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Abstract

The synthesis of pseudo-CT images is of particular in-

terest in the development of hybrid PET-MRI devices and

MRI-guided radiotherapy. These images can be used

for attenuation correction during PET image reconstruc-

tion. Furthermore, using MRI-based radiotherapy planning

would enable a more accurate dosimetry planning due to

the superior soft tissue contrast of the scans. The previ-

ously proposed methods for pseudo-CT synthesis are char-

acterised by mainly two drawbacks. First, most proposed

methods are limited to the head and neck region and there-

fore not feasible in case of whole body applications. Sec-

ond, the presence of aligned training pairs of both MRI

and CT scans for a number of subjects is assumed. In

this work, we present preliminary results for atlas-based

approaches using multiple CT atlas scans (from different

patients) to synthesise a pseudo-CT image for a new patient

using only their MRI data. This application requires ac-

curate and robust deformable multimodal registration. We

employed a recent discrete optimisation registration frame-

work together with a self-similarity-based metric to accu-

rately match the CT atlases to the anatomy of the patient.

The registered atlases are then jointly combined by means

of local fusion strategies. We apply our method to different

3D whole body MRI scans and a total of 18 3D whole body

CT atlases. In addition to intensity fusion, the proposed

methods can also be used for label fusion. Since evaluation

based directly on synthesised intensity values is problem-

atic, we use the Dice overlap after the fusion of segmenta-

tion labels as a proxy measure. Our proposed new method,

which uses MIND descriptors for multimodal label fusion

shows overall the best results.

1. Introduction

During the last two decades image synthesis has evolved

to a versatile methodology in the field of medical image pro-
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Figure 1: Basic overview of the proposed method for mul-

timodal pseudo-CT synthesis. All atlas CTs are registered

to the patient’s MRI using efficient multimodal image reg-

istration. The local fusion of the CT atlases is according

to the local similarities based on self-similarites descriptors

and normalized cross correlations.

cessing. It is for example used to generate missing scans in

a series of multispectral magnetic resonance imaging (MRI)

data sets or for reducing the number of scans to be ac-

quired [12, 20]. Besides these synthesised MRI sequences,

pseudo computer tomography (CT) images are also of great

interest, since they can be used in MRI-guided radiother-

apy. Owing to the superior soft tissue contrast of MRI,

an improvement in dosimetry planning could be achieved.

However, since information about the electron density is

necessary for the calculation of radiation dose, a treatment

planning based on MRI also necessitates the synthesis of a

pseudo-CT.

Similarly, for the current developments of realising a hy-

brid combination of positron emission tomography (PET)

and MRI within the same device, there is a compelling need

of pseudo-CTs. This is due to the essential attenuation cor-

rection step during the PET image reconstruction. For this

purpose so-called attenuation maps are created, which are

based on the absorption behaviour of the individual struc-
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tures. But in contrast to conventional PET-CT no CT scan

is available and information for attenuation correction must

thus be derived using the MRI scan. However, due to the

different underlying physical phenomena the intensities of a

MRI image can not be readily converted to typical Hounds-

field units (HU) of a CT image. Especially, bony struc-

tures or air, which are both represented by low MRI inten-

sities have entirely different HU responses in the CT image.

Therefore, other ways must be found to overcome the lack

of functional relationship.

To date, several research groups have proposed meth-

ods for synthesising pseudo-CTs and thus for creating at-

tenuation maps, including segmentation based approaches

(see Sec. 2.1), learning or transfer function based tech-

niques (see Sec. 2.2) or algorithms using atlas-based reg-

istration (see Sec. 2.3). In particular the former two meth-

ods are usually limited to specific anatomical sights (e.g.

the head where rigid intra-patient alignment is sufficient)

or even more importantly to the availability of perfectly

(nonrigidly) aligned training pairs of CT and MRI scans

for training, and may be limited to a small number of dif-

ferentiable classes (such as CSF, white and gray matter).

