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Abstract

Twin-to-Twin Transfusion Syndrome (TTTS) is a progres-

sive pregnancy complication in which inter-twin vascular

connections in the shared placenta result in a blood flow

imbalance between the twins. The most effective therapy

is to sever these connections by laser photo-coagulation.

However, the limited field of view of the fetoscope hinders

their identification. A potential solution is to augment the

surgeon’s view by creating a mosaic image of the placenta.

State-of-the-art mosaicking methods use feature-based ap-

proaches, which have three main limitations: (i) they are

not robust against corrupt data e.g. blurred frames, (ii) tem-

poral information is not used, (iii) the resulting mosaic suf-

fers from drift. We introduce a probabilistic temporal model

that incorporates electromagnetic and visual tracking data

to achieve a robust mosaic with reduced drift. By assuming

planarity of the imaged object, the nRT decomposition can

be used to parametrize the state vector. Finally, we tackle

the non-linear nature of the problem in a numerically stable

manner by using the Square Root Unscented Kalman Filter.

We show an improvement in performance in terms of ro-

bustness as well as a reduction of the drift in comparison to

state-of-the-art methods in synthetic, phantom and ex vivo

datasets.

1. Introduction

Twin-to-Twin Transfusion Syndrome is a progressive

complication of monochorionic diamniotic (MCDA) preg-

nancies. Inter-twin vascular connections shared in the pla-

centa result in an imbalance in the blood circulation which

can lead to the death of both twins [5, 12]. Furthermore,

cardiac complications may arise in one of the fetuses due to

the excess of blood whereas the other may suffer from ane-

mia, an abnormal decrease of the hemoglobin in the blood.

The recommended treatment for TTTS is laser photo-

coagulation. This involves exploring the placenta with

a fetoscope to localize the problematic vessel connec-

tions (anastomoses). These connections are then photo-

coagulated with a laser. The limited field of view of the

fetoscope leads to poor spatial orientation during surgery,

which makes it difficult for the surgeon to correctly iden-

tify the anastomoses. To address this problem, creating a

2D mosaic of the placenta has been proposed previously

by [10, 27]. This technique expands the limited field of

view of the fetoscope and hence augments scene available

to the surgeon.

Standard mosaicking algorithms [4] use a projective

transformation to model the relation between images as-

suming planarity or quasi-planarity in the imaged object.

Subsequently, all images are propagated to a common plane

on the basis of the computed transformations, forming a

mosaic. Consecutive transformations are estimated in a

pairwise fashion, which leads to an accumulation of error.

This error gradually grows with the number of processed

frames. More importantly, if one of the transformations

fails to be estimated or suffers from a large degeneration,

the mosaic cannot be computed.

The contributions of this paper are twofold. We intro-

duce temporal information by using a Square Root Un-

scented Kalman Filter (SRUKF) to obtain a more robust

mosaic. In addition, we use an external electromagnetic

(EM) tracking system in combination with visual data that

reduces the accumulation of error and further improves the

robustness of the algorithm.
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This paper is structured as follows: In section 2 we re-

view the related work on mosaicking as well as tracking

applied to image mosaicking. In section 3 we detail our al-

gorithm. In section 4 we present our results obtained with

a synthetic, phantom as well as an ex vivo dataset. We dis-

cuss various aspects of the algorithm in section 5 and draw

conclusions and comment on future work in section 6.

2. Related work

Mosaicking has been used in many applications in the

literature such as geographical 2D map reconstruction from

aerial vehicles [7, 8], panoramas [4], among many oth-

ers [14, 25]. The simplest approaches estimate a projec-

tive transformation or homography between successive im-

ages, thus assuming planarity in the imaged object. The use

of feature-based approaches such as SIFT/SURF [2, 20] to

obtain a transformation from corresponding interest points

has become a standard procedure to generate 2D mosaics.

These have the advantage of being more robust against

non-uniform illumination than intensity-based approaches

such as [1]. Nonetheless, the effectiveness of this tech-

nique in fetoscopy becomes compromised by the low qual-

ity of the interest points and the number of false correspon-

dences that bypass standard outlier removal techniques such

as RANSAC [16]. In [27], Reeff et al. proposed introduc-

ing a heuristic after RANSAC that imposes boundaries in

the quality of the estimated homography by restricting the

range of the determinant as well as imposing a minimum in

the number of keypoints. They also proposed an algorithm

to detect and discard mismatches.

