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Abstract

Advanced driver assistance systems (ADAS) are becom-

ing more and more popular. Lot of the ADAS applica-

tions such as Lane departure warning (LDW), Forward Col-

lision Warning (FCW), Automatic Cruise Control (ACC),

Auto Emergency Braking (AEB), Surround View (SV) that

were present only in high-end cars in the past have trick-

led down to the low and mid end vehicles. Lot of these

applications are also mandated by safety authorities such

as EUNCAP and NHTSA. In order to make these appli-

cations affordable in the low and mid end vehicles, it is

important to have a cost effective, yet high performance

and low power solution. Texas Instruments (TI’s) TDA3x

is an ideal platform which addresses these needs. This pa-

per illustrates mapping of different algorithms such as SV,

LDW, Object detection (OD), Structure From Motion (SFM)

and Camera-Monitor Systems (CMS) to the TDA3x device,

thereby demonstrating its compute capabilities. We also

share the performance for these embedded vision applica-

tions, showing that TDA3x is an excellent high performance

device for ADAS applications.

1. Introduction

Advanced driver assistance systems (ADAS) is becom-

ing the need of the hour, as mobility has come to be a ba-

sic need in today’s life. Approximately 1.24 million peo-

ple died in road accidents around the globe in 2010 [2].

Pedestrians, cyclists and motorcyclists comprise half of the

road traffic deaths and motor vehicle crashes are ranked

number nine among top ten leading causes of death in the

world [5]. These statistics are mandating the car manufac-

turers to ensure higher safety standards in their cars. The

European New Car Assessment Program (EUNCAP) and

National Highway Traffic Safety Administration (NHTSA)

provide safety ratings to new cars based on the safety sys-

tems that are in place. EUNCAP [6] provides better star

rating for cars equipped with Auto Emergency Braking

(AEB), Forward Collision Avoidance (FCA), Lane Keep

Assist (LKA) etc. which ensures higher safety for on-road

vehicles, pedestrians, cyclists and motorcyclists.

ADAS can be based upon various sensor systems such as

radar, camera, lidar and ultrasound [7]. Additionally, they

can integrate and use external information sources such as

global positioning systems, car data networks and vehicle-

to-vehicle or vehicle-to-infrastructure communication sys-

tems to efficiently and accurately achieve desired goals.

While different sensor modalities have varying performance

based on different environmental conditions and applica-

tions, camera sensors are emerging as a key differentia-

tor by car manufacturers. Camera based ADAS use vari-

ous computer vision (CV) technologies to perform real-time

driving situation analysis and provide warning to the driver.

The advantages of camera based ADAS include reliability

and robustness under difficult real life scenarios, and ability
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to support multiple varied applications such as traffic sign

recognition (TSR), traffic light detection, lane and obstacle

detection.

To enable different safety aspects of ADAS, camera-

based systems are deployed in front and back viewing and

surround viewing [8]. The front camera systems are used

for applications such as AEB and FCW. The rear view and

surround view systems are used for park assist and cross

traffic alert applications. Front camera systems can use

mono or stereo camera setup. Stereo camera is useful to

obtain 3D information by generating disparity. However,

stereo camera systems are more expensive compared to

mono camera systems. Structure from Motion (SFM) tech-

nology [17] [11], which enables obtaining depth from a sin-

gle camera that is moving, is being widely researched for its

applicability in ADAS. Surround view systems use multiple

cameras (4 to 6) placed around the car. The feed from mul-

tiple cameras are re-mapped and stitched to provide a 360◦

view to the driver. Also, analytics are performed on these

images to alert the driver. Recently, Camera Mirror Sys-

tems (CMS) are increasingly replacing mirrors in mid/high

end cars. In CMS systems the side and rear view mirrors are

replaced by cameras and the camera feed is displayed to the

driver via display panels (typically OLED display panels).

