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Abstract

We propose a 4D (three spatial dimensions plus time)

tissue-volume preserving non-rigid image registration al-

gorithm for pulmonary 4D computed tomography (4DCT)

data sets to provide relevant information for radiation

therapy and estimate pulmonary ventilation. The sum of

squared tissue volume difference (SSTVD) similarity cost

takes into account the CT intensity changes of spatially cor-

responding voxels, which is caused by the variations of frac-

tion of tissue within voxels throughout the respiratory cycle.

The proposed 4D SSTVD registration scheme considers the

entire dynamic 4D data set simultaneously, using both spa-

tial and temporal information. We employed a uniform 4D

cubic B-spline parametrization of the transform and a tem-

porally extended linear elasticity regularization of deforma-

tion field to ensure temporal smoothness and thus biologi-

cal plausibility of estimated deformation. We used a multi-

resolution multi-grid registration framework with limited-

memory Broyden Fletcher Goldfarb Shanno (L-BFGS) opti-

mization procedure for rapid convergence and limited mem-

ory consumption. We conducted experiments using syn-

thetic 2D+t images and clinical 4DCT pulmonary data sets

and evaluated accuracy and temporal smoothness of the

proposed method via manually annotated landmarks.

Keywords: 4D image registration, groupwise image

registration, sum of squared tissue volume difference,

mass preservation, temporal smoothness, radiation therapy,

treatment planning

1. Introduction

In pulmonary radiation therapy, target localization and

motion tracking of parenchyma, as well as tumor regions,

are critically important for guiding radiation on pathology,

minimizing dose for normal tissue and estimating regional

lung ventilation[11]. Time-resolved dynamic imaging data

sets have become increasingly available with the advance-

ment of medical imaging techniques[7], making it feasible

to track and model pulmonary motion. Pulmonary 4DCT al-

lows for reconstruction of multiple 3D volumes correspond-

ing to different breathing phases throughout the respiratory

cycle. Non-rigid image registration is used to estimate and

track correspondences between these phase images.

The CT number of lung parenchyma varies across the

breathing phases due to changes in fraction of tissue within

voxels, which is caused by air flowing in and out of the

lung throughout the respiratory cycle. Non-rigid registra-

tion of 4DCT pulmonary images is a difficult problem due

to the fact that spatially corresponding points belonging to

different breathing phases have dissimilar image intensi-

ties because of lung ventilation. To compensate for these

intensity variations, and to enforce the principle of tissue

conservation, Yin et al.[18] and Gorbunova et al.[5] inde-

pendently proposed an intensity-based registration similar-

ity cost function that accounts for these intensity changes

across breathing phases. We will refer to this previously es-

tablished cost function as the sum of squared tissue volume

differences (SSTVD). The SSTVD cost function achieves

desirable registration results for pulmonary CT image align-

ment compared to the conventional sum of squared (inten-

sity) difference (SSD) cost function [18],[5] which does not

account for intensity changes. In this paper, we extended

the SSTVD registration framework from 3D to 4D.

4D registration techniques have become more common

in recent years[10][17]. Unlike traditional registration

schemes which perform a sequence of 3D pair-wise reg-

istrations, either with respect to a common reference or

between consecutive time point images, 4D registration

frameworks consider the information contained within the

entire time-resolved imaging data set simultaneously with-

out bias toward any chosen reference image. One advantage

of 4D image registration is that it avoids accumulation of
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numerical and discretization errors associated with 3D se-

quential registration. Additionally, 4D registration frame-

works provide smooth and consistent displacement fields

along spatial and temporal dimensions[14]. Thus, 4D reg-

istration would provide more biologically reasonable tissue

motion tracking than 3D pair-wise registration. This could

be used to improve radiation therapy plans and dose deliv-

ery during breathing [9].

In this paper, we propose a 4D tissue conservation regis-

tration algorithm (4D SSTVD) which incorporates the mer-

its of SSTVD registration similarity cost with a 4D trans-

formation model. The resulting registration framework is

more suitable for 4DCT pulmonary image registration than

pairwise 3D SSTVD and 4D SSD [10] registration.

