
Embedded Computing Framework for

Vision-based Real-time Surround Threat Analysis and Driver Assistance

Frankie Lu Sean Lee Ravi Kumar Satzoda Mohan Trivedi

University of California, San Diego

[frlu,yhl014,rsatzoda,mtrivedi]@eng.ucsd.edu

Abstract

In this paper, we present a distributed embedded vision

system that enables surround scene analysis and vehicle

threat estimation. The proposed system analyzes the sur-

roundings of the ego-vehicle using four cameras, each con-

nected to a separate embedded processor. Each proces-

sor runs a set of optimized vision-based techniques to de-

tect surrounding vehicles, so that the entire system operates

at real-time speeds. This setup has been demonstrated on

multiple vehicle testbeds with high levels of robustness un-

der real-world driving conditions and is scalable to addi-

tional cameras. Finally, we present a detailed evaluation

which shows over 95% accuracy and operation at nearly

15 frames per second.

1. Introduction

Scene perception and understanding are critical com-

ponents required in the design and development of au-

tonomous vehicles and advanced driver assistance systems

(ADAS) [1]. One way to accomplish scene understand-

ing is through vision; cameras are becoming an integral

part of vehicles for sensing obstacles such as vehicles [2]

and pedestrians [3]. Developing an independent comput-

ing environment in an automobile has constraints including

limited hardware resources, running with little energy con-

sumption, and using software economically [4, 5].

Vision based methods for driver assistance have become

very accurate, but are still based on computationally expen-

sive algorithms. Current embedded and system-on-a-chip

based platforms that can be put in automobiles today will

be resource constrained and have to find a balance between

compute speed and power consumption [5]. The goal is then

to develop more efficient algorithms that cater to the com-

putational constraints posed by an embedded platform, but

at the same time resist compromising on the accuracy and

robustness that is necessary for tasks like collision avoid-

ance.

Figure 1: Surround scene assessment using cameras and

embedded processors proposed.

In this paper, we present a vision-based embedded com-

puting framework that is able to analyze the surroundings

of the vehicle and provide critical safety related alerts to

the driver in real-time. The proposed system uses camera

sensors as the sole sensing modality for analyzing the sur-

roundings of the host or ego vehicle.

There are three main contributions in this paper. First,

we present a technique for detecting ‘high-threat’ vehicles

in front and rear of the ego-vehicle as seen by forward and

rear facing cameras respectively from the ego-vehicle. The

techniques are particularly designed to operate at real-time

frame rates on embedded processors. Next, we present an

optimized technique to detect the presence of vehicles in the

blind spot areas. Finally, we present a distributed processing

framework that employs the optimized detection modules

in order to analyze the threat posed by surrounding vehicles

to the ego-vehicle. Fig. 1 illustrates the proposed multi-

perspective system. The entire system is implemented using

Snapdragon embedded processors, and it has been tested

under real-world driving conditions with high levels of ac-

curacy.

1 83

2. Related Recent Studies

There is a rich body of literature which addresses vari-

ous aspects of vision-based driver assistance systems. Lane

detection [6], vehicle detection [7] and vehicle activity

detection [8] in particular have been studied extensively.

These operations have been further used to estimate the

threat posed by surrounding vehicles on the ego-vehicle

[9–11]. Although robust vision algorithms have been pro-

posed for these algorithms and systems, there are fewer

works in the context of embedded electronics that can be

deployed in vehicles using resource constrained embedded

CPUs [5, 12–14].

Computationally efficient lane detection is implemented

in works such as [14–16]. A complete lane detection and

tracking system is implemented on FPGAs in [15]. A lane

departure and drift warning system is implemented on a

Snapdragon processor in [14]. Lane feature extraction us-

ing steerable filters is presented in [16]. Similarly vehicle

detection has also been explored and is an integral compo-

nent of commercial ADASs such as MobilEye [17].

Multiple perspectives and modalities are used to under-

stand the surroundings of the vehicles in works such as

[18, 19]. In [18], multi-perspective camera based ADASs

are discussed for implementation on Texas Instruments pro-

cessors. Another similar work is presented in [19], wherein

multi-modal and multi-camera based ADASs are surveyed

for embedded implementation. Stereo-vision systems have

also been implemented on embedded platforms in works

such as [20, 21]. It should be noted that consumer vehicle

manufacturers have deployed some of these algorithms as

part of their vehicles using electronic control units (ECUs)

for applications such as lane departure warning (LDW). Ad-

ditionally, there are plug-and-play vision-based electronic

assistance systems such as MobilEye [17] which can be in-

stalled in vehicles to assist the driver. Dedicated automo-

tive grade embedded vision processors such as Texas In-

struments’ EVE have also been developed for deployment

in vehicles [22].

