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Abstract

In this paper we introduce a novel color transfer method

to address the underexposed image amplification prob-

lem. Targeted scenario implies a dual acquisition, con-

taining a normally exposed, possibly blurred, image and an

underexposed/low-light but sharp one. The problem of en-

hancing the low-light image is addressed as a color transfer

problem. To properly solve the color transfer, the scene is

split into perceptual frameworks and we propose a novel

piece-wise approximation. The proposed method is shown

to lead to robust results from both an objective and a sub-

jective point of view.

1. Introduction

Digital still camera miniaturization deemed by the huge

advances of mobile phones lead to design changes such as

optic size diminishing or photo-sensible area shrinking. The

small photo-sensible area, indirectly leads to reduced corre-

lation between the incident light and the reported image in-

tensity, thus forcing increased exposure time. Furthermore,

since the small photo-sensible area decreases the picture an-

gle and since the human hand jitter is always present, the

resulting large exposure time increases the chances that the

relative hand tremor induces motion blur. This phenomenon

degrades the visual quality of images so that photographers

and camera manufactures are frequently searching for meth-

ods to limit its effects.

The problem of image degradation due to motion blur is

known and, typically, the preferred solution is to estimate

the degradation kernel (known as Point Spread Function -

PSF) and compensate it. Estimation may be directly from

the degraded image and the whole solution is called blind

deconvolution (and we kindly ask the reader to refer to the

works of Levin et al. [13] and Koutera and Sroubek [11]

for reviews on the topic) or by estimation of movement fol-

lowed by deconvolution (as in the work of Joshi et al. [9]).

The main disadvantage is that, usually, such methods as-

sume the PSF to be spatially invariant (or uniform). Yet,

this assumption, according to the measurements reported by

Singhy and Riviere [23], is not realistic. Human tremor con-

tains significant components on the Z axis and translational

components (that lead to different trajectories for pixels cor-

responding to different depths [9]) leading to heavily non-

stationary PSFs. Notable exceptions that use non-stationary

PSF models are the works of Whyte et al. [27] or Sun et al.

[24]; however, in both cases the non-uniformity assumed

fails to realistically model the natural variation of the hu-

man tremor.

Alternatively, one may avoid the circumstances that gen-

erate the unwanted motion blur by reducing the exposure

time below the ”motion limit”, which typically is based on

the ”q over f35” rule [28]. In the here proposed work this

strategy is assume .

Furthermore, inspired by the previous works of Drim-

barean et al. [2] and of Yuan et al. [29], we acquire two

input images: one is normally exposed but possibly blurred

and one is underexposed but still. We treat the problem of

enhancing the underexposed image as a process of trans-

ferring color from the normally exposed image (that in the

remainder of the paper will be named the reference image)

to the underexposed one (also named subject image).

The main contribution of the proposed paper is the in-

troduction of a perceptually inspired color transfer method

adapted to the following dual-image input scenario: (1) the

underexposed image is sharp, but it may lack good colors;

(2) the normally exposed image may be blurred (from hand

motion), but has good colors; (3) the two images contain al-

most the same scene. A secondary contribution of the cur-

rent work is a theoretical discussion of why underexposing

and amplification is a more practical solution than deconvo-

lution.

Thus, the remainder of the paper is organized as follows:

in section 2 we will review the prior related work on the

topic of color transfer and, respectively, on low-light im-

age enhancement. In section 3 we argue why deconvolution
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is not practical and other alternatives should be envisaged.

In section 4 we describe the proposed algorithm, while in

the subsequent one we present implementation details and

achieved results. The paper ends with discussion and con-

clusions.

2. Related Work

Taking into account that the main contribution is a color

transfer method that is used for enhancing low-light images,

these topics will be briefly surveyed.