2. Methods

Our proposed 4D SSTVD image registration method

minimizes an objective function consisting of a 4D SSTVD

similarity cost and a temporally extended linear elastic reg-

ularization cost. In this paper, the concept of time is iden-

tified with that of breathing phases for the 4DCT image,

indicating that the 3D image at time point t is the same as

the phase t 3D image. Also, the term fixed image will be

used interchangeably with target image in the registration

framework.

2.1. Review of SSTVD Similarity Cost Function

The underlying assumption behind SSTVD similarity

cost is that the total tissue volume will remain roughly the

same throughout the respiratory cycle while the total lung

volume will change as air flows in and out of the lung. Let

IHU
f : Ωf → R,x 7→ IHU

f (x) denote the fixed image

in Hounsfield units and IHU
m : Ωm → R,y 7→ IHU

m (y)
the moving image in Hounsfield units. Following the ra-

tionale presented in the work of Yin et al.[18], an intensity

linear transformation is performed on these images and con-

sequently the intensity value at each voxel is converted from

radiodensity in Hounsfield units to actual tissue volume in

mm3. Specifically, we have:

If (x) = vf · rf (x) = v0 · rf (x)

Im(y) = vm · rm(y) = v0 · rm(y) (1)

where rf (x) and rm(y) represent the fraction of tissue

within a standard image voxel centered at x and y for the

fixed and moving image, respectively, and they are given by

rf (x) =
IHU
f (x)−HUair

HUtissue −HUair

=
IHU
f (x) + 1000

1055

rm(y) =
IHU
m (y)−HUair

HUtissue −HUair

=
IHU
m (y) + 1000

1055
(2)

where HUtissue = 55 and HUair = −1000 are the ra-

diodensity values of tissue and air in Hounsfield units. vf

Figure 1: Illustration of SSTVD cost and the “deformed voxel”.

and vm are the volumes of a standard voxel in the fixed and

moving image, respectively. For images in the same 4DCT

data set, we usually have vf = vm = v0, i.e., standard

voxels have constant volume in both the fixed and mov-

ing image, which can be calculated from physical spacing

of the data set. The resulting images If : Ωf → R and

Im : Ωm → R are named tissue-volume images and it is

these two images that we are trying to register in the SSTVD

registration framework.

Let T : Ωf → Ωm,x 7→ T(x) be the geometric trans-

form deforming Im to match If . The SSTVD similarity

cost is thus given by:

C(T)

=
1

|Ωf |

∑

x∈Ωf

(

v0 · rf (x)− (|JT|(x) · v0) · rm(T(x))

)2

=
1

|Ωf |

∑

x∈Ωf

(

If (x)− |JT|(x) · Im(T(x))

)2

(3)

where v0 · rf (x) is the volume of tissue within a standard

voxel centered at x in the fixed tissue-volume image If ,

while |JT|(x)·v0 ·rm(T(x)) is the volume of tissue within a

standard voxel centered at x in the deformed moving tissue-

volume image. The spatial Jacobian of transform |JT|(x) is

introduced because the mathematical interpretation of trans-

form Jacobian |JT|(x) is the contraction or expansion of an

infinitesimal local neighborhood of x induced by T. Let R

denote the region occupied by the standard voxel centered

at x in the fixed image domain, whose volume is v0. Then

T(R)(∋ T(x)) would be the transformed region occupied by

the “deformed voxel” in the moving image domain, whose

volume can be approximated by |JT|(x) · v0, as illustrated

in Figure 1. In the SSTVD registration scheme, the term

|JT|(x) · Im(T(x)) as a whole serves as the deformed mov-

ing image, instead of Im(T(x)) alone.

Compared to conventional SSD cost function, which is
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given as below (by abuse of notation for If and Im):

CSSD(T) =
1

|Ωf |

∑

x∈Ωf

(

If (x)− Im(T(x))

)2

(4)

the additional Jacobian modification |JT|(x) will help com-

pensate for the intensity changes of spatially corresponding

voxels in a 4DCT image data set, which is caused by peri-

odic variations in the fraction of tissue within voxels during

ventilation.

2.2. 4D SSTVD Similarity Cost Function

Inspired by the work of Yin et al.[18], Gorbunova et

al.[5] and Metz et al.[10], the proposed 4D SSTVD similar-

ity cost function takes advantage of the fact that the tissue

volume can be roughly considered as constant [18] through-

out the respiratory cycle and it uses the spatial and temporal

information within the 4D data set simultaneously.