Cameras with wide angle field of view avoids blind spots for

the driver. Sophisticated features like wide dynamic range

(WDR) [15] and noise filter allow the system to be used in

variety of lighting condition including low light, high glare

scenarios. Due to the low surface area of the camera lens

vs a conventional mirror, a CMS system is less susceptible

to the effects of dust, rain. CMS have added advantage of

reduced wind drag and thus aiding fuel efficiency. Also,

the CMS opens the possibility of running vision analytics

on them [12]. Figure 1 shows the flow for different ADAS

applications.

In order to fully utilize the capability of camera based

systems for multiple applications, it is therefore an absolute

necessity to have a high performance, low power and low

cost embedded processor, which is capable of analyzing the

data from multiple cameras in real time. In order to solve

this problem, Texas Instruments has developed a family of

System-on-Chip (SOC) solutions that integrate heteroge-

neous compute architectures like General Purpose Proces-

sor (GPP), Digital Signal Processor (DSP), Single Instruc-

tion Multiple Data (SIMD) processor and Hardware Accel-

erators (HWA) to satisfy the compute requirements while

meeting the area and power specifications. The rest of the

paper is organized as follows: Section 2 provides an intro-

duction to a high performance, low area and power, third

generation of SoC solution from Texas Instruments called

Texas Instruments Driver Assist 3x (TDA3x), Section 3 il-

lustrates different applications such as LDW, OD, SFM, SV,

CMS and their mapping to the TDA3x platform, Section

Figure 1. Flow chart of ADAS applications.

Figure 2. TDA3x SoC Block Diagram.

4 shows the results of our implementation and the perfor-

mance data and Section 5 provides conclusion.

2. TDA3x Introduction

The TDA3x SoC [4] has a heterogeneous and scalable

architecture that includes a dual core of ARM Cortex-M4,

dual core of C66x DSP and single core of Embedded Vi-

sion Engine (EVE) for vector processing as shown in Fig-
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Figure 3. C66x Processor Block Diagram.

ure 2. It integrates hardware for camera capture, Image

signal processor (ISP) and Display sub-system resulting in

better video quality at lower power. It also contains large

on-chip RAM, rich set of input/output peripherals for con-

nectivity, and safety mechanism for automotive market and

offers lower system cost. There are three types of pro-

grammable cores in the TDA3x SoC.

2.1. General Purpose Processor (GPP)

The dual core or ARM Cortex-M4 CPU running at 212.8

MHz serves as the general purpose processor in the TDA3x

[1]. The M4 cores deliver efficient control and processing

camera stream.

2.2. Digital Signal Processor (DSP)

TDA3x contains a dual core of C66x DSP. The C66x

DSP [3] is a floating point VLIW architecture with 8 func-

tional units (2 multipliers and 6 arithmetic units) that oper-

ate in parallel as shown in Figure 3. It comprises of 64 gen-

eral purpose 32-bit registers shared by all eight functional

units. There are four arithmetic units .L1/.L2, .S1/.S2, two

multiplier units for .M1/.M2 and two data load and store

units .D1/.D2. Each C66x DSP core has configurable 32KB

of L1 data cache, 32KB of L1 instruction cache and 288KB

of unified L2 data/instruction memory.

2.3. Embedded Vision Engine (EVE)

TDA3x contains a single core of Embedded Vision

Engine (EVE). EVE is a fully programmable accelerator

specifically to enable the processing, latency and reliabil-

ity needs found in computer vision applications. The EVE

Figure 4. EVE Processor Block Diagram.

includes one 32-bit Application-Specific RISC Processor

(ARP32) and one 512-bit Vector Coprocessor (VCOP) with

built-in mechanims and unique vision-specialized instruc-

tions for concurrent, low overhead processing. The VCOP

is a dual 8-way SIMD engine with built-in loop control and

address generation. It has certain special properties such as

transpose store, de-interleave load, interleaving store and so

on. The VCOP also has specialized pipelines for accelerat-

ing table look-up and histograms [13]. Figure 4 shows the

block diagram of EVE processor.

3. Applications and System Partitioning

3.1. System Partitioning

A computer vision application can be roughly catego-

rized into three types of processing: Low-level, Mid-level

and High-level processing. The low-level processing func-

tions include pixel processing operations, where the main

focus is to extract key properties such as edges, corners

and forming robust features. The mid-level processing in-

clude feature detection, analysis, matching and tracking.