Color transfer (mapping) algorithms aim to recolor a

subject image by computing a transfer function (mapping)

between that image and another, reference image. Follow-

ing the recent review on the topic by Faridul et al. [4], color

transfer methods may be divided on point-based or region

based. In the point based category one should note the very

influential work of Reinhard et al. [21] which match the

first two statistical moments of the two images in the lαβ
uncorrelated color space introduced earlier, [22]. Yet the

work while being simple and intuitive is general and many

further enhancement have been proposed to address various

scenarios. Also in this category fall the methods proposed

by Pitie et al. [19] which maps the N-dimensional color

distribution of the reference image onto subject image, or

the one introduced by Pouli and Reinhard [20] which per-

forms the mapping pixel-wise but do stage it sequentially

by considering pyramidal resolutions. These solutions lead

to qualitative results but we consider that they are general

transformations which do not adapt well to certain situa-

tions such as the one described here.

In the category of region based methods it falls the region

consistent method [10]; yet its application is restricted by

the assumption that region pairs preserve their monotonic-

ity in the two images, which may not be necessarily fulfilled

in our scenario due to different acquisition time. Also, here,

Olivera et al. coarsely register two images, segment images

into regions (by Expectation-Maximization [17] or mean-

shift [18]) and perform transfer from one to the other based

on region impairment; conceptually we differ by the fact

that we do not assume any registration step thus, we do not

encode spatial correspondences between the two images but

only color intensities correspondences. Furthermore, we in-

troduce a general mathematical model out of which, given

a probabilistic approach and specific choices, these previ-

ously proposed methods may be retrieved.

Low-light image enhancement is another area that cap-

tured a lot of interest. Recently Fotiadou et al. [5] pro-

posed to enhance low-light image by constructing day and

respectively night dictionaries based on sparse representa-

tions. Lore et al. [15] showed that low-light enhancement is

achievable by the same auto-encoder based deep-net topol-

ogy that was previously shown to perform denoising. How-

ever all methods are based on single image enhancement

and it is reasonable to assume that a reference image should

improve the resulting image quality.

3. Hand Tremor and Deconvolution

The motion blur during still image acquisition is due to

the involuntary hand tremor. To give an intuition of the

probable size of a motion blur kernel (PSF), we will start

by reviewing some facts regarding the hand tremor. First

let us note that hand tremor was substantially studied in the

bioengineering domain as it interferes with microsurgeons

ability to keep hands still. Veluvolu and Ang [25] performed

a comparative study of microsurgeons and normal people

and found that amplitude of movement for microsurgeons

is at half of the normal people. Next, using inertial sensors,

Singhy and Riviere [23] measured the absolute deviation of

the human tremor in microsurgeons and found comparable

amplitudes for all three axes. In other words the amplitude

of rotational components that generate a certain size of mo-

tion blur during an acquisition also exists on the Z axis con-

tributing to the deep non-stationarity of the PSF. Assum-

ing that the spatially variable PSF is completely retrieved

(which was not yet achieved in related work), typically [24],

the non-stationary deconvolution is highly computationally

intensive. For instance Gupta et al. [7] report one hour on

CPU to solve 1Mpixel image while Hirsch et al. [8] report

440 secs with GPU acceleration for the same image size.

In parallel, taking into account that Singhy and Riviere

[23] report an average displacement for the hand tremor of

22 µm, Veluvolu and Ang [25] a dominant frequency of

4Hz, and high end smartphone camera has a pixel size of

1.12 µm for an exposure of 1/4 sec = 4Hz, a PSF size of

19 pixels may be produced. Also for the same exposure

the PSF may be completely non-uniform across the image:

the PSF in top left corner may get to be near-perpendicular

from the one in bottom right corner.

This paper argues that it is computationally more effi-

cient and the results are more robust if, instead of decon-

volution, an underexposing followed by a color transfer ori-

ented method for compensation of the low light is used. The

results that will be later presented, show that up to 2 expo-

sure stops may be compensated such way.