We, in contrast, propose here a new direction, which results

in a generic approach that is applicable to any anatomic

sights including whole-body scans and does not require pre-

aligned training data and is integrally based on multimodal

deformable registration. We believe that while accurate

multimodal deformable registration of whole body scans

is still very challenging, combining it with powerful local

atlas fusion strategies will lead to advances in pseudo-CT

synthesis and open up new possible applications in radio-

therapy or PET reconstruction. Our new image synthesis

method (see Figure 1) employs robust image registration to

generate a patient specific pseudo-CT based on the patient

MRI scan and multiple CT atlases of other subjects. The at-

las fusion is based on a local weighting, which corresponds

to the multimodal similarity between the patient MRI and a

certain atlas CT. We tested the local normalised cross cor-

relation (LNCC) and the modality independent neighbour-

hood descriptor (MIND) [7] as similarity measure for label

fusion. We show experimental results, compare them to the

classic majority vote and reference CT data sets, and eval-

uate them in terms of Dice overlap of segmented structures

and visually for pseudo-CT synthesis.

2. Related Work

The majority of the previously presented methods for

pseudo-CT synthesis respectively attenuation map genera-

tion can be divided into three main classes.

2.1. Segmentation based synthesis

The principle idea of this method is to segment various

structures in the patient MRI scan, which are then assigned

to the corresponding HUs. In [17] this principle has been

used by Le Goff-Rougetet et al. for the first time. They

used MRI and PET transmission scans of the head to gen-

erate simple attenuation maps. The three classes skin, brain

and bone were segmented within the aligned MRT scan.

Zaidi et al. [23] introduced a more discriminative method

with the help of fuzzy-logic. With their approach, a classi-

fication in air, brain, skull, paranasal sinuses and scalp has

been made possible. However, both methods are limited

to the head and are not readily applicable in real PET-MRI

devices, since there is usually not enough space for a trans-

mission source.

Moreover, the classification of the bone is a challenging

problem because the cortex is difficult to distinguish from

air. To solve this problem, the usage of special MRI se-

quences has been proposed in [15],[1]. Due to the particu-

larly short T2 relaxation time of the cortex, ultrashort echo

time sequences can be used for a improved separation of

bone structures from air and fat can be better differentiated

from other soft tissue with the help of the Dixon technique.

Martinez-Müller et al. extended the segmentation based

approach to whole body data sets. In [18] they also pro-

posed to perform segmentations of lungs, fat, other soft

tissue and background with suitable thresholds on images,

which were acquired using the Dixon technique. The cor-

responding attenuation coefficients are assigned based on a

bilinear transform of previously co-registered CT scans.

2.2. Synthesis with transfer functions and machine
learning

A variety of machine learning methods enable the train-

ing of transfer functions for conversion of MRI intensities

to corresponding HUs.

In the context of the registration of brain images Gui-

mond et al. suggested in [5] the reduction of the multimodal

problem to a monomodal one by means of transferring one

modality into the other modality. In the course of this ei-

ther mono- or bifunctional relationships between the inten-

sities were supposed. The parameters of the polynomial

model were estimated robustly with a combination of least

trimmed squares and binary re-weighted least squares.

The work of Johansson et al. paved the way for using

transfer functions also in the context of attenuation correc-

tion in hybrid PET-MRI devices. They performed a Gaus-

sian mixture regression to train and extract model parame-

ters for the synthesis of pseudo-CTs. The special feature of

the proposed method in [14] is the usage of different MRI

sequences and their smoothed versions. This work points

up the promising potential of multispectral image data for

the image synthesis with transfer functions.

Further machine learning approaches have been devel-

oped to tackle the problem of image synthesis. The gen-

eral assumption of [12, 13, 20] is that small image patches
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sufficiently characterise (and discriminate) local anatomical

content. Therefore classifiers, such as random forests [13],

patch-matching [12, 22] or restricted Boltzmann machines

[20] can be employed to assign a likely intensity of a new

modality to a voxel. These approaches, however, heavily

rely on the availability of well-aligned training data. They

may also have disadvantages for the use in whole-body

scans, where the anatomical context is usually not well-

represented by a small image patch and ambiguities aries

from non-functional relations between CT and MRI for a

wider range of tissue classes (than found in head scans).