A second challenge is the accumulation of error between

successive frames, which becomes significant as the num-

ber of iterations increase. This is due to the pairwise fashion

in which the mosaic is composed. In [4], a 2D bundle align-

ment was proposed to obtain a globally consistent mosaic

using the correspondences between all images. Vercauteren

et al. [14] explored a combination of rigid and deformable

approaches, tackling the problem of global alignment by it-

eratively adding new pairwise rigid results to estimate the

global parameters in a clinical environment. In [11], the

global alignment was applied in clinical context as well.

The idea of detecting a crossover i.e. the path of the cam-

era returning to a previously imaged position, with the pur-

pose of compensating the drift is exploited in [8], whereas

in [22] a sequential bundle adjustment is performed by aug-

menting the state vector of a Variable State Dimension Filter

(VSDF). Such a filter takes advantage of the diagonal struc-

ture of the covariance matrix to reduce the complexity of

the algorithm. Even though the accumulation of error can

be eliminated using these strategies, they are computation-

ally very expensive.

Other approaches suggest employing an external track-

ing device to provide a global reference and reduce the ac-

cumulation of error. In [15], Yang et al. use a static 3D

ultrasound probe to estimate the pose of the camera and

build a mosaic using a combination of three methods: direct

homography estimation, pose tracking and pose estimation

from the ultrasound image. In [8], the use of the Global Po-

sitioning System (GPS) allows Unmanned Aerial Vehicles

(UAV) to build a drift-free mosaic. Caballero et al. de-

scribe an on-line mosaicking technique using the Extended

Kalman Filter (EKF), which takes advantage of the frame-

work in order to include the GPS data by using the nRT de-

composition of the homography. Our method is inspired by

this technique; however, we aim to provide a reduced drift

mosaic without the need of locating the crossover. In [6],

an Extended Iterated Kalman Filter framework is general-

ized for when the observation and process models evolve in

Lie groups. Mountney et al. [23] use SLAM with an EKF

where the visible features form the state vector in order to

provide a 3D approximation of the extended view that can

be used as a navigational aid.

3. Methods

When the camera is imaging a planar object, the acquired

images are related by a homograpy Hk. Given that we just

consider pairwise homographies, only the sub-index of the

current time instant is kept for conciseness.

Using a pinhole camera model for a pre-calibrated fe-

toscope with K as the intrinsic matrix, the N correspond-

ing points between frames are denoted by
{

pi
k−1

,pi
k

}N

i=1

at time k− 1 and k respectively. These points are related in

an ideal noise-free scenario through the following equation:

λ

[

pi
k

1

]

= λqi
k = KHkK

−1qi
k−1

(1)

Where qi
k is a point in homogeneous coordinates, pi

k is a

point in Cartesian coordinates and λ is the scalar associated

to the homogeneous coordinates.

We compute these correspondences using SIFT, apply

RANSAC to remove outliers and estimate a homography

by using the well established DLT [26] algorithm.

3.1. Theoretical background

We introduce the generic dynamic state-space models

framework to highlight the need for temporal and measure-

ment equations. Since the information provided by the EM

tracker is a 3D rigid motion transformation, it is more con-

venient to parameterize the state vector with the rotation and

translation of the camera as well as the information of the

imaging plane. For this purpose, the nRT decomposition is

also introduced in this section.
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3.1.1 Dynamic state-space models

The purpose of dynamic state-space models is to estimate
the current world state given the observations from all time

instants. Let us define the set of noisy measurements {z}Ni=1

that come from a set of world state variables {x}Ni=1
. The

world state estimates of points in a frame are not indepen-
dent from the ones in the past frames; therefore, by using
the Bayes rule, the probability of the state vector given all
measurements can be expressed as:

Pr(xk|zk,..,1) =
Pr(zk|xk)Pr(xk|zk−1,..,1)∫
Pr(zk|xk)Pr(xk|zk−1,..,1)dxk

(2)

The first element of the numerator in equation 2, Pr(zk|xk)
corresponds to the measurement model, which defines the
relation between the noisy measurement and the world
state vector. The second element of the numerator can be
expressed as the well-known Chapman-Kolmogorov rela-
tion [26]. By making the Markovian assumption, the cur-
rent state depends only on the last state.