Before proceeding to the actual formulation of 4D

SSTVD cost, we shall define some notations. De-

note the generic spatio-temporal coordinate as x =
(x1, x2, x3, x4)

T ≡ (x, y, z, t)T . Define the 4DCT image

domain as Ω = Ωs × Ωt, where Ωs = Ωx × Ωy × Ωz

is the spatial domain and Ωt = {0, 1, ..., |Ωt| − 1} is the

temporal domain. Also, let xs = (x, y, z)T ∈ Ωs be the

vector of spatial coordinates, t ∈ Ωt the time/phase coor-

dinate, and thus x = (xT
s , t)

T ∈ Ω represents the generic

spatio-temporal coordinates of a point in the 4DCT image

domain. Denote T : Ωs × Ωt → Ωs × Ωt as the trans-

formation from fixed/target image domain to moving image

domain with the constraint that T(xs, t) = (φ(xs)
T , t)T

where φ : Ωs → Ωs, i.e., no temporal displacement should

occur. This is to ensure that any voxel within a certain phase

image will remain in that phase without being temporally

deformed and moving forward or backward in time. Fi-

nally, let |JT|(x) be the local Jacobian of transformation T

evaluated at x.

The original 4DCT image IHU : Ω → R underwent the

intensity affine transformation in Equ.5 and was converted

into 4D tissue-volume image I : Ω → R. Note, the ob-

tained tissue-fraction image r(x) = (IHU (x)+1000)/1055
was windowed to fall in range [0, 1], and the scaling factor

v0 was dropped in actual implementation.

I(x) = v0 ·
IHU (x)−HUair

HUtissue −HUair

= v0 ·
IHU (x) + 1000

1055
(5)

The proposed 4D SSTVD intensity cost function uses the

4D tissue-volume image as the moving image and tempo-

ral average of deformed moving tissue-volume image as the

target image. Under this construction, the target image is

given implicitly and will be iteratively updated with the op-

timization process until it converges to a relatively stable

state. Note that at the beginning of the algorithm, the trans-

formation is identity and the transform Jacobian is 1 every-

where, so the initial target image is just the temporal aver-

age of the entire 4D tissue-volume image.

Cint(T) =
1

|Ωs|

1

|Ωt|

∑

xs∈Ωs

∑

t∈Ωt

(

K̄(xs)−K(x)

)2

(6)

where K(x) = |JT|(x) · I(T(x)) is the deformed moving

tissue-volume image, and

K̄(xs) =
1

|Ωt|

∑

τ∈Ωt

K(xs, τ)

=
1

|Ωt|

∑

τ∈Ωt

(

|JT|(xs, τ) · I(T(xs, τ))

)

(7)

is temporal average of deformed moving tissue-volume im-

age and serves as target image in the registration framework.

2.3. 4D Transformation Model

The 4D transformation T is parameterized using a tensor

product of four 1D cubic B-spline[12] kernels and is given

by Equation 8. The notation T(x,a) is used to emphasize

the dependence of transformation T on spatio-temporal co-

ordinates x as well as the parameters a used to parameterize

the transformation.

T(x,a) = x+ u(x,a) (8)

= x+

Nx−2
∑

i=−1

Ny−2
∑

j=−1

Nz−2
∑

k=−1

Nt−2
∑

l=−1

ai,j,k,l

B(
x

δx
− i)B(

y

δy
− j)B(

z

δz
− k)B(

t

δt
− l)

where u(x,a) is the displacement vector dependent on

spatio-temporal coordinates x and B-spline coefficients a.

ai,j,k,l ∈ R
3 × {0} is the B-spline coefficient vector at

B-spline grid point (i, j, k, l) ∈ Z
4. Note that setting the

last coordinate of all four dimensional B-spline coefficient

vectors ai,j,k,l to 0 effectively prevents any temporal trans-

formation. The variables Nα and δα for α ∈ {x, y, z, t}
represent the number of grid points and grid spacing in the

x, y, z and t directions, respectively.

Even though temporal displacement was restricted to 0,

the 4D B-spline parametrization was used to ensure the

smoothness of all spatial displacement components along

the temporal direction.