2.3. Atlas based synthesis

Another form of image synthesis is constituted by at-

las based registration methods. In contrast to segmentation

based approaches, they may enable the estimation of spa-

tially varying attenuation coefficients within the same or-

gan. The aim of the atlas based methods is to find the best

possible registration to an patient specific MRI scan. To

adapt anatomical variations of individual subjects, several

atlases are usually used. This automatically leads to the

question in what way the results of image registration are

fused into a single pseudo-CT.

In the method presented in [19], one high-quality CT at-

las is adjusted by means of multimodal image registration

to a patient’s MRI scan. For this purpose, an extended ver-

sion of optical flow is used, so that it is suitable for mul-

timodality registration. A disadvantage of this approach,

however, is that larger transformations can not be estimated,

and therefore the method was tested only on data sets of the

head. Moreover, it is not possible to represent pathologies

using only one atlas which is a general problem in the field

of atlas based image synthesis.

Another approach, which combines machine learning

and atlas based registration for synthesis has been proposed

by Hofmann et al. in [11]. They pursue a combination of

pattern recognition and atlas registration in order to incor-

porate both local and global information optimally in the

synthesis. The underlying assumption is that a single voxel

may not be significant enough to decide to which tissue it

belongs. A mapping of MRI patches to HUs is learned with

the help of a Gaussian process. Registered CT-MRI pairs of

the head are taken as a basis for training.

A method which focuses on multi-atlas registration, was

presented by Burgos et al. in [3]. Based on the concept of

morphological similarity, a locally varying weighting of the

individual atlases is derived. Thereby more similar atlases

should be more involved into the image synthesis in com-

parison to more dissimilar atlases. The morphological simi-

larity is expressed by means of a similarity measure. In [2],

the use of the local normalised cross correlation (LNCC)

is proposed. This method is based on paired and aligned

CT-MRI scans. Therefore only a monomodal inter-subject

registration must be carried out, which can then be used for

the deformation of the CT atlases. Hence the registered CT

atlases can be fused according to the weighting depending

on the local monomodal similarity.

In this work, we adapt this method and extend it to mul-

timodal problems. Only the MRI scan of the patient and

a series of CT atlases of other patients are assumed to be

given. The used method for multimodal image registra-

tion is described in the next section. The local weighting is

determined by comparison the multimodal data sets using

LNCC or MIND as similarity measures. This approach and

the extension of the methods to label fusion are explained

following the registration method. A comparison of the re-

sults with the majority vote and a non-negative least squared

regression is given in section 5.

3. Multimodal Image Registration

The image registration method is in addition to the local

fusion strategy the most critical part of our approach since

its quality has a direct impact on the synthesis result. For

a as robust as possible registration of the CT atlases to the

patient MRI data set, the dense displacement sampling algo-

rithm (deeds) [8],[9] was selected as multimodal image reg-

istration method. Within this algorithm, the self-similarity

context is used as matching criterion. The main advantage

of this registration method is due to the fact that the solu-

tion is found by a discrete optimization scheme according to

the theory of Markov-Random-Field labeling. By applying

dynamic programming, the deformation field can be found

very efficiently while at the same time a dense displacement

sampling can be employed. Similar to many other registra-

tion methods, a multi level approach is applicable. In this

case, however, only the image at the highest resolution is

used. For the different levels this high-resolution image is

divided into non-overlapping groups of cubic pixels. Thus,

the described registration method is determined by a num-

ber of parameters: The distance between the nodes of a reg-

ular B-spline grid is defined by the parameter g and lmax

sets the search radius and is thus related to the maximum

number of possible labels. A coarse to fine search for a wide

range of possible displacements is performed over servaral

scale.

4. Multimodal Local Atlas Fusion

The aim of our multimodal local atlas fusion is to merge

within a specific localized area only those atlases to a

pseudo-CT, which are morphologically similar to the pa-

tient’s MRI. Therefore we assess at each image position the

similarity between the two modalities by using two differ-

ent measures. In the following we describe the patient’s

MRI image with I and one of the k CT atlases with Jk.