Pr(xk|zk−1,..,1) =

∫
Pr(xk|xk−1)Pr(xk−1|zk−1,..,1)dxk−1

(3)

Pr(xk|xk−1) is the temporal model which specifies

a temporal relation between adjacent time instants.

Pr(xk−1|zk−1,..,1) is the posterior probability of the last

iteration. Therefore, in order to model the probability of the

state vector given the measurements of past time instants, a

temporal and a measurement model must be defined.

3.1.2 The nRT Decomposition

In the case where the 3D object corresponds to a plane,

a homography models the relation between corresponding

points in two images. This homography can be decomposed

into a rotation matrix Rk, translation vector tk, the distance

dk−1 from the optical center Ok−1 of the camera at time

k − 1 to the plane and the normal vector nk−1 seen from

the reference frame of the first camera [21, 24] as shown in

figure 1.

Hk = Rk +
tk

dk−1

nT
k−1

(4)

3.2. Our model

By modeling the relation between interest points in ad-

jacent frames as a homography, the method can be used in

quasi-planar environments, which are the real target scenar-

ios. Making use of the nRT decomposition, we define the

state vector as follows.

The state vector This encodes the rotation and translation

between consecutive frames as well as the normal vector to

the plane. We define vk−1 as the unit vector nk−1 divided

Figure 1: Two consecutive camera positions at time k − 1
and k are imaging a plane. The homography relating the

points in both images can be decomposed as a set which

describe rotation Rk, translation tk and normal to the plane

nk−1, divided by the distance dk−1 from the plane to the op-

tical center of the camera at time k − 1. The optical centers

of the two cameras are denoted Ok−1 and Ok respectively.

by the distance dk−1. Since dk−1 is not needed any further,

it is not included as an extra parameter to estimate.

xk =
[

rTk tTk vT
k−1

]T
(5)

where rk, tk and vk−1 are respectively:

rk =
[

rxk r
y
k rzk

]T
(6)

tk =
[

txk t
y
k tzk

]T
(7)

vk−1 =
[

nx
k−1

dk−1

n
y

k−1

dk−1

nz
k−1

dk−1

]T

(8)

From the components of the rotation vector rk in the

state vector, the rotation matrix Rk in the special orthogonal

group SO(3) [3] is obtained by using the Lie matrix expo-

nential as in equation 9. The advantage of this parametriza-

tion is that orthogonality is directly imposed in the estima-

tion of the rotation parameters.

Rk = exp





0 −rzk r
y
k

rzk 0 −rxk
−r

y
k rxk 0



 (9)

It should be noted that parameterizing r in this form also

implies a non-linear nature in the estimation of the rotation.

Even though the homography has eight degrees of free-

dom, nine parameters are used. This is because the plane is

also encoded in the state vector.
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The temporal model When the motion does not vary

rapidly between frames (as in our fetoscopic video se-

quences), the rotation and translation can be modeled with a

Brownian motion which corresponds to a constant velocity

of the fetoscope, as in equation 10 and 11.

rk = rk−1 + ǫ
p,r
k with ǫ

p,r
k ∼ N (0,Σp,r) (10)

tk = tk−1 + ǫ
p,t
k with ǫ

p,t
k ∼ N (0,Σp,t) (11)

The noise terms ǫ
p,r
k and ǫ

p,t
k are modeled as Gaussian ran-

dom variables with zero mean and covariance matrix Σp,r

and Σp,t respectively. The temporal evolution of the normal

obeys the following equation.

vk−1 =
Rk−1vk−2

1 + vT
k−2

tk−1

+ ǫ
p,v
k with ǫ

p,v
k ∼ N (0,Σp,v)

(12)

The noise ǫp,v is allowed in the evolution of the normal to

account for slight deviations in the planarity assumption.

The super-index p indicates that it is part of the temporal

model.