4. Framework Oriented Color Transfer

The first notable color transfer method was proposed by

Reinhard et al. [21]. In this method, the tones, u, from the

source image, Is, are adjusted, on each chosen color plane

independently, according to:

g(u) = au+ b (1)

The specificity of this mapping is given by the choice of

the color planes (taken as uncorrelated planes) and of the

constants a and b. These are computed as the ratio of the
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standard deviations a = σr

σS
and respectively as difference

of statistical means of the two images b = a · µr − µs. This

approach, while being simple thus general, was amended by

various consecutive improvements [4].

Noting than in our case the content of the two images is

very similar, we choose to add more adaptivity by imple-

menting the transfer as:

g(u) =

N
∑

i=1

ciνi(u)(aiu+ bi) (2)

If one chooses νi(u) =

{

u, u ∈ [u
(m)
i , u

(M)
i ]

0, otherwise
and

u
(m)
i = u

(M)
i−1 + 1, then the eq. (2) retrieves the piecewise-

consistent color mappings method [10]. Instead of the box-

car function with very steep transition used there, we opt

for smoother transition typical of fuzzy logic; this aspect

will be detailed later in the same section.

Given the histogram of the reference image, h(Ir) and

the histogram of the reconstructed image, h(g(Is)) the so-

lution of mapping depicted in eq. (2) can be seen as a mini-

mization problem:

minimizea,b,c,ν(u)(h(Ir)− h(g(Is))
2 s.t.

N
∑

i=1

ci = 1

(3)

where a = [a1, . . . aN ], b = [b1, . . . bN ], c = [c1, . . . cN ],
ν(u) = [ν1(u), . . . νN (u)]. First, one has to choose a para-

metric form for the function ν to have the minimization pos-

sible. Opting for a boxcar function and solving directly eq.

(3), the solution retrieved has u
(m)
i + 1 = u

(M)
i−1 and c as

one of the N-dimensional unit vectors; thus it implements

the piecewise linear approximation of the eq. (1), that was

previously proposed [10]. Modeling with a Gaussian Mix-

ture Model using a maximum posterior probability infer-

ence, the mosaicing preprocessing solution [17] is found.

Alternatively one may model the histogram as multivariate

kernel density and retrieve the mean-shift oriented method

[18].

Additional boundary constraints often lead to results that

are not necessarily perceptually pleasant. Thus, we consider

a different approach inspired from the human perception:

the functions ν are taken so to select the color frameworks

of the scene, the weights ci allow even more overlapping

between frameworks, while the linear parameters, a, b are

still inspired from the original approach of Reinhard et al.

[21].

4.1. Color Frameworks

Although many studies attempted to explain the human

perception of complex scenes, no definite model exists. Yet,

the reformulation by Gilchrist et al. [6] of the anchoring the-

ory for complex scenes proved to pass many perceptual tests

and explained many phenomena. This anchoring theory fo-

cuses on luminance interpretation and states that when de-

picting a scene, the relation between the representation lu-

minance and the scene lightness can be correctly perceived

only through a mapping between the luminance value and

the value on the scale of perceived level, process called an-

choring.

For increasingly complex scenes, the anchoring theory

avow that scenes are perceived by the humans in terms of

consistent areas, named frameworks. A framework is de-

fined as a region of common illumination. For image per-

ception, the human brain estimates the lightness within each

framework through the anchoring to the luminance per-

ceived as white, followed by the computation of the global

lightness. While the framework theory was developed for

luminance images, we assume the same strategy for color

images. Intuitively color quantization assumes image or-

ganization in frameworks and the perception of quantized

scene is appropriate. We consider that scene decomposition

in frameworks and performing the transfer between match-

ing frameworks to solve eq. (3) could lead to an interesting

color transfer method.

The first computational model of the anchoring theory

for complex images was provided by Krawczyk et al. [12]

for rendering high dynamic images. This paper follow the

same guidelines, with the major difference that for extrac-

tion of frameworks instead of the mean-shift, we rely on a

thresholded version of Fuzzy C-Means as they allow some

image data to be in more than one framework.