The high-level processing is the stage where heuristics are

applied to make meaningful decisions by using data gener-

ated by low and mid-level processing. The EVE architec-

ture is an excellent match for low-level and mid-level vision

processing functions due its number crunching capability.

C66x DSP with program and data caches enables mix of

control as well data processing capabilities and suits well

for mid and high-level vision processing functions. High

level OS (or RTOS) runs on ARM as main controller and

does I/O with real world.
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Figure 5. Object Detection algorithm Partitioning.

Figure 6. Gradient Magnitude Computation on EVE.

3.2. Object Detection and Traffic Sign Recognition

The object detection algorithm consists of low, mid and

high level processing functions and are mapped across the

EVE and DSP cores as shown in Figure 5. As EVE is suit-

able for low and mid-level processing, stages such as Gra-

dient Computation, Orientation Binning, Histogram Equal-

ization etc are mapped to EVE while the classification stage

is mapped to the C66x DSP.

3.2.1 Gradient Computation on EVE

Gradient computation is one of the most commonly used

operation in feature detection stage of various algorithms

such as Histogram of Gradients (HoG) [9] and ORB [20].

The gradient is calculated by finding absolute difference of

pixel in horizontal and vertical direction and adding both

providing magnitude of gradient. Figure 6 shows optimized

code written in kernel-C (C-like language for EVE) for gra-

dient magnitude computation. Each VCOP computation in-

Figure 7. Adaboost Classifier Diagram.

struction/line in Figure 6 operates on 8 elements. VCOP

has two 256 bit functional units each and can operate on 8

data elements in parallel. Two instruction/lines can be ex-

ecuted in a cycle. Address computations are performed by

dedicated units so it can happen in parallel with core com-

putation. Loop counters are managed by nested loop con-

troller of VCOP and does not add any overheads. Data load

and store instruction can be hidden by compute cycles. The

loop in Figure 6 takes just 4 cycles per iteration (generat-

ing output for 16 pixel locations in parallel), resulting in 64

times faster performance.

3.2.2 Adaboost Classification on C66x DSP

Adaboost classifier uses a set of simple decision trees whose

individual classification accuracy is slightly more than 50%

[18]. By combining the response of several such simple

decision trees, a strong classifier can be constructed with-

out the need for sophisticated classifier engine as shown in

Figure 7. Each individual tree comprises of 3 nodes and

4 leaves. Nodes are the locations where an input value is

compared against a predetermined threshold. Depending

on the comparison result, the tree is traversed left or right

till it reaches one of the four possible leaf values. The tree

structure, the threshold values, the leaf values and even the

offsets from which input has to be read is predetermined

during the training stage. The final leaf value or responses

of each tree is accumulated. The accumulated response is

compared against a cascade threshold which finally classi-

fies the object. This algorithm is data bound with 3 thresh-

olds, 3 offsets, 3 inputs and 4 leaf values read for each tree.

Assuming that all data is 16 bit, accessing the inputs, off-

sets, thresholds, leaf values one at a time will be inefficient

on C66x DSP with 64 bit data paths. As the C66x DSP sup-

ports SIMD processing for fixed point data, the first step is

to load and process four 16 bit data in a single cycle. TI

provides intrisic instructions which the can be used to per-

form SIMD operations. As input data tested at each node

is fetched from a sparse offset in the memory, software can

perform SIMD loads of the predetermined offsets, thresh-

olds and leaf values stored contiguously in the memory [16].
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Figure 8. LDW Algorithm Block Diagram.

Figure 9. Sparse Optical Flow Block Diagram.

3.3. Lane Departure Warning

Lane Departure Warning (LDW) algorithm consists of

low and mid level processing functions. Due to the pres-

ence of a single EVE on the TDA3x, the LDW is mapped

to C66x DSP. Also, since the LDW algorithm uses Canny

edge detection which includes edge relaxation stage which

cannot be made block based and due to the limited internal

memory of EVE, this algorithm is mapped to the C66x DSP

for simplicity of design. The block diagram of LDW is as

shown in Figure 8. The LDW algorithm is purely image

based and uses simple processing functions such as Canny

Edge Detection and Hough Transform for Lines to detect

the lanes. Algorithmic enhancements and simplifications

such as Intelligent ROI definition, Computation of Horizon-

tal Gradient Only, Detection of Inner/Outer Edge and Curve

Detection using Hough Transform for Lines are performed.