The voxels of both data sets are refered by an index i. Fol-
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lowing the method proposed in [3], the normalised cross

correlation (NCC) can be defined as

NCCk
i =

�I, Jk�i
σi(I)σi(Jk)

. (1)

Here, a local definition of the normalized cross correla-

tion (LNCC) is used where the averages are calculated by

means of a convolution with Gaussian kernel. If we denote

the Gaussian kernel with G, the mean values µ can be de-

termined with

µi(I) = G ∗ I and µi(I · J
k) = G ∗ (I · Jk). (2)

Thus, the local covariance follows with

�I, Jk�i = µi(I · J
k)− µi(I) · µi(J

k) (3)

and the local variance σ results in

σi(I) =
�

µi(I2)− µi(I)2. (4)

The resulting similarity values are in the intervall be-

tween −1 and 1. Because both positive and negative co-

variances may occur, we use the absolute value of LNCC,

which is close to 1 for locations that are considered to be

particularly similar even across modalities. After the simi-

larity values are determined, the CT atlases can be ranked

at each voxel. For this purpose, an array Hk
i corresponding

to the size of the data set is extended by a dimension corre-

spnding to the number of atlases. At each voxel all atlases

are now assigned to a particular rank. That atlas, which has

the greatest similarity to the patient’s MRI data set, receives

the lowest rank. The resulting ranking array can be used

directly for the calculation of the weights W k
i . In [3] the

weights are calculated with

W k
i =

�

e−βHk

i if Hk
i ≤ κ

0 otherwise
, (5)

wherein the parameter β controls the exponential decay

and the parameter κ specifies the number of atlases to be re-

tained. Finally the pseudo-CT is synthesized by a weighted

averaging of the CT atlases.

In addition to the LNCC, another measure for assessing

similarity between different modalities was tested in this

work. In our opinion, a perhaps more appropriate way to

determine the similarity is the use of the image descriptor

MIND, since they achieve good results for challenging mul-

timodal registration tasks [7]. In a preprocessing step, the

descriptors of each atlas and the patient MRI has to be pre-

calculated independently. In contrast to the use of LNCC

the similarity can no longer be determined directly based

on the image data, but rather by the distances of the de-

scriptors. As described in [7], a descriptor of an image X

can be calculated with the following Gaussian function:

MIND(X,GP , r) =
1

z
exp

�

−
DP (X,GP , r)

V (X,GP )

�

, (6)

wherein z is a normalization constant to ristrict the de-

scriptor entries to the intervall of 0 and 1. The numerator

comprises patch-based distances DP , which can be easily

calculated with the aid of convolution with a certain Gaus-

sian kernel GP . The denominator consist of an estimation

of the local variance V . The variable r fixes the neighbour-

hood within the descriptor is determined. Now the patch-

based sum of absolute differences of the MIND descriptors

can be used to determine local similarity and thereby the

local ranking of atlases. The patch size is equivalent to the

calculation of LNCC.

The weights, which have been obtained from these two

described methods were also used for label fusion. We were

guided out of the method in [21]. In addition, the MIND de-

scriptors of the CT atlases and the patient MRI were used

in a different way for label fusion. Inspired by [10], the de-

scriptors were used to determine weights for the label fusion

using multimodal regression. The descriptor patches of the

CT atlases are arranged in the matrix A, where the n-th col-

umn represents the patch of the atlas n. The corresponding

descriptor patch of the patient’s MRI data set is considered

as a column vector b. By solving the non-negative least

squares problem

arg min
c

= �Ac− b�2
2

subject to ci ≥ 0 ∀ i, (7)

the weights c for the label fusion can be determined. In con-

trast to a weighting based on similarity ranks, this approach

estimates the best linear combination of patches of MIND

descriptors from all atlas CT scans that best resemble the

local MIND patch in the patients MRI scan.

5. Experimental Evaluation

The presented methods were tested on 3D-CT and

3D-MRI whole body scans of the Visceral Concept Extrac-

tion Challenge in Radiotherapy [6]. A total of five different

T1-weighted MRI scans were examined. For each of the

MRI images 18 till 19 CT atlases were available. In addi-

tion to the gray scale images there were manual expert seg-

mentations of 12 different organ structures for each of the

MRI and CT images. For three of the five MRI data sets the

corresponding CT image of the same subject was present.