The above list provides a brief review of related works.

A more detailed study can be found in [13, 19]. A study of

these works reiterates the point that the challenges of trans-

lating computer vision algorithms into robust and real-time

embedded electronics are yet to be fully addressed.

3. Surround Scene Analysis System: Overview

An overview of our proposed embedded surround scene

analysis system is presented. The main goals when design-

ing our proposed system were the following:

1. The system should detect and evaluate the threat posed

by the surrounding vehicles that are classified as ’high-

threat’.

2. The system should operate in real-time under real-

world driving conditions.

We want to elaborate on the threat levels posed by sur-

rounding vehicles. A low to intermediate threat vehicle is

anything that is not covered in the definition of a ’high-

threat’ vehicle and is not analyzed. A ‘high-threat’ vehicle

is one which can pose an immediate or high threat to the

ego-vehicle. These include the vehicles: (a) in the host lane

(both in front and rear of the ego-vehicle), (b) in the adja-

cent lanes on the right and left of the ego-vehicle (both in

the front and rear views of the ego-vehicle), (c) in the blind

spots on the adjacent lanes of the ego-vehicle. This defi-

nition identifies the primary regions of interest that will be

analyzed by the proposed system. If there are multiple ve-

hicles in any lane, only the vehicle that is closer to the ego-

vehicle will be considered as a high-threat vehicle. Each

’high-threat’ vehicle will be assigned a threat value by our

system.

Fig. 1 illustrates the desired fields of view for the system

to analyze the surroundings of ego-vehicle. It comprises of

four cameras that capture the visual information from the

forward view, rear view and the left and right blindspots of

the ego-vehicle. In the current setup, the cameras capture

nearly 300 degrees around the vehicle. The red ovals in Fig.

1 indicate the regions that are currently not covered by the

cameras described in this paper. The system is currently

designed to address traffic flows on highway driving condi-

tions.

4. High-threat Vehicle Detection for Embedded

Implementation

We will present two different vehicle detection tech-

niques to analyze the threat to the ego-vehicle from the

regions of interest (RoIs) described in Section 3. The ob-

jective is to design vehicle detection methods that are opti-

mized sufficiently for implementation on an embedded pro-

cessor such that they operate at real-time frame rates. The

first vehicle detection technique caters to the forward and

rear views seen by the ego-vehicle, while the second is used

to detect the presence of a vehicle in its blind spots.

We have two datasets that we will use for evaluation

of our implementation. Each dataset is a collection of

real-world drives, under variable driving conditions (sunny,

cloudy, lots of shadows, traffic flow, etc.). The first dataset

is a two-camera view of the front and rear of the ego-

vehicle. It contains over 10,000 annotations each of front

and rear vehicles, and will be used for training our front and

rear-view detectors. The second dataset is the four camera

surround view that we have presented for this paper (front,

rear, and two blind spots). There are over 100,000 frames

in total for each view. A small portion of this dataset will

be used for training the blind-spot detectors. For the rest of

84

Figure 2: Illustration of the RoIs and the different parame-

ters that are used for vehicle detection in the forward view.

this dataset, we will select a variety of sequences of around

1000 frames each to use for testing, that demonstrate varied

road conditions.

4.1. Vehicle Detection in Forward and Rear Views

We present an embedded platform for detecting vehicles

in the surround of an ego-vehicle. From our definition of

’high-threat’ vehicles, there are three RoIs where they can

be found - the host lane, the adjacent left lane and the ad-

jacent right lane. For the rest of this section, we discuss

the detection of vehicles in these three RoIs in front of the

ego-vehicle.

Before continuing the description of our algorithm, we

would like to further emphasize the differences of using a

traditional desktop processor versus an embedded platform.

In order to understand the computational bottlenecks, we

profiled a Haar-Adaboost based vehicle classifier on a Snap-

dragon 810 processor. The Haar-Adaboost classifier was

applied to an forward-view input image in a conventional

multi-scale and multi-window approach. The computation,

which runs on real time (30 fps) on a desktop processor,

took 1 second to process each frame (1 fps) on the Snap-

dragon processor. In order to overcome this limitation on

timing, a two-step context-aware approach is employed for

detecting vehicles in the three RoIs.

Now we describe the algorithm for front-view detec-

tion, which is also applied to detect vehicles in the rear-

view. First, the host and adjacent lanes are detected using

a simplified variant of the steerable filter based approach

in [16, 23]. In the modified approach, we do not apply

RANSAC (which is used in [23]) for eliminating outliers.

