marginal Relevance Baseline

In our experiments, the Maximum Marginal Relevance

(MMR) baseline follows the formulation in [1]. The MMR

re-scores each proposal by iteratively selecting the proposal

with maximum marginal relevance w.r.t. the previously se-

lected proposals. The maximum marginal relevance is for-

mulated by

MMR = argmax
hi∈H\Hp

[
s(hi)− θ · max

hj∈Hp

IOU(hi, hj)

]
, (3)

where Hp is the previously selected proposals. We optimize

the parameter θ for the MMR baseline w.r.t. the AP score.

For SalCNN, we use θ = 1.3, and for MBox, we use θ =
0.05.

5. Sample Detection Results

We show sample detection results of our method on the

four datasets: MSO [10] (Figs. 1 and 2), VOC07 [2] (Figs.

3 and 4), DUT-O [9] (Figs. 5 and 6) and MSRA [5] (Figs. 7

and 8).

6. Results on PASCAL-S

For completeness, we further evaluate our method on the

PASCAL-S dataset [4]. The images of PASCAL-S are from

the PASCAL VOC07 dataset [2], and the ground truth is

Table 1: AP scores on the PASCAL-S dataset

MBox+NMS MBox+MAP SalCNN+NMS SalCNN+MAP

.605 .624 .547 .599

labeled based on the eye fixation data and the object seg-

mentation masks provided by VOC07. This dataset contains

some images with multiple objects, and most of its images

contain at least one salient object.

Table 1 show the results of our MAP formulation com-

pared with the NMS baseline for our SalCNN and MBox

[8]. We find that our MAP formulation consistently im-

proves over the NMS baseline for both MBox and our Sal-

CNN on this dataset. MBox+MAP is slightly better than

SalCNN+MAP on this dataset. Note that the ground truth

annotations of PASCAL-S are still limited to the 20 cate-

gories in PASCAL VOC that MBox is trained on and opti-

mized for.
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Figure 1: Sample detection results of our method when λ = 0.1 on the MSO dataset [10].3
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Figure 2: Sample detection results of our method when λ = 0.1 on the MSO dataset [10].4
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Figure 3: Sample detection results of our method when λ = 0.1 on the VOC07 dataset [2].5
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Figure 4: Sample detection results of our method when λ = 0.1 on the VOC07 dataset [2].6
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Figure 5: Sample detection results of our method when λ = 0.1 on the DUT-O dataset [9].7
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Figure 6: Sample detection results of our method when λ = 0.1 on the DUT-O dataset [9].8
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Figure 7: Sample detection results of our method when λ = 0.1 on the MSRA dataset [5].9
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Figure 8: Sample detection results of our method when λ = 0.1 on the MSRA dataset [5].10