The parameters for the image registration were de-

termined empirically. For the number of grid points

we set g = [9, 8, 7, 6, 5]. The search radius was fixed

to lmax = [7, 6, 5, 4, 3] with a label quantisation of

Q = [5, 4, 3, 2, 1] and five levels were adopted for the multi

level method. As in [3] we choose β = 0.5. A variation of
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Figure 2: Evaluation of the Dice similarity coefficient before (top) and after (bottom) the multimodal image registration for

three different patient-MRIs (MR 3, MR 12 and MR 15: left to right). Especially for small structures such as the trachea, the

bladder and the vertebra L1 registration inaccuracies remain.

the parameter κ does not lead to any appreciable changes in

the results, therefore we have set κ to the maximum value

(number of CT atlases). The patch for the estimation of lo-

cal similarities had a size of 9×9×9 voxels.

Figure 2 shows the results of the multimodal image reg-

istration for three of the five studied data sets. For the eval-

uation of the registration quality, a comparison of the de-

formed atlas segmentations and the patient’s segmentation

was done using the Dice similarity coefficient. The results

for all 12 organ structures are summarized in box plots. The

overall good quality of the multimodal registration method

is clearly demonstrated. But for smaller organ structures

such as the the trachea, the bladder and especially the ver-

tebra L1, registration errors may still prevail.

The results of the pseudo-CT synthesis with LNCC and

MIND as similarity measures are shown in Figures 3 and 4

by way of example for two different subjects. For the results

of the top rows, all available CT atlases were considered

within the synthesis. Somewhat refined results are shown in

the bottom row, where only the top five atlases were taken

into account. These were automatically selected by com-

paring the Dice overlap of any individual atlas with the ma-

jority vote (MV). The results of MR 3 in Figure 3 show

undesirable intensity distributions in areas of large inter-

subject variability. These are mainly due to large residual

registration errors of the multimodal registration of the CT

altases to the patient’s MRI. Slightly better results could be

obtained for the data set MR 15 in Figure 4. For this subject,

the registration method worked better, as already the results

from the box plot on the bottom right in Figure 2 show. In

both cases it is observed that the pseudo-CT synthesis with

MIND achieved better results as compared to LNCC or (an

unweighted) averaging.

In our further results, we compare four different ap-

proaches for local label fusion using the Dice similarity co-

efficient of 12 anatomical labels. First, a refined majority

vote, which was obtained by selecting the five atlases that

where most similar to an unweighted majority vote of all at-

lases (similar as done in SIMPLE [16]). Second, a weighted

local fusion based on the rank of the patch-wise local nor-

malised cross-correlation as done in [2]. Third, the weight-

ing based on the rank of MIND similarity. Fourth, the use

of multimodal regression using MIND descriptors (abbrevi-

ated with Regr). The results are further set in comparison to

results obtained from registering a patient-specific CT scan

to the MRI of the same subject. Note, that this scan would

not be available in our envisaged application scenario. It

does, however, highlight the challenges, which would oc-
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(a) MR 3 (b) mean (c) LNCC (d) MIND (e) CTRef

Figure 3: Results of the intensity fusion for MR 3. For the top row all available atlases and for the bottom row only the top

five atlases in comparison to the MV are considered. In addition to the synthesis results, the registered reference CT (CTref)

of the patient is shown. In regions of large inter-subject variability, undesired intensity distributions occur due to registration

inaccuracies.

MR12 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 avg

MV 0.827 0.673 0.545 0.642 0.344 0.875 0.852 0.705 0.678 0.595 0.790 0.753 0.690

LNCC 0.805 0.701 0.552 0.654 0.380 0.869 0.854 0.701 0.702 0.598 0.798 0.769 0.698

MIND 0.830 0.719 0.551 0.666 0.372 0.882 0.856 0.718 0.688 0.594 0.793 0.766 0.703

Regr 0.777 0.663 0.568 0.654 0.362 0.876 0.853 0.726 0.689 0.607 0.790 0.755 0.693

CTref 0.698 0.424 0.744 0.659 0.483 0.770 0.759 0.645 0.561 0.532 0.820 0.815 0.659