We recall that for Fuzzy C-Means (FCM) [3], [1], the

following objective function has to be minimized:

JFCM =

P
∑

k=1

N
∑

i=1

νik(xk − vi)
2, s.t.

N
∑

i=1

νik = 1, ∀k (4)

where xk are the 3-dimensional image pixels, P is the

total number of pixels, N is the total number of clusters

and vi are the centroids/means of the clusters. The solution

(νik, vi) is found iteratively once the number of clusters, N
is chosen.

Yet, to increase the functionality of the standard FCM

two adaptations are used. First FCM has the known draw-

back of converging into local optima and simulated an-

nealing was proposed to address this aspect [14]. Conver-

gence into local minima leads to non-overlapping frame-

works and visual failure of the transfer. Solving this prob-

lem removes this kind of failures. Secondly, even fixed, the

FCM, sometimes, converges (truthfully) in unsatisfactory

clusters. More precisely cases with large near - saturated

areas (in normally exposed image) or near-black ones (in

the underexposed image) are separated on different clusters,

while the rest of the pixels are in pushed in wide range clus-

ters. Such cases are detected and cluster are merged back.
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An illustrative example of the last situation is presented in

figure 3.

Intuitively, instead of direct minimization of eq. (2) the

optimization is done sequentially, first determining νi(u) =
ν via FCM. In other words, the images are clustered on

sets with compact color levels, which may be perceived as a

color extension of the frameworks from the anchoring the-

ory.

The two resulting frameworks from the segmented im-

ages are similar, but not identical, due to the differences

between the initial images, as can be seen in figure 1. Let

us denote the frameworks of the reference image by Ri and

those of subject image by Si.

4.2. Implementation

We consider the input images in the CieLab color space

as being perceptually consistent. The color transfer imple-

mentation follows the procedure:

• Frameworking: Determine the frameworks on each of

the two images by applying FCM, separately, on both

of them. Hard threshold the membership weights, ν so

that to select only one framework for each location.

For each framework, either in subject image, Si or in

the reference image, Ri, compute the mean (µs
i and

respectively, µr
i ) and the standard deviations (σs

i , σr
i ).

• Matching: Match the frameworks of the low-light im-

age with the ones of the normally exposed. The refer-

ence image framework, Rk matching Si is found as:

k = argmax
j

Si ∩Rj (5)

The eq. (5) comes from the fact that the two images

contain almost the same scene (i.e. mis-alignment is

small), thus we search for maximal spatial overlap-

ping.

• Framework transfer: For each pair of frameworks

compute a transfer function as in eq. (1). If we de-

note by θ = {Si, Ri, νi}, i = 1 . . . N as the model

of the frameworking process, the conditional probabil-

ities pij(Rj/θ) of having pixels in the framework Rj

that originate in the framework Si are computed.

Compute the linear parameters of a subject pixel con-

sidered to be in the framework Si as:

aj =
σr
j

σs
i

; bj = µr
j − aj · µ

s
i (6)

• Global transfer: Compute the image transfer using eq.

(2), where the ci are the framework confusion condi-

tional probabilities: ci = pij(Rj/θ).

We note that while FCM considers tri-dimensional input

data, the rest of algorithm is implemented on each color

plane separately. At the end the resulting image is converted

back to the original color space.

Optimization. To accelerate the process, the FCM runs

on low resolution images (e.g. having the width of 640 and

the original aspect ratio). On the small resolution image

the framework means and variances are found, while the

weights are computed on the full resolution image.

5. Results and Discussions

Database. To test the proposed algorithm we collected

a specific database using three cameras: a professional one

(digital SLR), a consumer one and a smartphone. We have

considered two types of differences between the two images

forming a set: while the reference image is normally (well)

exposed, the low-light images are underexposed with either

EV=-1 or EV=-2 (i.e. exposure time is half and respectively

a quarter from normal). The images were acquired with

hand-held camera, thus they are not perfectly aligned.