More details of the algorithm implementation can be found

in [19]. Dataflow optimization techniques such as use of

Direct Memory Access (DMA) to transfer smaller blocks

of data in to L1D, ping-pong data processing are employed

to reduce the DDR bandwidth.

3.4. Structure From Motion (SFM)

Structure from Motion (SFM) is a key algorithm which

enables computation of depth using a single camera which

is moving [17] [11]. The key components of SFM are

Figure 10. 2D Surround View System Output.

Figure 11. 3D Surround View System Output.

Sparse Optical Flow (SOF) and Triangulation. Optical flow

estimates pixel between two temporally ordered images.

Lucas Kanade (LK) [14] based SOF is widely used for these

purposes. Figure 9 shows the various modules involved in

SOF. The SOF algorithm is implemented on EVE engine

of TDA3x. Although SOF operates on sparse points which

is not typically suitable for EVE, the algorithm is designed

to operate optimally by operating on multiple sparse points

together and also utilizing the DMA engine to organize

data suitably, thereby utilizing the SIMD capability of EVE.

Also, special instructions of EVE such as collated-store and

scatter help greatly to save computation. Collate-store is

used to collate all the converged points and further compu-

tation is performed only for those points. Scatter is used to

later revert the results back to its original location. Once

the SOF algorithm provides reliable optical flow tracks for

various key points, triangulation is performed on the C66x
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Figure 12. Surround View Algorithm Flow.

Figure 13. Surround View Data Flow.

DSP to obtain the 3D point cloud.

3.5. 3D Surround View (SV) System

Surround View (SV) systems are becoming popular in

low and mid end cars [21]. 2D SV systems provides sta-

tionary top-down view of the surroundings from above the

vehicle, whereas 3D SV systems provide rendering capabil-

ity of surroundings of vehicle from any virtual view point

and transitions between view points. Example of 2D SV and

3D SV are shown in Figure 10 and Figure 11 respectively. A

SV system is constructed by stitching multiple video cam-

eras placed around the periphery of the vehicle as shown

in Figure 12. Typically, a dedicated Graphics Processing

Unit (GPU) processor would be employed for composition

of 3D SV. Since TDA3x does not have a GPU, the 3D SV

is implemented using the combination of Lens Distortion

Correction (LDC) accelerator and C66x DSP. The GPU typ-

ically stores entire representation of the 3D world and hence

allowing the user to change view points. However, this can

be optimized by projecting only those 3D points that are in

the visible region. Distortion correction is required to cor-

rect the fish eye distortion present in the image sensors used

in SV systems. The ISP of TDA3x SoC has a robust LDC

accelerator which performs the distortion correction. In or-

der to create multiple view points, a minimized 3D world

map for all the cameras and view points are generated and

Figure 14. CMS Camera Placement Illustration.

Figure 15. Algorithm and Data Flow in CMS.

Figure 16. ISP Data Flow in CMS.

these view points are stored in non volatile memory. This

can be done offline and once during the camera setup. When

the system boots up, for all the valid view points, 3D world

map is read and associated LDC mesh table is generated.

Then, these outputs from the LDC are stitched together to

obtain the 360◦ view for any view point. The data flow for

the same is shown in Figure 13.

3.6. Camera Monitor System (CMS)

Figure 14 shows the placement of the cameras in a typ-

ical CMS. The algorithm processing involved in a CMS

system and its partitioning in TDA3x SoC is shown in

Figure 15. CMOS sensors are used to capture the scene.