MR3 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 avg

MV 0.855 0.802 0.607 0.731 0.654 0.782 0.813 0.590 0.850 0.898 0.820 0.788 0.766

LNCC 0.849 0.823 0.607 0.756 0.715 0.776 0.814 0.588 0.876 0.905 0.822 0.796 0.777

MIND 0.859 0.808 0.615 0.760 0.722 0.796 0.824 0.614 0.866 0.900 0.825 0.792 0.782

Regr 0.841 0.786 0.572 0.745 0.717 0.783 0.823 0.616 0.865 0.898 0.827 0.790 0.772

CTref 0.878 0.900 0.828 0.807 0.714 0.863 0.891 0.626 0.873 0.854 0.853 0.841 0.827

Table 1: Overview of the results of the label fusion for two different patient-MRIs (MR12 and MR3). The results of the

four different approaches are listed individualy for each of the 12 label (L1 to L12; the order corresponds to those of the box

plots).

cur e.g. for MRI-guided radiotherapy even if CT imaging

would be performed to obtain attenuation values for dose

calculation. As evident from Table 1 the latter approach

does not necessarily yield the best outcome: in particular

the spleen and the vertebra L1 of MR12 result in inferior

overlap compared to all label fusion approaches. Finding
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(a) MR 15 (b) mean (c) LNCC (d) MIND (e) CTRef

Figure 4: Results of the intensity fusion for MR 15. In the results from the top row all atlases have been considered. In

the bottom row, only the five most similar atlases in comparison to the MV were considered. An improvement in the results

through a more accurate registration can be seen.

the fusion weights by fitting a linear combination of MIND

descriptors using regression, i.e. a generative approach that

attempts to reconstruct the appearance of the target patch

descriptors (see Eq. 7), yielded an unsatisfying outcome.

The results for the MIND-based multi-atlas fusion are over-

all best showing a modest improvement over [2]. This may

indicate that using the rank for determining fusion weights

as originally proposed in [4] helps dealing with a potentially

difficult choice of scaling parameters. While our approach

achieves good alignment of 70% or more for most anatomi-

cal labels some errors remain. For a visual illustration of the

results of our label fusion approaches, see Figure 5. There

the results are shown as an overlay of the patient’s MRI data

set. The exact influence of our accuracy on PET reconstruc-

tion and dose planning remains to be studied in future work.

6. Discussion

While performing the experiments, we observed that the

multimodal registration is not well succeeded the same for

all CT atlases. Especially larger deformations between the

modalities state a problem, which could not be completely

overcome by the used registration method. Even in the con-

text of intra-subject registration unsatisfactory results could

be found (see average DSC of CTref for MR12 in Table 1

and the registered segmentation (CTref) in Figure 5). An-

other persistent problem is the evaluation of the results. An

intensity-based comparison of pseudo-CTs and actually ac-

quired CTs still lacking. In addition to an exact positioning

of anatomical structures, it requires an assessment whether

the synthesized intensities are alike realistic intensities. In

the end no statement to what extent the atlas-based pseudo-

CTs are superior to those results from machine learning

techniques and paired training data sets can be made.

7. Conclusion

We have presented a new and very general approach for

the synthesis of pseudo-CT images in a multimodal fashion.

It combines efficient multimodal image registration and a

new local atlas fusion based on self-similarity descriptors.

We were able to tackle the very challenging tasks of extend-

ing modality synthesis to whole-body scans without requir-

ing well-aligned pairs of CT and MRI scans from same sub-

jects. The proposed method compares well with previous

work and achieves modest improvements for both for inten-
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Figure 5: Comparative view of the results of the label fusion for MR 12. Again only the five most similar atlases compared

to the majority vote were considered.

sity and label fusion. It also outperformed a simple majority

vote over all registered atlases. In some cases, our approach

was even superior to the direct registration of a patient-

specific CT scan, which would normally not be available in

MRI-only radiotherapy or PET-MRI hybrid scanners. How-

ever, some difficulties remain for regions, which are locally

misaligned due to high variability between different sub-

jects and where at the same time the structural image con-

tent does not provide enough information to select the best

atlas(es) based on morphological similarity. Future work

should focus on extending the contextual information cap-

tured by the image descriptors to enable a better treatment

of ambiguous areas. The impact of modality synthesis on

image reconstruction and dose planning also requires fur-

ther studies.
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