Instead, we use the road models to estimate possible lane

markings of the host lane. The adjacent lanes are also re-

quired for generating RoIs in the proposed system, but ex-

tracting adjacent lane features of the adjacent lanes will in-

crease computational complexity. Given that the system is

primarily designed for highway driving and that lanes in the

U.S. have standard lane widths, an inverse perspective map-

ping [24] is used to estimate the lane positions from the host

Figure 3: Probability density functions for road surface and

under vehicle region pixels. Sample annotations are shown

for the road surface and under vehicle region pixels.

lane markings. The detected lane markings would result in

three RoIs: adjacent left lane, ego-lane and adjacent right

lane. The different RoIs (RF
L , RF

E and RF
R) and the lanes are

shown in Fig. 2). A more in-depth analysis and evaluation

of the lane detection method is found in [16, 23].

We now want to look for ’high-threat’ vehicles in each

RoI (three vehicles, one from each RoI, which are nearest to

the ego-vehicle). Instead of applying the vehicle classifier

directly in each of the regions, hypothesis candidates are

first generated by capitalizing the presence of under-vehicle

dark regions. The lower parts of vehicles (bumper, shadow)

seen in front of the ego-vehicle have a lower light inten-

sity than the other parts of the scene. The darker regions

are caused by the reflected light from other surfaces being

greater than the reflected light underneath the vehicle [25].

Each RoI will be analyzed for the presence of under-vehicle

dark regions (shown in Fig. 3 inset annotations). We first

annotate the under-vehicle regions of the first dataset. Us-

ing a YUV color format from each image frame, we ana-

lyze the mean Y component of the under-vehicle regions is

collected from the training data, resulting in the probability

density functions PUV (µUV ,σUV) and PRS(µRS,σRS) for the

under-vehicle region and the road surface respectively, as

shown in Fig 3.

Given a test image frame I with the boundaries of the

RoIs computed as described previously, I is scanned along

the y-direction starting from the bottom of the image, i.e.,

the point that is nearest to the ego-vehicle (refer to Fig. 2).

For a particular y-position y j, the image pixels in that scan

line are divided into the three segments IL(y j), IE(y j), and

IR(y j) corresponding to the three RoIs (denoted in Fig. 2).

The image pixels in each of three scan line segments IL(y j),
IE(y j), and IR(y j) are then thresholded using the PDFs for

under-vehicle region and road surface - PUV (µUV ,σUV) and

85

PRS(µRS,σRS) using the following equation:

I(xk,y j) =

{

1 if PUV (I(xk,y j))≥ PRS(I(xk,y j))
0 otherwise

(1)

After thresholding the scan line segments, the number of

pixels that are classified as under-vehicle region is deter-

mined for each segment. If the number of under-vehicle

region pixels form β% of the scan line segment, then that

scan line segment is marked as an under-vehicle shadow

segment. This process is repeated with the next scan line. In

each RoI, the number of consecutive under-vehicle shadow

segments are counted which are denoted by nL, nE and nR

corresponding to the three RoIs. If nL is greater than κ ,

then the nL scan line segments are considered as possible

constituents of an under-vehicle region in the adjacent left

lane RoI. The same is repeated with the ego-lane and the

adjacent right lane RoIs. If an RoI is found to have possible

under-vehicle region, then a hypothesis window H is drawn

in which vehicle classifiers are applied.

The hypothesis window H is scaled depending on how

far the detected shadow is from the ego-vehicle. The

width-to-height ratio is calculated by averaging the width-

to-height ratios of all the samples in our first dataset (around

10,000 vehicles) and is found to be 1.325. β is learned from

the training data and is set to 40% so that it can handle ve-

hicles that are changing lanes. It was found that setting κ
to 3 gives the most optimal results with over 95% accuracy

and real-time frame rates. All the different parameters are

illustrated in Fig. 2.

We note that instead of applying the vehicle detection

classifiers on the entire image, they are applied in limited

patches of H which is much more computationally effi-

cient. We train two Adaboost classifiers (one for front, one

for rear) with Haar-like features using our first described

dataset, using the active learning methodology described

in [26] is used. If a vehicle is detected within H, the remain-

ing scan lines in the RoI above ybottom are not processed any-

more. The above approach is repeated for the three different

RoIs resulting in the detection of a maximum of three vehi-

cles corresponding to the three nearest vehicles in the three

RoIs.

4.2. Vehicle Detection in Blind Spots

In the forward and rear views, it was important to deter-

mine the position of the vehicles with respect to the ego-

vehicle in the lanes. In the blind spots however, the pro-

posed system simply determines the presence or absence of

a vehicle. This is because the proposed system continuously

monitors the movement of the vehicle in the rear view until

it disappears from the rear camera view and enters into the

blind spot RoI. Given that the blind spot RoI is less than 5

meters, we can just determine a binary decision value (i.e.

