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Abstract

This paper presents a new approach for facial attribute

classification using a multi-task learning approach. Unlike

other approaches that uses hand engineered features, our

model learns a shared feature representation that is well-

suited for multiple attribute classification. Learning a joint

feature representation enables interaction between different

tasks. For learning this shared feature representation we

use a Restricted Boltzmann Machine (RBM) based model,

enhanced with a factored multi-task component to become

Multi-Task Restricted Boltzmann Machine (MT-RBM). Our

approach operates directly on faces and facial landmark

points to learn a joint feature representation over all the

available attributes. We use an iterative learning approach

consisting of a bottom-up/top-down pass to learn the shared

representation of our multi-task model and at inference we

use a bottom-up pass to predict the different tasks. Our ap-

proach is not restricted to any type of attributes, however,

for this paper we focus only on facial attributes. We eval-

uate our approach on three publicly available datasets, the

Celebrity Faces (CelebA), the Multi-task Facial Landmarks

(MTFL), and the ChaLearn challenge dataset. We show

superior classification performance improvement over the

state-of-the-art.

1. Introduction

Attribute prediction is an important topic in the computer

vision field and is applied in different fields such as enter-

tainment, advertising, and security. It is a challenging prob-

lem because faces can vary dramatically from one person

to the other and can be viewed under a variety of different

poses, occlusions, and lighting conditions. Attributes have

been used for object classification [12], part-based recog-

nition [4], comparison [32], scene understanding [39], face

∗Both authors equally contributed to this work.
†Author contributed to this work during his internship at SRI Interna-

tional as a part of the final year of his PhD at the University of Nottingham.

identification [35] and verification [21]. The focus of this

work is facial attributes prediction.

Recent work has been successful at predicting attributes

[25] using Convolution Neural Networks. We propose a

new model that learns a shared feature representation us-

ing multi-task learning. We use Restricted Boltzmann Ma-

chines (RBMs) [15] as our building block. We formulate

this problem as hybrid model that enhances the RBM model

with a multi-task component based on the work of [22] by

extend their formulation to account for multiple tasks re-

sulting in Multi-Task Restricted Boltzmann Machines (MT-

RBMs). We use an iterative learning approach consisting of

a bottom-up/top-down passes of contrastive divergence [14]

to learn the shared representation of our model and at infer-

ence we use a bottom-up pass to predict the different tasks.

Our approach operates directly on faces and facial landmark

points and learns a joint feature representation over all at-

tributes. We use an off the shelf face detector [17] and land-

mark point detector [43] as inputs to our model. This work

leads to a superior classification performance as well as effi-

cient representation shared between the different tasks. Fig-

ure 1 shows an block diagram of our approach. Our model

is trained jointly on normalized faces and facial landmark

points which are treated as multimodal inputs.

We evaluate our approach on three publicly available

datasets, the Celebrity Faces (CelebA) [35], the Multi-Task

Facial Landmarks (MTFL) [43], and the ChaLearn chal-

lenge dataset. We show superior classification performance

improvement over the state-of-the-art with reduced number

of model parameters.

Our contributions:

• New multi-task model for facial attributes detection.

• Evaluations on three multi-task public datasets.

Paper organization: In sec. 2 we discuss prior work. In

sec. 3 we give a brief background of similar models that mo-

tivate our approach, followed by a description of our model.

In sec. 4 we describe the inference and learning algorithms.

In sec. 5 we show quantitative results of our approach, fol-

lowed by the conclusion in sec. 6.
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Figure 1: Our approach starts with landmark localization on detected faces and PCA for dimensionality reduction and noise

elimination. Obtained landmark points and the PCA components are then fed into our MT-RBM model as two individual

modalities of the data.

2. Prior work

We first review literature on Facial Attribute Classifica-

tion; second we review Multi-Task Learning; Finally, we

review Representation Learning approaches.