The proof of equation 12 is presented here. The vector

vk is related to nk and dk as follows.

vk =
nk

dk
(13)

Firstly, given that we are observing a plane and assuming

that the plane does not move, a translation does not change

the direction of the normal vector. Therefore, the relation

between nk−1 and nk is:

nk = Rknk−1 (14)

The scalar dk is the distance between the optical center Ok

and the plane. The vector from the origin of coordinates to

Ok corresponds to the translation vector tk.

dk =
nT
k−1

tk + dk−1

|n| = nT
k−1

tk + dk−1 (15)

Finally,

vk =
nk

dk
=

Rknk−1

dk−1 + nT
k−1

tk
=

Rkvk−1

1 + vT
k−1

tk
(16)

The measurement model This gives the relation between

corresponding points in adjacent frames. For simplicity, we

only model the noise in pi
k and treat pi

k−1
as given.

q̂i
k = λqi

k = K(Rk + tkv
T
k−1

)K−1

[

pi
k−1

1

]

(17)

pi
k =

q̂i
k,1:2

q̂ik,3
+ ǫ

i,m
k (18)

Where pi
k, the point in Cartesian coordinates at time k,

is modeled as Gaussian random variable N (0,Σm). The

super-index m indicates that these entities are part of the

measurement model.

The rotation and translation between adjacent frames

computed from the global information provided by the EM

tracker allow us to constrain the system. These relate to the

state vector by:

rEM
k = rk + ǫ

EM,r
k with ǫ

EM,r
k ∼ N (0,ΣEM,r) (19)

tEM
k = tk + ǫ

EM,t
k with ǫ

EM,t
k ∼ N (0,ΣEM,t) (20)

3.2.1 The Square Root Unscented Kalman Filter

(SRUKF)

This is a derivative-free, non-linear state and parameter es-

timation technique where the square root of the covariance

matrix S is sampled in a set of the so called sigma points

and then propagated. It is shown in [19] that it consis-

tently outperforms the EKF in prediction and estimation.

If the set of sigma points are chosen adequately, the algo-

rithm can be accurate to the 3rd order term of the Taylor

series for Gaussian inputs, and to the 2rd order term for

non-Gaussian inputs. Two non-linearities are presented in

our scenario: the temporal model for the normal vector in

equation 12 and the measurement model for the correspon-

dences in equation 17. The SRUKF [28] uses the Unscented

Transform [18] to solve non-linear problems. It consists of

a deterministic sampling of the input distribution in the so-

called sigma points, which are later propagated through the

non-linear function. Finally, a Gaussian distribution is ap-

proximated from the points as weighted mean and covari-

ance. A set of 2L + 1 sigma points is chosen (L is the

length of the state vector). The choice of the sigma points

as well as the weights can be optimized in order to minimize

the error of the true non-linear function with respect to the

modeled distribution. We refer the reader to [17] for more

information about the optimality of the choice of the sigma

points. Our choice of sigma points X∗ is the following.

X
∗ = [x̂ x̂+ γS x̂− γS] (21)

where x̂ is the central point, corresponding to the zeroth

weight, γ is defined as γ =
√
L+ ι. The weights of each

sigma point j for the mean and covariance are denoted re-

spectively with the super-indices µ and Σ:

w
µ
0
=

ι

L+ ι
(22)

wΣ

0
=

ι

L+ ι
+ (1− α2 + β) (23)
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w
µ
j = wΣ

j =
1

2(L+ ι)
i = 1, ..., 2L (24)

where ι = α2(L + κ) − L, α controls the spread of the

sigma points and it is usually set between 10−3 and 1, κ is a

secondary scaling parameter usually set to 0, L is the length

of the state vector and β is used to take advantage of the dis-

tribution if it is known a priori. For Gaussian distributions,

the optimal value of β is 2 [30].

The most computationally expensive operation in the

Unscented Kalman Filter (UKF) is the square root of the co-

variance matrix, which is usually performed as a Cholesky

decomposition. The SRUKF tackles this problem by di-

rectly propagating the square root of the covariance ma-

trix leading to a gain in efficiency from O(L3) in the gen-

eral UKF to O(L2) where L is the number of dimensions

of the state vector. In addition, by propagating the square

root of the covariance matrix, symmetry and positive semi-

definiteness are guaranteed. Since the wΣ
0

can be negative,

it needs to be updated separately as explained in [28].