Figure 4: Four detection windows where the vehicle is de-

tected in the blind spot.

presence or absence of a vehicle in the blind spot) without

losing much in vehicle resolution.

We use a simplified clustering based method. The fol-

lowing details are explained using the camera view from

the right blind spot. The same technique is applied to the

left blind spot.

Training: We create a training dataset comprising of 500

positive and negative samples each. Each positive sample

includes the side view of a vehicle from the right blind spot.

Histogram of oriented gradients (HOG) [27] feature vectors

are generated for the samples resulting the two sets of fea-

tures corresponding to positives and negatives respectively:

H+ = {h+
0 ,h

+
1 , . . . ,h

+
N+

} and H− = {h−
0 ,h

−
1 , . . . ,h

−
N−

}. All

the features are normalized as follows:

h′
i
+
=

hi
+−µ

σ
and h′

i
−
=

hi
−−µ

σ
(2)

where µ and σ are the mean and standard deviation of all

HOG vectors in H+ and H−. The mean normalized HOG

vectors are then used to generate two centroids, which are

the means of the two clusters, i.e.,

h+
µ =

1

N+

N+

∑
i=0

h′
i
+

h−
µ =

1

N−

N−

∑
i=0

h′
i
−

(3)

Testing: Given a test image I, we consider 4 detec-

tion windows W1,W2,W3 and W4 along the length of the

car which are spaced at every 1 meter with respect to the

ground plane (refer to Fig. 4). HOG features are generated

for the four windows (appropriate scaling to produce HoG

feature vectors of similar length). After normalizing the fea-

ture vectors, the Euclidean norm is computed between each

feature vector tj and the two centroids h+
µ and h−

µ . There-

fore, each window Wj gives a distance d+
j = ||h+

µ − tj|| and

d−
j = ||h−

µ − tj
+||. The window Wj is assigned as vehicle if

d+
j > d−

j . In a given frame, if either of the four windows

detects a vehicle, a vehicle is considered to be present in the

blind spot of the vehicle.

5. Embedded System Setup

Our embedded system implementation is described.

86

Figure 5: Scalable system architecture for surround scene

analysis.

5.1. Computing Modules

We choose to use Android as the operating system be-

cause its platform can be extended for use on other embed-

ded systems [28]. It demonstrates a resource constrained

environment that is associated with trying to implement

driver assistance algorithms in vehicles. For our setup,

we will use a development board with an embedded Snap-

dragon 810 SoC. The Snapdragon 810 is a consumer-grade

processor found in many smartphone devices as of 2015

and is representative of the state of modern embedded plat-

forms.

Early on, we found that attempting to do all the risk anal-

ysis computation on a single Snapdragon system had two

problems. The first was that all the computations done in

Section IV could not be done in real-time on a single pro-

cessor. The second was that the required bandwidth of ac-

cepting multiple video streams (front, rear, and blind spot

cameras) was too high. Therefore we separate the compu-

tations to multiple Snapdragon boards, which we refer to as

computing modules (we will use the terminology ’modules’

and ’processors’ interchangably for the rest of this paper).

Each computing module performs a task related to risk

assessment. Our current system uses four computing mod-

ules. The first and second are used for lane and vehicle

information of the front and rear views, respectively. The

third and fourth look for vehicles in the left and right blind

spots. Modules 1-4 use a single USB webcam connected

to the system, receiving and processing 640× 480p video

streams at around 15 fps. Lane and vehicle detection are

performed using methods described in Section IV.

5.2. Synchronization of Modules

We designate one of the computing modules as the mas-

ter driver, and all the other modules as slave modules. In

our implementation, the medium of communication used is

a TCP/IP wireless connection. The master driver hosts a

server-client connection with each slave module.

To make communication among modules fast, synchro-

nization is done using a message-passing scheme. At ev-

ery frame, each slave module performs its given task at and

computes a risk value, which is passed to a buffer at the

master driver. Since the master driver may receive risk val-

ues from each slave module at varying frame rates, it will

select only the most current value from each slave mod-

ule and use it to compute an overall risk assessment of the

scene. Thus the total frame rate of the system is dependent

on the frame rate of the master driver. We more formally

define the messages that are sent from the slave modules in

Section 5.4. The system is able to run at 10-15 cycles per

second, which translates to a real-time frame rate required

for automotive applications [29].

The TCP/IP communication method we have discussed

can be replaced with other forms of low-latency communi-

cation. This, coupled with the small footprint of the com-

puting modules, gives us freedom to design the system in

many spaces inside the vehicle.