Facial Attribute Classification: There are two main

directions to facial attribute classification, either local

or global methods. Local methods focus on extracting

features from landmarks to train a classifier for the different

attributes [4, 5, 8, 21, 26]. The problem with these methods

is that if the landmark detector fails, due to occlusion

or lighting noise, then their method would fail. Global

methods focused on processing the full face image to

extract a feature representation that is not reliant on the

landmark points [25, 34–36, 41, 43]. These methods were

able to outperform the local methods with a significant

margin. Our work follows the work of [25, 43], in addition,

we also benefit from the local methods by processing both

the image and the landmark points. [25] used Deep Neural

Networks to address the multi-task problem and applied it

to facial landmark detection and attribute classification.

Multi-Task Learning: Multi-task learning is a nat-

ural approach for problems that require simultaneous

solutions of several related problems [6]. Multi-task

learning approaches can be grouped into two main sets.

The first set focuses on regularizing the parameter space.

The main assumption is that there is an optimal shared

parameter space for all tasks. These approaches regularize

the parameter space by using a specific loss [11], methods

that manually define relationships [10], or more automatic

ways that estimate the latent structure of relationships

between tasks [9, 19, 27, 28, 44]. The second set focuses on

correlating relevant features jointly [3, 18, 30, 40]. Other

work focused on the schedule of which tasks should be

learned [29]. Multi-task learning achieved good results

on vision problems such as: person re-identification [33],

multiple attribute recognition [7], and tracking [42].

Deep Neural Networks (DNNs) were used for multi-task

learning and were applied successfully to facial landmark

detection [43], object localization and segmentation [38],

and attribute prediction [2]. Other work used multi-task

autoencoders [45] for object recognition in a generalized

domain [13], where the tasks are different domains.

Representation Learning: Rather than using hand-

crafted features suited for a specific problem [4, 5, 12], by

using HOG features, or mid-level features, deep learning

solved this problem by enabling automatically learned

features. It has been successfully applied to attribute

classification problems [16]. The main two directions

are Convolutional Neural Networks (CNNs) [23] and

Restricted Boltzmann Machines (RBMs) [15]. CNNs

were applied to applications on facial attributes, landmark

detection, verification and identification [8, 36, 41, 43].

RBMs have not been used as extensively. RBMs form

the building blocks of energy-based deep networks [15].

RBMs are trained using the Contrastive Divergence (CD)

algorithm [14]. CD demonstrated the ability of deep net-

works to capture feature distributions efficiently and learn

complex representations. RBMs can be stacked together to

form deeper networks known as Deep Boltzmann Machines

(DBMs). Discriminatively trained RBMs are a natural

extension of RBMs which have an additional discriminative

term for classification [22].
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3. Model

Rather than immediately defining our Multi-Task Multi-

modal RBM (MTM-RBM) model, we discuss a sequence of

models, gradually increasing in complexity. We start with

the basic RBM model (sec. 3.1), move to a discriminative

D-RBM (sec. 3.2), which we then extend to the multi-task

model MT-RBM (sec. 3.3), and then finally introduce the

multimodal MTM-RBM (sec. 3.4).

3.1. Restricted Boltzmann Machines

RBMs [31] shown in Figure 2(a), define a probability

distribution pR as a Gibbs distribution (1), where v is a vec-

tor of visible nodes, h is a vector of hidden nodes, ER is the

energy function, Z is the partition function, θ are the model

parameters. a and b are the biases for v and h respectively,

and W is the weight matrix. The RBM is fully connected

between layers, with no lateral connections. This architec-

ture implies that v and h are factorial given one of the two

vectors. This allows for the exact computation of pR(v|h)
and pR(h|v).

pR(h,v) = exp[−ER(h,v)]
Z(θ) ,

Z(θ) =
∑

h,v exp[−ER(h,v)],

θ =

[

{a,b} -bias,
{W } -fully connected

]

(1)

In case of binary valued data vi is defined as a logistic func-

tion. In case of real valued data, vi is defined as a multivari-

ate Gaussian distribution with a unit covariance. A binary

valued hidden layer hj is defined as a logistic function such

that the hidden layer is sparse [37]. The probability distri-

butions over v and h are defined as in (2).

pR(vi = 1|h) = σ(ai +
∑

j hjwij), Binary,

pR(vi|h) = N (ai +
∑

j hjwij , 1), Real,

pR(hj = 1|v) = σ(bj +
∑

i viwij), Binary.