2.4. Temporally Extended Linear Elasticity Regu­
larization

We used a temporally extended linear elastic model to

regularize the 4D SSTVD image registration algorithm. The

conventional spatial linear elasticity regularization is valid
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for small elastic deformations between a pair of phase im-

ages within the breathing cycle[3]. Based on the spatial

linear elastic model, we imposed an additional temporal

smoothness regularization on spatial displacement compo-

nents and formulated the temporally extended linear elas-

ticity regularization cost as in Equ. 9:

Creg(a) =
∑

x∈Ω

||(Lu)(x,a)||2 =
∑

x∈Ω

4
∑

i=1

L2
i (x,a) (9)

where the linear elasticity differential operator L is given by

(omitting arguments x and a)

Lu = c1(∇ · ∇)u+ c2∇(∇ · u) + c3u

= (L1, L2, L3, L4)
T (10)

where∇ = (∂/∂x, ∂/∂y, ∂/∂z, ∂/∂t)T is the gradient op-

erator. Examples of expressions for Li are given by:

L1 = c1(
∂2ux

∂x2
+

∂2ux

∂y2
+

∂2ux

∂z2
+

∂2ux

∂t2
)

+ c2(
∂2ux

∂x2
+

∂2uy

∂x∂y
+

∂2uz

∂x∂z
) + c3ux (11)

L4 = c2(
∂2ux

∂t∂x
+

∂2uy

∂t∂y
+

∂2uz

∂t∂z
) (12)

The constants c1, c2 and c3 are the weights that adjust the

elasticity of the model. In our experiments, we chose c1 =
0.75, c2 = 0.25 and c3 = 0.

2.5. Optimization Strategy

The 4D SSTVD registration algorithm is implemented

by finding the transformation parameters that minimize a

linear combination of the intensity similarity cost and the

linear elasticity penalty term

Ctotal(a) = λCint(a) + Creg(a) (13)

where λ is a weight to be tuned. For the experiments in this

paper, we chose λ = 80.

Minimizing the cost function necessitates acquiring its

derivatives with respect to the transform parameters. Let

bα , ap,q,r,s,α, α ∈ {x, y, z}, be the α component of the B-

spline coefficient vector ap,q,r,s at grid location [p, q, r, s] ∈
Z
4. Using the chain rule, product rule, and formulas from

matrix calculus, the derivative of 4D SSTVD intensity cost

is given by

∂Cint(a)

∂bα

=
∂

∂bα

1

|Ωs|

1

|Ωt|

∑

xs∈Ωs

∑

t∈Ωt

(

K̄(xs,a)−K(x,a)

)2

=
2

|Ωs|

∑

xs∈Ωs

1

|Ωt|

∑

t∈Ωt

[(

K̄(xs,a)−K(x,a)

)

·

(

∂

∂bα
K̄(xs,a)−

∂

∂bα
K(x,a)

)]

= −
2

|Ωs|

∑

xs∈Ωs

1

|Ωt|

∑

t∈Ωt

[(

K̄(xs,a)−K(x,a)

)

·

∂

∂bα
K(x,a)

]

(14)

where (omitting parameters x and a),

∂

∂bα
K(x,a)

=
∂|JT |

∂bα
· I(T) + |JT | ·

∂I(T)

∂bα

=<
∂|JT |

∂JT
,
∂JT
∂bα

> ·I(T) + |JT | · ∇I(T)T
∂T

∂bα

=< cofJT ,
∂JT
∂bα

> ·I(T) + |JT | · ∇I(T)T
∂T

∂bα

= |JT |

(

< J−T
T ,

∂JT
∂bα

> ·I(T) +∇I(T)T
∂T

∂bα

)

(15)

And derivative of the linear elasticity term is:

∂Creg(a)

∂bα
=

∂

∂bα

∑

x∈Ω

||Lu||2 = 2
∑

x∈Ω

4
∑

i=1

(

Li ·
∂Li

∂bα

)

(16)

Image registration is often an ill-posed problem with

many locally optimal solutions. Without the presence of

an explicit target image, 4D registration is even worse in

this regard. For example, since the temporal average of the

deformed moving tissue-volume images is used as the reg-

istration target, two transformations differing by any rigid

motions will result in the same value of intensity based cost.