5.3. Scalability of Modules

We note that we can also scale up the number of modules

that are used in the system. Examples of additional modules

include two more cameras to provide for a 360 degree sur-

round view, or CAN bus access. By doing so, we are able to

distribute computationally demanding algorithms into sep-

arate modules without slowing down the system. The com-

plete proposed architecture is shown in Figure 5.

5.4. Threat Estimation

Now we will consider the threat posed by the surround-

ing vehicles using the detection information from each

module.

Threat posed by vehicles in forward and rear views:

After detecting the vehicles, one set of detection win-

dows is generated by each module resulting in ΨF =
{

W F
L ,W F

E ,W F
R

}

and ΨR =
{

W R
L ,W R

E ,W R
R

}

, where the su-

perscripts F and R refer to forward and rear RoIs respec-

tively, and the subscripts L, E and R refer to the adjacent

left, ego and adjacent right lanes respectively. A detection

window W is a set of four parameters, i.e. W = [x,y,w,h],
where (x,y) denotes the coordinates of the top left corner of

the window and w and h denote the width and height of the

detection window. If the vehicle detector does not detect a

vehicle in a lane, then that window is set to a null value.

Given the detection windows in ΨF and ΨR, the relative

distances of the vehicles are estimated using the inverse per-

87

spective mapping (IPM) transformation matrix H , which

is computed using a one-time calibration method described

in [24]. H transforms a coordinate in the image domain

to real-world ground plane. Given H , the mid point of

the bottom edge of the detection window is used to deter-

mine the position of the vehicle along the road from the

ego-vehicle resulting in two vectors dF
V ∈ R

3 and dR
V ∈ R

3,

corresponding to the distances of the vehicles in front and

rear of the ego-vehicle. If any window is null (no vehicle in

the RoI), then that particular distance d is set to dmax which

is the maximum distance from the ego-vehicle which is be-

ing processed for threat estimation. The rear module now

acts as a client and sends dR
V to the host module, i.e. the for-

ward Snapdragon module. The host combines dF
V and dR

V to

generate a 6-valued vector dV =
[

dF
L ,d

F
E ,d

F
R ,d

R
L ,d

R
E ,d

R
R

]T
.

The first three values in dV denote the distances from the

forward view and the last three values denote the distances

of the vehicles from the rear-view.

The host module uses the distance vector dV to compute

a risk vector Γ using a risk function fr(·). The risk function

can be defined in multiple ways depending on the factors

that are considered for risk estimation. In this work, we

consider a distance based risk function which computes the

risk vector Γ using the following equation:

Γ = fr(dV,dmax) =

(

1−
dV

dmax

)

(4)

where dmax = 50. Γ is a six-valued vector with six risk val-

ues γi corresponding to the six RoIs, where γi ∈ [0,1]. γi

tends to 0 if the vehicle is far away from the ego-vehicle. If

a vehicle is close to the ego-vehicle, γi approaches 1. The

threat values in Γ are used to alert the driver if there is any

vehicle that poses high risk to the ego-vehicle. This is done

by thresholding the risk values in Γ, where the threshold is

set using the time to collision (TTC) metrics defined in liter-

ature [30]. This risk metric is based on the relative distance

only and we would like to highlight that this is one of the

possible definitions for the risk function f (·).
Threat posed by vehicles in blind spots: In the case

of blind spots, if a vehicle is detected, a threat value of 1

is assigned to the vehicle. This is based on the naturalis-

tic driving studies (NDS) which consider vehicles in blind

spots as high risk vehicles to the ego-vehicle [30]. There-

fore, the two slave modules that monitor the blind spots of

the ego-vehicle send either a 1 or 0 depending on whether

they detect a vehicle in the blind spot. The host module

uses this information to alert the driver of the presence of

vehicles in the blind spots.

6. Performance Evaluation & Discussion

In this section, a detailed evaluation of the proposed

techniques and the system is presented. An evaluation of

Figure 6: Sample images from the surround scene analysis

dataset.

the detectors is presented first, followed by the details of the

system’s performance under real-world driving conditions.

6.1. Accuracy Analysis

In order to evaluate the accuracy of the proposed tech-

niques for vehicle detection in the different perspectives,

we use the surround view dataset that we have previously

discussed in Section 4. Sample images of the dataset from

the four perspectives are shown in Fig. 6.