(2)

The energy ER for the real valued v is defined as in (3).

ER(h,v) =
∑

i

(ai − vi)
2

2
−
∑

j

bjhj −
∑

i,j

viwijhj (3)

3.2. Discriminative Restricted Boltzmann Machines

DRBMs, shown in Figure 2(b), are a natural extension

of RBMs which have an additional discriminative term for

classification [22]. The DRBM defines a probability distri-

(a) RBM

(b) D-RBM

(c) MT-RBM

(d) MTM-RBM

Figure 2: The representation learning models described in

sections 3.1, 3.2, 3.3, and 3.4: (a) RBM (b) DRBM (c) MT-

RBM (d) MTM-RBM.
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bution pDR as a Gibbs distribution (4).

pDR(y,v,h|v) = exp[−EDR(y,v,h)]
Z(θ) ,

Z(θ) =
∑

y,v,h exp[−EDR(y,v,h)],

θ =

[

{a,b, s} -bias,
{W ,U } -fully connected

]

(4)

The probability distribution over the visible layer will fol-

low the same distributions as in (2). The hidden layer h is

defined as a function of the labels y and the visible nodes

v. Also, a new probability distribution for the classifier is

defined to relate the label y to the hidden nodes h as in (5).

pDR(vi|h) = N (ai +
∑

j hjwij , 1),

pDR(hj = 1|yl,v) = σ(bj + ujl +
∑

i viwij),

pDR(yl|h) =
exp[sl+

∑
j
ujlhj ]

∑
l∗

exp[sl∗+
∑

j
ujl∗hj ]

.

(5)

The new energy EDR is defined similar to (6),

EDR(y,v,h) = ER(v,h)
︸ ︷︷ ︸

Generative

−
∑

l

slyl −
∑

j,l

hjujlyl

︸ ︷︷ ︸

Discriminative

(6)

3.3. Multi­Task Restricted Boltzmann Machines

In the same way the RBMs can be extended to the DC-

RBMs by adding a discriminative term to the model, we can

extend the RBMs to be multi-task MT-RBMs shown in Fig-

ure 2(c). MT-RBMs define the probability distribution pMT

as a Gibbs distribution (7). The MT-RBMs learn a shared

representation layer for all tasks.

pMT(y
L,h,v) = exp[−EDC(y

L,h,v)]
Z(θ) ,

Z(θ) =
∑

y,h,v exp[−EMT(y
L,h,v)],

θ =

[

{a,b, sL} -bias,
{W ,UL} -fully connected.

]

(7)

The probability distribution over the visible layer will fol-

low the same distributions as in (5). The hidden layer h is

defined as a function of the multi-task labels yL and the vis-

ible nodes v. A new probability distribution for the multi-

task classifier is defined to relate the multi-task labels yL to

(a) Unimodal MT-RBM

(b) Fusion MT-RBM

Figure 3: We first classify the unimodal data by activating

the corresponding hidden layers hm as shown in (a), fol-

lowed by classifying the multimodal data by activating the

fusion layer h as shown in (b).

the hidden nodes h as shown in (8).

pMT(vi|h, ) = N (ci +
∑

j hjwij , 1),

pMT(hj = 1|yL,v) = σ(dj +
∑

l,k y
l
ku

l
jk +

∑

i vi,twij),

pMT(y
l
k|h) =

exp[slk+
∑

j
ul
jkhj ]

∑
k∗ exp[sl

k∗
+
∑

j
ul
jk∗

hj ]
.

(8)

The energy for the model shown in Figure 2(c), EMT, is

defined as in (9).