In total there have been gathered 100 pairs underexposed

with EV=-1 and 100 with EV=-2.

Evaluation. To evaluate the correctness of the color

transfer we have acquired, using a tripod a normally ex-

posed image of the photographed scene; this image will

be named the evaluation reference image. For evalua-

tion purposes, all corrected images are compared with the

evaluation reference image and peak signal–to–noise–ratio

(PSNR) and structural similarity - SSIM [26] between the

two images are computed. These two measures are typi-

cally used to asses the accuracy of reproduction for color

transfer methods.

5.1. Results

FCM Resolution. The first encountered problem was

due to the time required by the clustering algorithm to run

on a high resolution image. In order to make this time ac-

ceptable, one may reduce the resolution of the images dur-

ing clustering, which however lead to another problem: it

introduced visible artifacts at the transition between frame-

works. For smaller images, the transitions from one frame-

work to others are more noticeable. These transition arti-

facts appear mainly in the regions that are over–segmented

by the FCM algorithm. However computing the pixels

weight at full resolution avoided this downside. An example

is in figure 2.

Framework merging. The clustering algorithm may

produce, at times, an over–segmentation, by artificially

splitting near-saturated areas or almost black ones. The pro-

posed solution inspects such frameworks and, at necessity

(i.e. framework’s means are too close) merges them. An

illustrative example is presented in 3 (g), where the lack of

merging causes artifacts in the center of the sky in figure.
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(a) Ev=0 frameworks (b) Ev=0 (c) Reconstructed (d) Ev=-1 (e) Ev=-1 frameworks
Figure 1. An example showing qualitative result (c). The underexposed image, (d) received the colors from the normally exposed image

(b). In (a) are the frameworks of the normally exposed image, while in (e) are the frameworks of the underexposed one.

(a) Ev=0 frameworks (b) Ev=0 (c) Ev=-1 (d) Ev=-1 frameworks

(e) Ev=-1

corrected frameworks
(f) Final result (g) Initial result (h) Detail from (g)

Figure 3. An example that benefits from bad frameworking merging. (b) Original image and (a) its frameworks. (c) Underexposed image

and (d) its initial frameworking. Using this frameworking the obtained result is shown in (g). Note the artifacts on the sky, which are

detailed in (h). Correcting the over–clustering in the sky, we obtain the frameworking in (e) that produced the final result, shown in (f).

(a) (b)
Figure 2. Artifacts at transition may appear if one computes the

weights at small resolution (a), compared to computing them at

full resolution in figure (b).

Camera related performance. We report, in table 1,

the achieved performance with respect to the camera used.

The quality of acquired images is increasing from the smart-

phone (which has 1.12 µm pixel size), to the consumer cam-

era (with 1.76 µm pixel size) and to the DSLR (with 4.99

µm pixel size). SSIM numerical values indicates that the

image quality retrieved using the proposed color transfer

method is in accordance with the input image quality.

Comparison with related work. We extensively com-

pare the proposed method with related work [21], [20] and

[19] as the authors provide code. The method from [18]

has no author provided code, thus we implemented it to our

Table 1. Achieved performance of the proposed method with re-

spect to camera used.

Camera EV=-1 EV=-2 All

PSNR

Smartphone 17.74 17.19 17.47

Consumer 16.93 16.33 16.63

DSLR 17.69 16.85 17.28

SSIM

Smartphone 0.51 0.50 0.51

Consumer 0.53 0.51 0.52

DSLR 0.54 0.52 0.53

best ability; this method being based on mean-shift will be

denoted by “Mean-Shift”.