We first evaluate the vehicle detection technique that

was proposed in Section 4.1 for the forward and rear per-

spectives using Haar-Adaboost classifiers. In order to do

this, 10 test sequences are chosen, each containing over

surround-view 4000 frames. In each frame, three nearest

vehicles to the ego-vehicle are annotated within a distance

of 50 meters from the ego-vehicle. We calculate the number

of true positives (TP), false positives (FP), and false nega-

tives (FN) for each sequence to determine true positive rate

(TPR) and false detection rate (FDR) which are given by

T PR = T P/(T P+FN) and FDR = FP/(FP+ T P). Ta-

ble 1 shows the results of our testing. We see that the to-

tal TPR over all our test sequences is around 95% with an

FDR of less than 6%. Overall, the accuracy is high and has

not been compromised by the optimizations we have de-

tailed for running the Haar-Adaboost cascades on embed-

ded CPUs. Sample detection results from the two perspec-

tives are shown in Fig. 7.

Table 1: Accuracy results of the vehicle detection algorithm

applied over 10 driving sequences from forward and rear

views

TP FP FN TPR FDR

Front View 1442 74 79 0.948 0.049

Rear View 2340 150 118 0.952 0.060

Total 3782 224 197 0.950 0.056

88

In order to evaluate the detection accuracy of the pro-

posed method for vehicle detection in the blind spots, the

following metric is used. As described in Section 4.2, if a

vehicle is detected in any of the four detection windows, it is

considered as a true positive. We consider a set of 10 over-

taking sequences, where a vehicle passes the ego-vehicle.

There are nearly 40 frames in each sequence resulting in

over 400 frames where there is a vehicle in the blind spot.

An additional 600 frames without any vehicle in the blind

spot are considered as negative test images. The proposed

detection technique for the blind spots showed 100% de-

tection rate with no false positives. Fig. 8 shows sample

detection results of the vehicles in the blind spots.

Table 2: Computation times for different perspectives

Processor Timing (fps)

Front view Snapdragon 810 14.5

Rear view Snapdragon 810 15.3

Left blind spot view Snapdragon 600 13.2

Right blind spot view Snapdragon 600 13.2

6.2. Computational Speed Analysis

The main objective of proposing our optimized vehicle

detection techniques is to ensure that the system operates

in real-time without compromising on accuracy. The tech-

niques were profiled for timing on Snapdragon embedded

processors.

We note that with the synchronization scheme we have

described, the most accurate FPS will be set by the lowest

FPS module among all the modules (13.2 fps). However,

updates for other faster modules will update as fast as the

speed of the master module.

The computation times are listed in Table 2. We note the

usage of Snapdragon 600 (lower grade) processors for the

blind spot detections because their algorithm is not as com-

putationally expensive as that for front and rear view de-

tection, which are implemented with Snapdragon 810 pro-

cessors. Our computational time includes image acquisition

by the camera, lane detection (for forward and rear views),

and vehicle detection. The timing of the master (front view)

module also includes the time taken to compute the threat

or risk values. Overall, we achieve a frame rate of around

13 fps, which is considered as real-time operation for auto-

motive safety applications [29].

7. Risk Assessment & Threat Visualization

In this section, we present the threat/risk estimation re-

sults that are computed using one of the sequences. This is

particularly illustrated for the forward and rear perspectives

because the risk is binary in the case of blind spots. Fig. 9

Figure 7: Sample detection results of the vehicles in the for-

ward and rear views. Detection is performed on the vehicles

that are present in the ego-lane, adjacent left and adjacent

right lanes only.

Figure 8: Sample detection results of the vehicles in the

right and left blind spots.

Figure 9: Threat vector Γ that is generated for the vehicles

that are detected in the forward and rear views of a sequence

with 500 frames.

plots the risk vector Γ for a 500-frame sequence. It can be

seen that the risk values change in different ways during the

drive sequence. The risk values are approaching 1 in certain

segments of the drive in Fig. 9, which implies that there are

multiple instances when there is high level of threat to the

ego-vehicle from the surrounding vehicles.

An analysis of this plot can reveal a variety of semantics

that are related to the dynamics of the surrounding vehicles

with respect to the ego-vehicle. For example, there is pos-

sibility of tailing vehicle behind the ego-vehicle in ego-lane

for nearly two-thirds of the time in this sequence. This is

indicated by the magenta plot in Fig. 9. Similar high val-

ues of threat are also seen from the vehicles approaching

the ego-vehicle from the rear right lane (cyan plot in Fig.

9). Additionally, the vehicle in front of the ego-vehicle in

the adjacent left lane also posed high threat for about 150

89

Figure 10: Hardware setup inside the testbed showing the

different processors and cameras. The masked block (black

rectangle with a cross) is made to preserve anonymity for

the review process.

frames or 10 seconds. The threat values in Fig. 9 are veri-

fied by visually going through the segments.