EMT(y
L,h,v) = EC(v,h)

︸ ︷︷ ︸

Generative

−
∑

k,l

slky
l
k −

∑

j,k,l

hjujky
l
k

︸ ︷︷ ︸

Multi-Task

(9)

3.4. Multi­Task Multimodal Restricted Boltzmann
Machines

We can naturally extend MT-RBM to MTM-RBM shown

in Figure 2(d). A MTM-RBM combines a collection of uni-

modal MT-RBMs, one for each visible modality. The hid-

den representations produced by the unimodal MT-RBMs

are then treated as the visible vector of a single fusion MT-

RBMs. The result is a MTM-RBM model that relates mul-

tiple temporal modalities to multi-task classification labels.
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MTM-RBMs define the probability distribution pMTM as a

Gibbs distribution (10). The MTM-RBMs learn an extra

representation layer for each of the modalities, which learns

a modality specific representation as well as the shared layer

for all the tasks.

pMTM(yL,h,h1:M ,v1:M ) =

exp[−EMTM(yL,h,h1:M ,v1:M ]/Z(θ),

Z(θ) =
∑

y,v,h exp[−EMTM(yL,h,h1:M ,v1:M ),

θ =

[

{a1:M ,b1:M , e, sL} -bias,
{W 1:M ,U 1:M ,W ,UL} -fully connected.

]

(10)

Similar to the MT-RBMs (8), the hidden layer h is defined

as a function of the labels yL and the visible nodes v. A

new probability distribution for the classifier is defined to

relate the label yL to the hidden nodes h as in (11).

pMTM(vmi |hm) = N (ami +
∑

j h
m
j wm

ij , 1),

pMTM(hm
j = 1|yL,vm) = σ(bmj +

∑

l,k yl
k
ul
jk

+
∑

i v
m
i wm

ij ),

pMTM(yl
k
|hm) =

exp[slk+
∑

j u
m,l
jk

hm
j ]

∑
l∗ exp[sl

k∗
+
∑

j u
m,l

jk∗
hm
j

]
,

pMTM(hn = 1|yL,h1:M ) = σ(en +
∑

l,k yl
k
ul
nk

+
∑

m,j h
m
j wm

jn),

pMTM(yl
k
|h) =

exp[slk+
∑

j ul
nkhn]

∑
k∗ exp[sl

k∗
+
∑

n ul
nk∗

hn]
.

(11)

The new energy function EMTM is defined in (12) similar to

that of the MT-RBMs (7).

EMTM(yL,h,h1:M ,v1:M ) =
∑

m

EMT(y
L,hm,vm)

︸ ︷︷ ︸

Unimodal

−
∑

j

fnhn −
∑

j,k,m

hm
j wjnhn

︸ ︷︷ ︸

Fusion

−
∑

k,l

slky
l
k −

∑

n,k,l

hnu
l
nky

l
k

︸ ︷︷ ︸

Multi-Task

(12)

4. Inference and Learning

Inference is described for the MTM-RBM since it is the

most general case. To perform classification at time t given

v1:M we use a bottom-up approach, computing the mean

of each node given the activation coming from the nodes

below it; that is, we compute the mean of hm using vm for

each modality, then we compute the mean of h, followed

by computation of the mean of yL for each task using

h, obtaining the classification probabilities for each task.

Figure 3 illustrates our inference approach. Inference in the

MT-RBM is the same as the MTM-RBM, except there is

only one modality, and inference in the D-RBM is the same

as the MT-RBM, except there is only one task.