Frame-rate of 60fps is typically employed to reduce latency

of the scene as viewed by the car driver. The data for-

mat of CMOS sensors is typically bayer raw data and it
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is passed through many stages of the ISP before it is con-

verted to viewable video data as shown in Figure 16. Few

key steps in the ISP are: Spatial Noise Filter, which helps

to improve the image quality in low light conditions and

Wide dynamic range, which increases the dynamic range

of the scene so that bright areas are not clipped and at the

same time details in shadow (or darker) regions are visible.

This allows the CMS system to operate in variety of light-

ing conditions. ISP in TDA3x also outputs Auto White Bal-

ance (AWB) [10] and Auto Exposure (AE) statistics which

is used by the AEWB algorithm to dynamically adjust the

sensor exposure and scene white balance to adapt the cam-

eras settings, to dynamically changing lighting conditions.

Additionally, Focus statistics are output by the ISP, which

indicates the degree to which the camera is in focus. When

camera is obstructed by dirt or water on the lens, the scene

will not be in focus. Due to safety critical nature of the CMS

application, it is important to detect such scenarios. Focus

statistics can be used in algorithms to detect such events,

thereby warning the user of suboptimal scene capture. The

harwdare LDC module is used to adjust for lens distortion

correction due to wide angle field of view.

A common problem associated with camera for visual

systems like CMS is the problem of LED flicker. LEDs are

commonly used in car headlights, traffic signals and traffic

signs. LEDs are typically pulsed light sources. However,

due to persistence of vision our eyes cannot see the LED

flicker. However camera sensor’s, especially when they op-

erate at low exposure time due to bright lighting conditions,

could capture LED pulse in one frame and miss the LED

pulse in next frame causing an unpleasing and unnatural

flicker like effect. Worst case, it could happen that the LED

pulse is not captured at all, say a red light or car headlight,

thus giving a dangerous false scene representation to the

user. De-flicker algorithm is typically employed to elimi-

nate the flicker due to LED lights. This is a pixel processing

intensive algorithm and is typically run on DSP/EVE. After

LED de-flicker algorithm, the scene is displayed on the dis-

play via the display sub-system (DSS). A key safety mea-

sure in CMS system is informing the user in case of a frame

freeze scenario. Since the user is not constantly looking at

the mirror, it could happen that due to HW or SW failure,

the data that is displayed on the screen is frozen with the

same frame repeating. This can cause a hazardous situation

to the road users. In TDA3x, this can be detected by using

the DSS to write back the pixel data that is being displayed

and then computing a CRC signature for the frame using

a HW CRC module. If the CRC signature matches for a

sequence of consecutive frames, then it implies that there

is frame freeze somewhere in the system and a warning is

given to the user or the display is blanked out. Additional

analytics algorithms like object detect can be run in blind

spot to notify driver.

Figure 17. Algorithm partitioning for Front Camera Applications

on TDA3x.

Table 1. Algorithm Configurations.

Algorithms Frame Rate Configuration Details on TDA3x SoC

Vehicle, Pedestrian Resolution = 1280x720, multi-scale

Cycle Detect 25 Minimum object size = 32x64

Traffic Sign Resolution = 1280x720, multi-scale

Recognition 25 Minimum object size = 32x32

Traffic Light Resolution = 1280x720

Recognition 25 Radii range = 8

Lane Depart Resolution = 640x360

Warning 25 Number of lanes detected = 2

Structure Resolution = 1280x720

From 25 Number of SOF tracks = 1K points

Motion 3D cloud points generated = 800

Surround Input Resolution = 4 channels of 1280x800

View System 30 Output Resolution = 752x1008

Camera Number of video channels = 1

Mirror System 60 Input Resolution = 1280x800

4. Results and Analysis

In this section, we provide details of system partition-

ing and performance of multiple applications executing on

the TDA3x. TI’s TDA3x EVM is used as the experimental

platform. In order to show case our algorithms, we cap-

tured multiple scenes with various camera sensors placed

around the car. The video sequence contained urban roads

with pedestrians, vehicles, traffic signs, lane marking, traf-

fic lights and parking lot scenarios. This video sequence is

then decoded via HDMI player and fed to the TDA3x EVM

as shown in Figure 17. The algorithms then utilizes all the

available compute blocks such as ISP, EVE, DSP and ARM

Cortex M4 to perform various functions such as OD, LDW,

TSR, SFM, SV and CMS. The output of these algorithms
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are provided to the ARM Cortex M4 to draw these mark-

ings in original video and sends out the annotated video to

HDMI display. A LCD display is used to watch the video

along with object markings to confirm the expected behav-

ior of algorithms. The configuration parameters of these

algorithms are listed in Table 1.