Therefore, similar to the work of Balci et al.[1] and Metz et

al. [10], we impose a further constraint that the temporal av-

erage of the displacement field at any spatial location should

be zero. Specifically, after every iteration, the derivative

with respect to every B-spline coefficient will be modified

as below, so that the derivatives at any spatial grid point will

sum up to zero across time, resulting in zero average spatial

displacement at any spatial location: ∀ [p, q, r, s] ∈ Z
4,

∂C

∂ap,q,r,s,α
←

∂C

∂ap,q,r,s,α
−

1

|Ωt|

∑

τ∈Ωt

∂C

∂ap,q,r,τ,α
(17)

44



We used an L-BFGS [8] optimizer in the registration

framework because of its rapid quadratic convergence rate

and limited memory consumption.

2.6. Inverse Transform

In order to get pair-wise spatial transforms between any

two phase images, it is necessary to estimate the inverse

transform S : Ω → Ω that deforms the temporal average of

deformed moving tissue-volume image (the target image) to

match the original 4D tissue-volume image (the moving im-

age). Because the B-spline parameterization does not have

a closed form inverse expression, we follow the approach

in [10] and estimate the inverse transform separately using

a finer B-spline grid[10]. We minimize the following dis-

tance cost[2] to find the inverse transformation

Cinv(a
′) =

∑

x∈Ω

||S(T(x),a′)− x||2 (18)

where a′ is the set of B-spline coefficients parameterizing

the inverse 4D transform S. After the optimal forward and

inverse transforms T̂ and Ŝ have been estimated, we can

compose them to acquire spatial transforms between any

pair of two time point images µ, ν ∈ Ωt.

Tν→µ(ys) = (T̂µ ◦ Ŝν)(ys) (19)

where ys = (y1, y2, y3)
T is a spatial point in time point

image ν. T̂µ is the spatial transform acquired by evaluating

the optimal 4D forward transform at time point µ and Ŝν is

the spatial transform acquired by evaluating the optimal 4D

inverse transform at time point ν.

2.7. Implementation

The proposed 4D SSTVD algorithm was implemented

using Elastix package[6] based on Insight Segmentation and

Registration Toolkit (ITK) libraries. This algorithm was im-

plemented with multi-threading support. The experiments

using clinical 4DCT data sets were run on a machine with

Intel i7 5930k CPU (6 cores, 12 threads @ 3.5GHz) and

64GB of DDR4 memory. For each 4DCT data set, we used

a multi-grid multi-resolution scheme consisting of 8 resolu-

tions from coarse to fine to estimate both the forward and

inverse transforms. The whole process took approximately

2 to 3 hours for each 4DCT data set.

2.8. Evaluation Methods

Evaluation of 4D registration frameworks needs to con-

sider both accuracy and temporal smoothness [10][1][17].

4D registration may not necessarily yield the best accu-

racy of registration results, but it generates deformation

fields that are a lot more temporally smooth and consistent.

With comparable or slightly worse accuracy, a temporally

smoother outcome is preferred because the resulting esti-

mated motion is biologically more reasonable.

For registration accuracy evaluation, we used the Mean

Landmark Error (MLE)[13]. MLE measures the average

distance between expert-labeled landmark positions on all

phase images (except for the one chosen as reference) and

landmark positions obtained by transforming the landmarks

from a chosen reference phase onto all other phases. Let

pr,i be the ith landmark on the chosen reference time point

r and Tr→t be the spatial transform from time point r to

t. Then Tr→t(pr,i;a) is the transformed location in time

point t of the landmark pr,i, while pt,i is the real location

of the corresponding landmark in time point t. The Mean

Landmark Error is formulated as in Equation 20.

MLE(a) =
1

N(|Ωt| − 1)

∑

Ωt∋t 6=r

∑

i∈N

||Tr→t(pr,i;a)−pt,i||

(20)

where N is the number of landmarks on every time point

image.