Learning our model is done using Contrastive Divergence

(CD) [14], where 〈·〉data is the expectation with respect to

the data and 〈·〉recon is the expectation with respect to the

reconstruction. The learning is done using two steps: a

bottom-up pass and a top-down pass using sampling equa-

tions from (5) for D-RBM, (8) for MT-RBM, and (11) for

MTM-RBM. In the bottom-up pass the reconstruction is

generated by first sampling the unimodal layers p(hm
j =

1|vm, yl) for all the hidden nodes in parallel. This is fol-

lowed by sampling the fusion layer p(hn = 1|yLk ,h
1:M . In

the top-down pass the unimodal layer is generated using the

activated fusion layer p(hm
j = 1|h, yLk ). This is followed

by sampling the visible nodes p(vmi |hm) for all the visi-

ble nodes in parallel. The gradient updates are described

in (13). A similar learning algorithm can be applied to D-

RBM and MT-RBM could be done.

∆ai ∝ 〈vmi 〉data − 〈vmi 〉recon,
∆bj ∝ 〈hm

j 〉data − 〈hm
j 〉recon,

∆en ∝ 〈hn〉data − 〈hn〉recon,
∆slk ∝ 〈ylk〉data − 〈ylk〉recon,
∆wm

i,j ∝ 〈vmi hm
j 〉data − 〈vmi hm

j 〉recon,
∆wj,k ∝ 〈hm

j hn〉data − 〈hm
j hn〉recon,

∆uL
nk ∝ 〈ylkhn〉data − 〈ylkhn〉recon.

(13)

5. Experiments

We now describe the datasets in (sec 5.1), specify the

implementation details in (sec 5.2), and present our quanti-

tative results in (sec 5.3).

5.1. Datasets

Our problem is very particular in that we focus on

multi-task learning for facial landmark detection. We found

three publicly available datasets that vary in size to evaluate

our approach, the Celebrity Faces Attributes dataset (Celeb

A) [35], Multi-Task Facial Landmark (MTFL) dataset [43],

and the ChaLearn Challenge dataset [1]. In the following

subsections we describe each of the datasets.

Celebrity Faces Attributes (Celeb A) [35]: We use

the CelebFaces dataset which contains 202,599 face

images of 10,177 identities (celebrities) collected from

the Internet and annotated with 40 attributes and 5 facial

landmark points. The dataset is split into 162,770 instances

for training and 19,962 instances for testing. For this

dataset we compare our results against the state-of-the-

art [20,24,25,41]. The CelebA dataset contains annotations

of the following 40 binary attributes: {5 o’Clock Shadow,

Arched Eyebrows, Attractive, Bags Under Eyes, Bald,

Bangs, Big Lips, Big Nose, Black Hair, Blond Hair, Blurry,

Brown Hair, Bushy Eyebrows, Chubby, Double Chin,

Eyeglasses, Goatee, Gray Hair, Heavy Makeup, High

Cheekbones, Male, Mouth Slightly Open, Mustache, Nar-

row Eyes, No Beard, Oval Face, Pale Skin, Pointy Nose,
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Classifier Gender (2) Smile (2) Glasses (2) Pose (5)

SVM (LMP) 58.8 62.4 91.9 61.3

SVM (PCA) 54.5 39.1 91.9 60.9

SVM (LMP, PCA) 54.5 39.2 91.9 60.9

MT-RBMs(LMP) 59.5 75.2 91.9 68.4

MT-RBMs(PCA) 74.2 77.2 93.3 75.1

MT-RBMs(LMP,PCA) 73.0 79.0 93.1 75.0

MTM-RBMs(LMP,PCA) 79.0 79.0 93.1 75.7

Table 2: Average Classification Accuracy on the MTFL dataset.

Classifier Gender (2) Smile (2)

SVM (LMP) 54.6 69.5

SVM (PCA) 55.4 63.6

SVM (LMP,PCA) 55.4 63.6

MT-RBM (LMP) 62.8 73.8

MT-RBM (PCA) 70.3 78.0

MT-RBM (LMP,PCA) 69.9 79.0

MTM-RBM (LMP,PCA) 71.7 80.8

Table 3: Average Classification Accuracy on the validation partition of the ChaLearn dataset.

Receding Hairline, Rosy Cheeks, Sideburns, Smiling,

Straight Hair, Wavy Hair, Wearing Earrings, Wearing Hat,

Wearing Lipstick, Wearing Necklace, Wearing Necktie,

Young}.