7.1. System Demonstration

The entire embedded system is developed and deployed

in our automobile testbed. We connect the master Snap-

dragon processor to an Android tablet as a driver display.

Fig. 10 shows the hardware setup of the demonstration

in our testbed. The same testbed was used to acquire the

datasets we have used for training and testing.

A 3D visualization developed on Unity3d is shown in

Fig. 11(a), which shows the relative positions of the sur-

rounding vehicles. Each vehicle is color coded with a light

source to indicate the threat it poses to the ego-vehicle.

A variant of this system was demonstrated at the 2016

Consumer Electronics Show (CES) as a collaboration with

Qualcomm. A snapshot of that demonstration is also shown

in Fig. 11(b).

8. Conclusions

In this paper, we have presented a detailed analysis, eval-

uation and discussion of a real-time embedded driver as-

sistance system. This system includes a four-camera setup

to assess threat posed by surrounding vehicles to the ego-

vehicle and is able to run at real-time speeds. We have in-

troduced the use of a variety of optimization techniques that

ultimately help to reduce the search space of potential vehi-

cle and make detections run much faster.

Evaluation of the system has shown that the high rates

of accuracy for vehicle detection are maintained. The pro-

posed embedded framework allows for a scalable system,

in which additional modules can be added in the future to

account for more sources of threat estimation.

Figure 11: (a) 3D visualization on a portable monitor show-

ing the threat assessment on the vehicles detected by the

proposed system. Each vehicle has a light blob indicating

the threat associated with the vehicle, (b) The visualization

presented in the demonstration of our system at CES 2016.

References

[1] M. Menze and A. Geiger, “Object Scene Flow for Au-

tonomous Vehicles,” in Computer Vision and Pattern Recog-

nition, 2015, pp. 3061–3070. 1

[2] M. Rezaei and M. Terauchi, “Vehicle Detection Based on

Multi-feature Clues and Dempster-Shafer Fusion Theory,”

in Pacific-Rim Symposium on Image and Video Technology,

2014, pp. 60–72. 1

[3] S. Zhang and R. Benenson, “Filtered Channel Features for

Pedestrian Detection,” 2015 IEEE Conference on Computer

Vision and Pattern Recognition, pp. 1751–1760, 2015. 1

[4] S. Chakraborty, M. Lukasiewycz, C. Buckl, S. Fahmy,

P. Leteinturier, and H. Adlkofer, “Embedded systems and

software challenges in electric vehicles,” 2012 Design, Au-

tomation & Test in Europe Conference & Exhibition (DATE),

pp. 424–429, Mar. 2012. 1

[5] F. Stein, “The challenge of putting vision algorithms into a

car,” 2012 IEEE CVPR Workshops, pp. 89–94, June 2012. 1,

2

[6] A. Borkar, M. Hayes, and M. T. Smith, “A Novel Lane

Detection System With Efficient Ground Truth Generation,”

IEEE Trans. on Intelli. Transp. Systems, vol. 13, no. 1, pp.

365–374, Mar. 2012. 2

[7] B.-f. Wu, C.-c. Kao, S. Member, and C.-l. Jen, “A

Relative-Discriminative-Histogram-of-Oriented- Gradients-

Based Particle Filter Approach to Vehicle Occlusion Han-

dling and Tracking,” IEEE Transactions on Industrial Elec-

tronics, vol. 61, no. 8, pp. 4228–4237, 2014. 2

[8] A. Almagambetov, S. Velipasalar, and M. Casares, “Ro-

bust and Computationally Lightweight Autonomous Track-

ing of Vehicle Taillights and Signal Detection by Embedded

Smart Cameras,” IEEE Transactions on Industrial Electron-

ics, vol. 62, no. 6, pp. 3732–3741, 2015. 2

[9] H. Takahashi, D. Ukishima, K. Kawamoto, and K. Hirota,

“A Study on Predicting Hazard Factors for Safe Driving,”

90

IEEE Transactions on Industrial Electronics, vol. 54, no. 2,

pp. 781–789, 2007. 2

[10] G. Ogawa, K. Kise, T. Torii, and T. Nagao, “Onboard Evo-

lutionary Risk Recognition System for Automobiles To-

ward the Risk Map System,” IEEE Transactions on Indus-

trial Electronics, vol. 54, no. 2, pp. 878–886, 2007. 2

[11] S. Sivaraman and M. M. Trivedi, “Dynamic Probabilistic

Drivability Maps for Lane Change and Merge Driver As-

sistance,” IEEE Transactions on Intelligent Transportation

Systems, vol. 15, no. 5, pp. 2063–2073, 2014. 2

[12] P. Jeong and S. Nedevschi, “Efficient and robust classifica-

tion method using combined feature vector for lane detec-

tion,” IEEE Trans. on Circuits and Systems for Video Tech.,

vol. 15, no. 4, pp. 528–537, Apr. 2005. 2

[13] R. K. Satzoda and M. M. Trivedi, “On Enhancing Lane Es-

timation using Contextual Cues,” IEEE Transactions on Cir-

cuits and Systems for Video Technology, vol. 25, no. 11, pp.