For temporal smoothness evaluation, we used the Mean

Irregularity of estimated landmark trajectories:

MIR(a) =
1

N |Ωt|

∑

t∈Ωt

∑

i∈N

||
∂2Tr→t(pr,i;a)

∂t2
|| (21)

where the second order partial derivatives are computed us-

ing centered finite difference assuming Neumann boundary

conditions. Denote qt,i = Tr→t(pr,i;a) and we have:

||
∂2Tr→t(pr,i;a)

∂t2
|| =

√

√

√

√

∑

α∈{x,y,z}

(

∂2qt,i,α
∂t2

)2

(22)

=

√

√

√

√

∑

α

(

qt+1,i,α − 2qt,i,α + qt−1,i,α

(∆t)2

)2

+O((∆t)2)

This measure can be interpreted as the average magnitude

of acceleration of landmarks while they traverse their esti-

mated trajectories across time. A smaller MIR value would

generally indicate smoother predicted landmark paths and

is thus more biologically plausible because the lung would

tend to move in a smooth fashion during ventilation.

Finally, to visually and qualitatively examine the result

of registration, we generated temporal mean and variance of

the final deformed moving tissue-volume image before and

after registration. We expect accurate registration would

sharpen the mean image and reduce the value of the vari-

ance image especially in regions where the mean image was

originally blurry [1] [17]. 4D Jacobian image was also com-

puted from the estimated 4D transform that deformed each

phase within the original 4D tissue-volume image to match

the extreme exhale phase. Temporal mean and variance of

the 4D Jacobian image were overlaid on top of the extreme

45



exhale phase image to qualitatively illustrate lung ventila-

tion behavior.

3. Experiments and Results

To assess the performance of the proposed algorithm, we

performed experiments on 2D+t synthetic image and 4DCT

pulmonary data sets, and compared the results of this al-

gorithm with those of existing pairwise 3D SSTVD[18][5]

and 4D SSD[10] methods. There exists a trade-off between

registration accuracy and temporal smoothness, so we eval-

uated both of these factors to demonstrate that the proposed

4D SSTVD method achieves a good balance between them.

3.1. 2D+t Synthetic Data Experiment

We tested the proposed 4D SSTVD algorithm on a

129x129x129-pixel 2D+t synthetic image as shown in Fig-

ure 2. The image consists of a time series of disk-shaped

regions, whose centers’ X coordinates remained the same

across time while Y coordinates traced a periodic sinusoid

trajectory in time. Conceptually, we can think of the 2D

images within the time series as having already been con-

verted into tissue-volume images and their intensity values

are within range [0, 1], representing fraction of tissue within

voxels. The radii and intensities of the disks vary with re-

spect to time but the total “amount of tissue” remained con-

stant. This means the intensity is inversely proportional to

the area of the disk at any time. For example, if the small-

est disk at t = 0 has intensity I1 and area A1, then a disk

later in the time series with area An will have intensity

In = A1/An · I1. The synthetic image was blurred by a

Gaussian filter with standard deviation of 1 and Guassian

noise was applied with 0 mean and 0.005 variance. Each

sub-figure in Figure 2 consists of four views. The upper-

left view is the disk at the middle time point. The lower-left

and lower-right views are cross sections of the time series of

disks parallel to x-t and y-t plane, respectively. The upper-

right view is a 3D (2D+t) rendering of the synthetic image.

The orientation of the four views of the synthetic image is

as shown in Figure 2b.

This 2D+t synthetic image is intended to simulate a

real 4DCT data set in the sense that the fraction of tis-

sue within voxels varies periodically throughout the res-

piratory cycle but the total amount of tissue is conserved.