4. Results

The setup used to perform the experiments consists of

a laparoscope Viking 3DHD1 as well as the NDI Aurora

system with a planar field generator and a Mini 6DOF sen-

sor.2 The setup is shown in figure 2. The data were ob-

tained using only one channel of the laparoscope to simu-

late a monocular fetoscope. The synchronized video and

EM tracking data was using the NifTK [9] software. Cam-

era intrinsic and hand-eye calibration was performed using

a 3 mm checkerboard, also implemented in the NifTK and

described in [13]. Even though the image quality of the

laparoscope is slightly better than in the fetoscope, the eval-

uation of the proposed algorithm is presented to be used

for fetoscopy. In addition, we used the Matlab framework

VLFeat [29] as basis for the implemented algorithms.

Figure 2: Using the laparosope and the Aurora EM tracker

in an ex vivo placenta.

1http://www.conmed.com
2http://www.ndigital.com/medical/products/aurora

Figure 3: While the STDM shows high error peaks in the

SYN dataset, the SRUKF manages to overcome them by

using prior knowledge.

We created three datasets: a synthetic (SYN), a phan-

tom (PHA) and an ex vivo (EXP) dataset. The SYN dataset

was created from an image and a collection of homogra-

phies. We extracted a sequence of images by applying the

homographies to a region of interest in the center of the

image. Therefore, we ensure that the motion of the gen-

erated dataset obeys exactly a homographic motion. The

PHA dataset consists of a handheld spiral scan of a printed

image of a placenta. Even though the dataset is still far

from clinical data, it allows us to test our algorithm when

the assumption of planarity is fulfilled. The EXP dataset

was created following the same motion pattern by scanning

a real placenta. The main challenges of the latter are the re-

duction in quality of the interest points and the fact that the

planarity assumption is not longer fulfilled, even though the

scene can be considered quasi-planar.

We compare our model (SRUKF) against two algo-

rithms: the standard pairwise mosaicking pipeline as is de-

scribed in [4] (STDM) and 2D bundle adjustment (BA), the

reference algorithm for reduction of accumulation of error.

The comparison criteria between two homographies is the

following. We project a grid of points with each homogra-

phy and compute the mean of the Euclidean distance of the

residual difference.

The datasets have been carefully designed to assess two

main points: First, the robustness of our system to incor-

rect correspondences compared to standard algorithms [20].

Second, the potential improvement in accumulation of er-

ror. Our approach works in a sequential manner, achieving

a substantial gain in computational efficiency while obtain-

ing similar results to the BA. Our choice of values of co-

variance matrices is provided in the appendix and further

commented in the discussion section.

Since the final mosaic relies on the pairwise composi-

tion of all frames, if no temporal information is used and
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the data association is wrong, the composition will not be

performed correctly. A high peak of error in a pairwise

homography will bias the entire mosaic towards a wrong

direction, and all the subsequent registrations will not be

globally well aligned. In our model, the temporal evolution

is used to produce a smoothing effect and avoid undesirable

behaviors. As first experiment, we simulate a specific situa-

tion in which not enough quality interest points are obtained

by adding peaks of noise to the images every five frames in

the SYN dataset. Figure 3 presents in a quantitative way

how the SRUKF manages to smooth the spikes of error re-

sulting in an error reduction.

To demonstrate the achieved reduction in the accumula-

tion of error in the PHA dataset, the mosaic is built using

STDM, SRUKF and BA. Figure 4a shows the misregistra-

tion of a vessel in different frames (100 frames apart) due

to the accumulation of error using the STDM. Figure 4b

shows the resulting mosaic using our method with multi-

band blending. The accumulation of error is corrected suc-

cessfully showing little difference to the BA in figure 4c.

The reference image is shown in figure 4d for visual com-

parison.

To further provide quantitative results on the experiment,

we have compared all homographies from the reference to

each time instant for all algorithms. We obtained an increas-

ing error tendency for the STDM as expected. This can be

clearly seen in figure 5a. In figure 5b, any spike in the pair-

wise error results in an increase of the accumulation of er-

ror. In figure 5c, the mean trajectory of the grid of points is

shown, comparing it with the mean trajectories for STDM

and BA.

Lastly, we provide qualitative results in the EXP dataset

(Figure 6), where the assumption of planarity is violated.

While STDM is not able to cover the entire area of the pla-

centa, our algorithm successfully creates full 2D map of the

area.

Figure 6: On the left, sample input images. On the middle,

the mosaic of the EXP dataset using the SRUKF. On the

right, the original image. The blue line indicates where the

mosaic has been performed.