1870 – 1881, 2015. 2

[14] R. K. Satzoda, S. Lee, F. Lu, and M. M. Trivedi, “Snap-DAS

: A Vision-based Driver Assistance System on a Snapdragon

TM Embedded Platform,” in IEEE Intelligent Vehicles Sym-

posium, no. Iv, 2015, pp. 660–665. 2

[15] R. Marzotto, P. Zoratti, D. Bagni, A. Colombari, and

V. Murino, “A real-time versatile roadway path extraction

and tracking on an FPGA platform,” Computer Vision and

Image Understanding, vol. 114, no. 11, pp. 1164–1179, Nov.

2010. 2

[16] X. An, E. Shang, J. Song, J. Li, and H. He, “Real-time

lane departure warning system based on a single FPGA,”

EURASIP Journal on Image and Video Processing, vol.

2013, no. 1, p. 38, 2013. 2, 3

[17] Mobileye, “No Title,” 2015. [Online]. Available: mobileye.

com 2

[18] S. Dabral, “Trends in Camera Based Automotive Driver As-

sistance Systems (ADAS),” in IEEE MWCAS, 2014, pp.

1110–1115. 2

[19] J. Horgan, C. Hughes, J. McDonald, and S. Yogamani,

“Vision-Based Driver Assistance Systems: Survey, Taxon-

omy and Advances,” in 2015 IEEE 18th International Con-

ference on Intelligent Transportation Systems. Ieee, Sept.

2015, pp. 2032–2039. 2

[20] G. P. Stein, Y. Gdalyahu, and A. Shashua, “Stereo-Assist :

Top-down Stereo for Driver Assistance Systems,” in IEEE

Intelligent Vehicles Symposium, 2010, pp. 723–730. 2

[21] A. D. Costea, A. V. Vesa, and S. Nedevschi, “Fast Pedestrian

Detection for Mobile Devices,” in IEEE ITSC, 2015, pp. 1–6.

2

[22] S. Kamath and B. Valentine, “Implementation Details of

Mid-Level Vision on the Embedded Vision Engine (EVE

),” in IEEE ISCAS, 2014, pp. 1283–1287. 2

[23] J. McCall and M. Trivedi, “Video-Based Lane Estimation

and Tracking for Driver Assistance: Survey, System, and

Evaluation,” IEEE Trans. on Intelli. Transp. Systems, vol. 7,

no. 1, pp. 20–37, Mar. 2006. 3

[24] M. Bertozzi and A. Broggi, “GOLD: a parallel real-time

stereo vision system for generic obstacle and lane detection.”

IEEE transactions on image processing, vol. 7, no. 1, pp. 62–

81, Jan. 1998. 3, 6

[25] H. Mori and N. M. Charkari, “Shadow and rhythm as sign

patterns of obstacle detection,” in Industrial Electronics,

1993. Conference Proceedings, ISIE’93-Budapest., IEEE In-

ternational Symposium on. IEEE, 1993, pp. 271–277. 3

[26] S. Sivaraman and M. M. Trivedi, “A General Active-

Learning Framework for On-Road Vehicle Recognition and

Tracking,” IEEE Trans. on Intelli. Transp. Systems, vol. 11,

no. 2, pp. 267–276, June 2010. 4

[27] N. Dalal and W. Triggs, “Histograms of Oriented Gradients

for Human Detection,” 2005 IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition CVPR05,

vol. 1, no. 3, pp. 886–893, 2004. 4

[28] C. Maia, L. Nogueira, and L. Pinho, “Evaluating android os

for embedded real-time systems,” International Workshop on

Operating Systems Platforms for Embedded Real-Time Ap-

plications, pp. 63–70, 2010. 5

[29] C. Caraffi, T. Vojir, J. Trefny, J. Sochman, and J. Matas, “A

system for real-time detection and tracking of vehicles from

a single car-mounted camera,” 2012 15th International IEEE

Conference on Intelligent Transportation Systems, pp. 975–

982, Sept. 2012. 5, 7

[30] “Researcher Dictionary for Video Reduction Data,” VTTI,

Tech. Rep., 2012. 6

91

mobileye.com
mobileye.com