Multi-Task Facial Landmark (MTFL) [43]: This

dataset was collected for the purpose of facial landmark

detection using attributes. However, we decided to use it

for attributes classification. The dataset is annotated by 4

different attributes and annotated with 5 facial landmark

points. This is a medium sized dataset compared to

CelebA. It consists of 10,000 instances for training and

2,995 instances for testing. The MTFL dataset is annotated

for Smile (S) ∈ {Yes, No}, Gender (G) ∈ {Male, Female}
and Glasses (GL) ∈ {Yes, No}.

ChaLearn Smile-Gender [1]: The goal of this dataset is to

classify images from the FotW dataset according to gender

and basic expression. The data is challenging even to the

human eye in uncontrolled environments, such as those

present in the FotW dataset. ChaLearn is a rather small

dataset in comparison with CelebA and MTFL. It consists

of 6,171 instances for training, 3,087 for validation, and

11,145 for testing. The ChaLearn dataset is only annotated

for Smile (S) ∈ {Yes, No} and Gender (G) ∈ {Male,

Female}.

5.2. Implementation Details

Given an image, we first run an off the shelf face detec-

tion algorithm [17]. After that we applied a landmark point

(LMP) detector [43] outputting 68 landmark point coordi-

nates in the image plane coordinate space. We use the land-

mark points to align the faces by averaging the eye points

such that there are 6 points for each eye. Using the cen-

troid for each eye and the centroid for the mouth we com-

pute an affine transformation that projects the left and right

eyes as well as the mouth to fixed coordinates on the image

plane being (100, 100), (300, 100) and (200, 300) respec-

tively. We then use this transformation to warp the original

images and crop them to be 400× 400 in size. We then re-

duce the dimensionality of the obtained images using PCA

to 500. There are different tasks defined for each dataset

depending on the given annotations.

Note that in our MT-RBM model, the tasks are assumed

conditionally independent given the hidden representation.

Thus the number of parameters needed for the hidden-label

edges is H ·
∑L

k=1 Yk, where H is the dimensionality of

the hidden layer and Yk is the number of classes for task k.

Contrast this to the number of parameters needed if instead

the tasks are flattened as a Cartesian product, H ·
∏L

k=1 Yk.

Our factored representation of the multiple tasks uses only

linearly many parameters instead of the exponentially many

parameters needed for the flattened representation.
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Approach [20] [41] [41] [24] [25] [25] MT-RBM