Using the proposed 4D SSTVD method and the existing

4D SSD method, we performed registration on this 2D+t

synthetic image and chose the 2D image at t = 0, whose

disk-shaped region has the highest intensity and the small-

est radius, as the target image. We used the same optimiza-

tion parameters for both 4D SSTVD and 4D SSD meth-

ods, with a total of 8 resolutions in the multi-grid multi-

resolution registration framework. Let’s denote the 2D+t

synthetic tissue-volume image as I , and the estimated trans-

forms using 4D SSTVD and 4D SSD methods as Tr
SSTV D

and Tr
SSD, where r ∈ {0, 1, ..., 7} is the resolution in-

dex. Then the deformed 2D+t synthetic tissue-volume im-

age (without Jacobian modification) are I(Tr
SSTV D) and

I(Tr
SSD). Through visual observation of Sub-Figure 2d-2f,

we see that after resolution r = 4, the 4D SSTVD method

already roughly aligned the time series and at finer resolu-

tions, the results seemed to have stabilized. In Sub-Figure

2c, we applied proper Jacobian modification |JT7

SSTV D
|

onto the deformed moving image I(T7
SSTV D) to obtain the

appropriate 2D+t deformed moving tissue-volume image

|JT7

SSTV D
| · I(T7

SSTV D), in which the 2D deformed mov-

ing tissue-volume images at other time points carry similar

radius and intensity value to the target image at t = 0. In

comparison, after resolution r = 4, the 4D SSD method

didn’t quite align the time series, as shown in Sub-Figure

2d. And when the 4D SSD registration proceeded to finer

resolutions, the registration process seemed to have col-

lapsed, resulting in biologically infeasible transformations,

as shown in Sub-Figure 2h, 2i.

3.2. 4DCT Pulmonary Data Set Experiment

Quantitative experiments were performed on respiratory-

gated 4DCT pulmonary data sets. Specifically, we used

the publicly available POPI data set containing 4D land-

marks (100 landmarks on each phase) for 3 patients, pro-

vided by J. Vandemeulebroucke et al.[15]. For each patient,

the 4DCT image data consisted of 10 images correspond-

ing to 10 breathing phases within the respiratory cycle. We

compared the performance of pairwise 3D SSTVD, 4D SSD

and the proposed 4D SSTVD tissue preservation algorithm.

The pairwise 3D SSTVD registration scheme uses the ex-

treme exhale phase image as an explicit target image, while

the 4D SSD and proposed 4D SSTVD tissue preservation

methods both use an implicit target image that is the tem-

poral average of the 4D deformed moving tissue-volume

image, which will be iteratively updated until convergence.

No masks were used during registration. For all 3 POPI

data sets, the B-spline grid spacings for 4D SSTVD and 4D

SSD algorithms in three spatial dimensions are 96, 64, 64,

32, 32, 16, 16, 8 (mm) for forward transform and 64, 32,

32, 16, 16, 8, 8, 4 (mm) for inverse transform, correspond-

ing to down-sampling ratios of the 4D image 1/8, 1/8, 1/4,

1/4, 1/2, 1/2, 1, 1 in spatial dimensions. The grid spacing

is always 1 and no down-sampling is used in the tempo-

ral dimension. For 3D SSTVD algorithm, the B-spline grid

schedule is 48, 32, 32, 16, 16, 8, 8, 4 (mm), with the same

image down-sampling ratios in spatial dimensions as in the

4D algorithms.

Mean landmark error and mean irregularity, as intro-

duced in previous subsection, were computed and the re-

sults are shown in Tables 1 and 2. The last row of Table

1 consists of the results obtained by Vandemeulebroucke el

al.[15]. We can see that the proposed 4D SSTVD algorithm
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(a) I (b) Orientation of four views (c) |J
T

7

SSTV D
| · I(T7

SSTV D)

(d) I(T4

SSTV D) (e) I(T5

SSTV D) (f) I(T7

SSTV D)

(g) I(T4

SSD) (h) I(T5

SSD) (i) I(T7

SSD)

Figure 2: Comparison between results from 4D SSTVD and 4D SSD algorithms to register 2D+t synthetic tissue-volume image I .

achieved better accuracy than 4D SSD method. At the same

time, it achieved better temporal smoothness compared to

3D pair-wise SSTVD, which is measured by the average

magnitude of acceleration of landmarks when they move

along their estimated paths through the respiratory cycle.

It should be noted that the relatively big difference among

irregularity values for different data sets might stem from

the possibility that landmarks for different data sets reside

in different regions of the lung. For example, there may

be more landmarks located around the diaphragm or other

high functioning regions of the lung in POPI Patient 2 than

in POPI Patient 1, causing the landmark irregularity to be

generally higher for the former.