Numerical results are shown in table 2, while visual,

comparative, results are presented in figures 4, 5, 6. We

stress that the proposed method is tested on a significantly

larger database than related work: in many cases, [19], [10],

[18], etc. at most 15 images are used; we test on 200 im-

age sets. Yet, although on particular examples other meth-

ods may produce results leading to higher numerical values,

overall, and on each category, the proposed method reaches

the top performance.
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(a) Underexposed Ev=-1 (b) Normal, Ev=0 (c) Proposed

(d) Mean Shift (e) Pitie et al. [19] (f) Pouli et al. [20]
Figure 4. Comparison between proposed method and related work. One may note that the proposed method is closest to the normally

exposed image.

Table 2. Numerical comparison between the proposed method and

prior related methods.

Method EV=-1 EV=-2 All

PSNR

Proposed 17.45 16.48 17.12

Reinhard et al. [21] 16.12 14.75 15.44

Pitie et al. [19] 17.23 16.34 16.79

Pouli et al. [20] 16.66 15.52 16.10

Mean-Shift 16.88 15.97 16.43

SSIM

Proposed 0.53 0.51 0.52

Reinhard et al. [21] 0.50 0.48 0.49

Pitie et al. [19] 0.52 0.50 0.51

Pouli et al. [20] 0.52 0.49 0.50

Mean-Shift 0.51 0.48 0.49

From a subjective point of view there are further obser-

vations to be laid down. Artifacts of the proposed method,

while exist, they are rarer and less disturbing than those of

other solutions. Typical artifacts are related to incorrect col-

ors and some visible transitions. By contrast, in the initial

algorithm [21], there aren’t any transition artifacts since the

image is considered as a whole. However global transfer

leads to poor color in smaller regions, thus explaining the

lowest reported results from table 2.

Figure 4 contains an outdoor image where all discussed

methods performed reasonably well. Yet the mean-shift so-

lution produced a greenish tint over the sky due to larger

weight of foreground. The proposed method and the ones

from [19] and [20] produced images consistent with the ref-

erence. However this is no longer the case with the exam-

ples from figure 5 where the other methods, [19], [20], pro-

duced visible artifacts (fake colors and artificial objects) on

the tower and respectively on the sky.

Following the comparison with the mean-shift based al-

gorithm [18] through figures 4, 5, 6, one may note that the

results for the later are inconsistent. The main problem

of the mean-shift is that using the same parameter for the

Parzen window bandwidth, while on some images good re-

sults are achieved (as in figures 4-(d), 5-(d)), on others, dis-

turbing artifacts are obtained (5-(h))). Also on some cases

the resulting clusters are too large leading to insufficient

contrast (as in figure 6 (c) and (h)).

Comparison with blind deconvolution. In figure 7 the

proposed approach is demonstrated on a case where the nor-

mally exposed image is visibly blurred. To minimize the

time-lap between he two images, the normally exposes is

was acquired to be smaller and with distorted aspect ratio.

For deconvolution we have the blind patch recurrence solu-

tion [16]. Blind deconvolution introduces visible artifacts

by reducing the actual resolution.

6. Conclusions

In this paper we argue that, while facing potential mo-

tion blur is more efficient to underexpose images and per-

form color transfer for low-light compensation than imple-

ment blur deconvolution. Furthermore, we have introduced

a generative model for color transfer and we show that many

previously introduced methods may be retrieved as particu-

lar cases of it. At last we have introduced a color transfer

method that is shown to outperform related methods on a
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(a) Normal, Ev=0 (b) Underexposed Ev=-1 (c) Proposed

(d) Mean-Shift (e) Pitie et al. [19] (f) Pouli et al. [20]

(e) Normal, Ev=0 (f) Underexposed Ev=-1 (g) Proposed

(h) Mean-Shift (i) Pitie et al. [19] (j) Pouli et al. [20]
Figure 5. Comparison between proposed method and related work. One may note the mis-alignment between acquired images and the fact

the normally exposed image is slightly blurred.

substantially large image database.

Subjective evaluations show that images without visible

quality degradation are computed while underexposing with

2 EV stops (i.e. taking a quarter from the exposure time re-

quired by the scene nominal illumination). The algorithm is

subject to full optimization and may be implemented inside

a camera.
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