Attribute W L ANet LNet Full PCA

5 O.C. Shadow 85 82 88 86 88 91 90

Arched Eyebrow 76 73 78 75 74 79 77

Attractive 78 77 81 79 77 81 76

Bags Under Eye 76 71 79 77 73 79 81

Bald 89 92 96 92 95 98 98

Bangs 88 89 92 94 92 95 88

Big Lips 64 61 67 63 66 68 69

Big Nose 74 70 75 74 75 78 81

Black Hair 70 74 85 77 84 88 76

Blond Hair 80 81 93 86 91 95 91

Blurry 81 77 86 83 80 84 95

Brown Hair 60 69 77 74 78 80 83

Bushy Eyebrow 80 76 86 80 85 90 88

Chubby 86 82 86 86 86 91 95

Double Chin 88 85 88 90 88 92 96

Eyeglasses 98 94 98 96 96 99 96

Goatee 93 86 93 92 92 95 96

Gray Hair 90 88 94 93 93 97 97

Heavy Makeup 85 84 90 87 85 90 85

High Cheekbone 84 80 86 85 84 87 83

Male 91 93 97 95 94 98 90

Mouth Open 87 82 93 85 86 92 82

Mustache 91 83 93 87 91 95 97

Narrow Eyes 82 79 84 83 77 81 86

No Beard 90 87 93 91 92 95 90

Oval Face 64 62 65 65 63 66 73

Pale Skin 83 84 91 89 87 91 96

Pointy Nose 68 65 71 67 70 72 73

Recede Hair 76 82 85 84 85 89 92

Rosy Cheeks 84 81 87 85 87 90 94

Sideburns 94 90 93 94 91 96 96

Smiling 89 89 92 92 88 92 88

Straight Hair 63 67 69 70 69 73 80

Wavy Hair 73 76 77 79 75 80 72

Earring 73 72 78 77 78 82 81

Hat 89 91 96 93 96 99 97

Lipstick 89 88 93 91 90 93 89

Necklace 68 67 67 70 68 71 87

Necktie 86 88 91 90 86 93 94

Young 80 77 84 81 83 87 81

Average 81 79 85 83 83 87 87

Table 1: Average Classification Accuracy on the CelebA

dataset.

5.3. Quantitative Results

We first define baselines and variants followed by the

classification accuracy results on the three datasets.

Baselines and Variants: We use SVMs as our baseline

method and define the following variants of our approach:

MT-RBM, which is our multi-task model presented in

Section 3.3, and MTM-RBM, which is the multi-modal

multi-task model presented in Section 3.4. We define

MT-RBM (LMP) and MT-RBM (PCA) as models that use

either facial landmarks or PCA components extracted from

face images as input, respectively. MT-RBM (LMP,PCA)

performs early fusion of the features and feeds them to

the model. MTM-RBM (LMP,PCA) performs multimodal

fusion by treating each feature type as a modality.

In order to tune the network parameters we performed a

grid search, varying the number of hidden nodes per layer

in the range of {10, 30, 50, 70, 100, 200, 500, 1000}. The

best results were obtained using 500 hidden units.

Attribute Classification: For the CelebA dataset, Ta-

ble 1 shows the results of other methods as well as our

MT-RBM (PCA). We follow the same evaluation protocol

provided in [4]. We compare against the state of the art

methods FaceTracer [20], PANDA-W [41], which obtains

the face parts by applying the state-of-the-art face detec-

tion [20] and alignment [34], PANDA-L [41], which is the

same approach as PANDA-W, except that it operates on the

ground truth bounding boxes. We also compared against

LocalizationNet and AttributeNet [25], which use a set of

CNNs bootstrapped together for face detection and attribute

classification. Our approach ties with the best performing

method [25] on the averaged results, outperforming it in 18

attributes and tying in 3 attributes. Note that our MT-RBM

(PCA) does not use any convolutions and is relatively

simple compared to that of [25]).

Tables 2 and 3 show our average classification accuracy

for the MTFL and ChaLearn datasets respectively using dif-

ferent features and baseline combinations as well as the re-

sults from our models, since there are no other results avail-

able. We can see that the MTM-RBM outperforms all the

other models in both cases, thereby demonstrating its effec-

tiveness on predicting multi-task labels correctly. The test

partition of the ChaLearn was not made publicly available,

hence the methods presented above were evaluated on the

validation data.

6. Conclusion and Future Work

We proposed a new Multi-Task Restricted Boltzmann

Machine (MT-RBM), that models the distributions of multi-

ple attributes and classifies them. An extensive experimen-

tal evaluation of these models on three different datasets of
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varying size demonstrates the superiority of our approach

over the state-of-the-art for attribute classification. We were

able to model global features (PCA) as well as local features

(landmark points) and fuse them resulting in a new power-

ful representation for attribute classification. Our approach

did not use any convolutions or processing of the data and

was able to tie with the state-of-the-art method that uses

CNNs. This improvement in classification performance is

done with an efficient use of model parameters via factor-

ization across tasks. The factorization of tasks used in our

approach means the number of parameters grows only lin-

early with the number of tasks and classes. This is seen

to be significant when contrasted with a single-task model

that uses a flattened Cartesian product of tasks, where the

number of parameters grows exponentially with the number

of tasks. Our factorized approach makes adding additional

tasks a trivial matter. For future work we plan to explore

the relationships between different attributes and structured

models.
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