5. Discussion

In probabilistic temporal models, the temporal informa-

tion is introduced in the form of a prior (Equation 2). If its

covariance matrix decreases, i.e. the system relies more in

the prior information, the estimation will be biased towards

the prior knowledge. Otherwise, the estimation will tend to

be just a maximum likelihood estimation. Therefore, there

exists a trade-off between the temporal and measurement

model. If the temporal model is right, then we can give it

more weight, e.g. in the case of the fetoscope moving, we

assume a constant velocity model of the fetoscope. If it is

the case, then the temporal model will positively contribute

to the estimation. Nonetheless, if there is a sudden twist

in the motion of the fetoscope, the difference between the

measurement and the prediction (so called innovation [26])

will grow and the temporal information will mislead the

data.

In our case, we treat all covariance matrices as diagonal,

i.e. all the variables are independent. In the measurement

model, we have information about the relation between in-

terest points in the images (Equation 17) as well as informa-

tion from the EM tracker (Equations 19 and 20). Depending

on the relation between their covariance matrices, either the

EM tracking data or the interest points become more impor-

tant.

On the one hand, if the EM tracker dominates the esti-

mation, the system becomes more robust against accumula-

tion of error. As we impose just the rotation and translation

but not the normal, the system is constrained. On the other

hand, when interest points drive the estimation, a more ac-

curate homography is obtained. On the contrary, there is ac-

cumulation of error. The right choice of the covariance ma-

trices then lies in a balance between interest points and EM

tracking data, as well as temporal and measurement models.

If the temporal covariance matrix is too small, the system

will not have enough freedom to reach the right estimation,

whereas if it is too large, the temporal model will have an

adverse effect on the estimation.

6. Conclusions

We introduce a probabilistic temporal model that im-

proves the robustness of the system by applying a strong

temporal prior. In addition, we tackle the problem of the

accumulation of error by incorporating global tracking data

from an external EM tracking system by means of the nRT

decomposition. We demonstrate qualitatively and quantita-

tively that our approach produces more robust and globally

consistent mosaics than the STDM.

The limitations of the algorithm are (i) the assumption of

planarity and (ii) the features. As future work, the covari-

ance matrices must be learned from the data. In addition,

the model can be upgraded to be piecewise-planar. On the

other hand, the analysis of different types of features can

provide more accuracy by strengthening the data associa-

tion.

Further improvement in the model involves the use of

the EM tracking data parametrized with absolute rather than
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Figure 4: Visual effects of the accumulation of error in the PHA dataset. The green arrow and star are visual aims in order to

facilitate the identification of the vessels to the reader. The results show that: (a) STDM. The vessel marked with a green oval

is missaligned. This is due to the accumulation of error. (b) SRUKF. (c) BA. (d) Original image and a zoomed and rotated

version to facilitate the visualization.

Figure 5: Quantitative results in the PHA dataset. (a) The cumulative function shows the tendency of the accumulation

of error. The STDM increases whereas the SRUKF remains approximately constant. (b) The pairwise error. Any peak

contributes to a large drift in the final mosaic for all the latter images. (c) The mean trajectory of a grid of points in the image

is shown for STDM, SRUKF and BA. A clear drift from the STDM can be seen in the zoomed regions.

relative transformations. This will eliminate completely the

accumulation of error, allowing for indefinitely long mo-

saics.

Appendix: Covariance matrix choices

The values of the covariance matrices have been chosen

empirically. We use the term diag to refer to a matrix where

all the values except the diagonal are zero.

Σp,r = diag([1× 10−4, 6.6× 10−6, 1× 10−4])

Σp,t = diag([1.4, 1.05, 0.22])

Σp,n = diag([1× 10−10, 1× 10−10, 1× 10−10])

ΣEM,r = diag([1× 10−7, 1× 10−7, 1× 10−7])

ΣEM,t = diag([1× 10−3, 1.16× 10−3, 0.23× 10−3])

Σm = 0.5× diag([1, 1, 1])

90



x0 = [0, 0, 0, 0, 0, 0, 0, 0, 0.02]
T
,Σ0 = 10×Σp

where Σp is the diagonal block matrix having Σp,r, Σp,t

and Σp,n as components.
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