In case of front camera applications, the capture is con-

figured for 25 frames per second (fps). As a first step, mul-

tiple scales of the input frame are created by using resizer

functionality in ISP. The scale space pyramid is useful to de-

tect objects of different sizes with a fixed size template. For

every relevant pixel in these scales, histogram of oriented

gradients (HOG) [9] signatures are formed. This module

involves intensive calculations at pixel level and hence ex-

ecuted on EVE. After formation of the HOG feature plane,

EVE runs SOF algorithm and C66x DSP1 runs the adaboost

classifier stage of object detection algorithm. The classi-

fier is executed separately for each object category such as

pedestrians, vehicles, cyclists and traffic signs. From the

scale space pyramid, 640x360 and 1280x720 scale is fed to

DSP2 on which lane detection and traffic light recognition

algorithms are run. After completion of SOF, EVE sends

the optical flow tacks to DSP2 to perform triangulation to

obtain 3D location of key points in the frame, thereby help-

ing to identify distance of various objects in the scene. In

this setup, the ARM Cortex-M4 manages the capture and

display device, feeds the data to ISP and collects informa-

tion from DSPs before annotating the objects and displaying

them.

In case of Surround View application, 4 channels of

video of resolution 1280x800 at 30 fps are captured from

RAW video sensors (Bayer format) which is supported by

the ISP. The ISP then converts the Bayer format data to

YUV format for further processing. Auto white balance

and exposure control algorithms ensure each video source

is photometrically aligned. Then, the camera calibrator will

generate the required mesh table for distortion correction

based on the view point and distortion correction is per-

formed. Synthesizer will then receive the corrected im-

ages and sticth to form the SV output with a resolution of

752x1008 at 30 fps.

In case of Camera Mirror System, each camera input op-

erates on one TDA3x SoC. Each channel of video of res-

olution 1280x800 at 60 fps are captured from RAW video

sensors (Bayer format) which is supported by the ISP. The

ISP then converts the Bayer format data to YUV format

as shown in Figure 16. Algorithms such as OD is run for

Blind spot detection. Also, De-flicker algorithm is run to

remove any LED flicker related issues, before displaying it

to the driver. Table 2 shows the loading of the various pro-

cessors of the TDA3x SoC while running these algorithms.

For front camera applications, 53% of DSP1, 66% of DSP2,

79% of EVE and 33% of one ARM Cortex-M4 are utilized.

Table 2. Performance Estimates for different applications on

TDA3x.

Algorithms DSP1 DSP2 EVE ARM Cortex-M4 Frame

Utilization Utilization Utilization Utilization Rate (fps)

Front Camera 53% 66% 79% 33% 25

Analytics

Surround 45% 0 0 33% 30

View System

Camera 68% 20% 40% 30% 60

Mirror System

For SV application, 45% of DSP1 is utilized and 33% of

one ARM Cortex-M4 is utilized. The unused C66x DSP

and EVE can be used to run analytics on the SV output if

needed. For CMS application, 68% of DSP1 is consumed

to run Deflicker algorithm and 20% of DSP2 and 40% of

EVE is used for blind spot detection algorithm.

5. Conclusion

ADAS applications require high-performance, low

power and low area solutions. In this paper, we have

presented one such solution based on Texas Instruments

TDA3x device. We have provided insight into key algo-

rithms of ADAS such as front camera, surround view and

camera monitor systems. We have also presented the sys-

tem partitioning of these algorithms across multiple cores

present in TDA3x and their performance have been pro-

vided. We have shown that TDA3x platform is able to

generate 3D SV efficiently, without a GPU. We have also

shown that TDA3x platform is able to map various ADAS

algorithms and still have headroom for customer’s differen-

tiation.
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