Visual inspection of the registration result is illustrated in

Figure 3. Before registration, the temporal mean of the 4D

tissue-volume image was blurry, especially near vessels and

the diaphragm. And the temporal variance image had high

values in these blurry areas. After registration using the

proposed 4D SSTVD algorithm, the mean image became a

lot sharper and the variance image grew a lot darker within

the lung region, indicating that the registration indeed made

the phase images better aligned. The bright stripe near the

Accuracy

(mm)

POPI

Patient 1

POPI

Patient 2

POPI

Patient 3

Before

Registration
3.44 ± 3.06 6.41 ± 6.09 3.65 ± 3.89

Proposed

4D SSTVD
0.83 ± 0.63 1.11 ± 0.89 0.87 ± 0.77

4D SSD
0.83 ± 0.65 1.43 ± 1.83 1.02 ± 1.09

3D SSTVD

Pairwise
0.80 ± 0.63 1.21 ± 1.29 0.92 ± 0.89

Vandemeule-

broucke et al.
0.96 ± 0.66 1.20 ± 0.96 1.11 ± 1.14

Table 1: Registration accuracy measured by average landmark er-

ror (mean ± standard deviation, smaller is better).

bottom in the variance image after registration result from

the fact that the bottom regions of different phase images

were moved up by different amounts to match the extreme

exhale phase.

4D Jacobian image was also computed from the com-

posed 4D transform deforming all phase images to match
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Irregularity

(mm/phase2)

POPI

Patient 1

POPI

Patient 2

POPI

Patient 3

Proposed

4D SSTVD
0.94 ± 0.57 2.38 ± 2.15 1.52 ± 1.25

4D SSD
0.94 ± 0.57 2.26 ± 1.98 1.45 ± 1.23

3D SSTVD

Pairwise
1.04 ± 0.71 2.67 ± 2.26 1.71 ± 1.34

Table 2: Temporal smoothness measured by landmark trajectory

irregularity (mean ± standard deviation, smaller is better).

the extreme exhale phase. 4D masks for the 4DCT data sets

were generated using a 4D optimal surface finding (OSF)

algorithm proposed by Gerard et al. [16]. The masks were

applied onto the Jacobian images to mask out regions out-

side the lung, and the Jacobian values within the lung re-

gion would provide relevant information about pulmonary

ventilation behavior. For our experiments on clinical 4DCT

data sets using the proposed 4D SSTVD method, all Jaco-

bian values obtained from the estimated 4D transform were

positive, indicating no folding or collapsing of space was in-

troduced by the transform and thus the predicted lung mo-

tion would be biologically feasible. In Sub-Figure 3e, the

temporal mean of 4D Jacobian image was overlaid on the

extreme exhale phase to qualitatively illustrate the average

ventilation behavior of the lung starting from the extreme

exhale phase. In Sub-Figure 3f, the temporal variance of 4D

Jacobian image was overlaid on the extreme exhale phase.

Larger values of Jacobian variance indicate bigger differ-

ences among the predicted expansions from the extreme ex-

hale phase to each of the other phases. High Jacobian vari-

ance regions roughly correspond to the most blurry regions

in Sub-Figure 3a.

4. Conclusion and Discussion

The 4D tissue preserving algorithm inherits the advan-

tage of 3D SSTVD to handle registration scenarios where

spatially corresponding voxels have varying CT numbers

due to changes in fraction of tissue within voxels while the

total tissue volume is preserved. Meanwhile, the 4D cu-

bic B-spline transformation model and temporally extended

linear elasticity ensure the temporal smoothness of the de-

formation field. Comparison results on 4DCT data sets indi-

cate the proposed 4D SSTVD algorithm strikes a good bal-

ance between accuracy and temporal regularity. Without an

explicit target image in the 4D registration framework, all

information of the dynamic data set is considered simulta-

neously, avoiding bias toward any specific reference image

and increasing robustness against potential outliers caused

by artifacts or noise[17]. By incorporating temporal infor-

mation within 4DCT data sets, the proposed method can

provide more relevant information for motion tracking and

(a) Mean before (b) Mean after

(c) Variance before (d) Variance after

(e) Jacobian mean (f) Jacobian variance

Figure 3: Comparison of temporal mean and variance of 4D de-

formed moving tissue-volume image before and after registration.

temporal mean and variance of 4D Jacobian image overlaid on ex-

treme exhale phase.

ventilation estimation and thus aid in radiotherapy treatment

planning [4],[17]. Another benefit of considering tempo-

ral information is that temporal interpolation can be used to

provide an estimate of lung motion at certain intermediate

time points that are not present in the initial 4DCT data set.
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