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Abstract

This paper presents a new approach for facial attribute
classification using a multi-task learning approach. Unlike
other approaches that uses hand engineered features, our
model learns a shared feature representation that is well-
suited for multiple attribute classification. Learning a joint
feature representation enables interaction between different
tasks. For learning this shared feature representation we
use a Restricted Boltzmann Machine (RBM) based model,
enhanced with a factored multi-task component to become
Multi-Task Restricted Boltzmann Machine (MT-RBM). Our
approach operates directly on faces and facial landmark
points to learn a joint feature representation over all the
available attributes. We use an iterative learning approach
consisting of a bottom-up/top-down pass to learn the shared
representation of our multi-task model and at inference we
use a bottom-up pass to predict the different tasks. Our ap-
proach is not restricted to any type of attributes, however,
for this paper we focus only on facial attributes. We eval-
uate our approach on three publicly available datasets, the
Celebrity Faces (CelebA), the Multi-task Facial Landmarks
(MTFL), and the ChaLearn challenge dataset. We show
superior classification performance improvement over the
state-of-the-art.

1. Introduction

Attribute prediction is an important topic in the computer
vision field and is applied in different fields such as enter-
tainment, advertising, and security. It is a challenging prob-
lem because faces can vary dramatically from one person
to the other and can be viewed under a variety of different
poses, occlusions, and lighting conditions. Attributes have
been used for object classification [12], part-based recog-
nition [4], comparison [32], scene understanding [39], face
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identification [35] and verification [
work is facial attributes prediction.

]. The focus of this

Recent work has been successful at predicting attributes
[25] using Convolution Neural Networks. We propose a
new model that learns a shared feature representation us-
ing multi-task learning. We use Restricted Boltzmann Ma-
chines (RBMs) [15] as our building block. We formulate
this problem as hybrid model that enhances the RBM model
with a multi-task component based on the work of [22] by
extend their formulation to account for multiple tasks re-
sulting in Multi-Task Restricted Boltzmann Machines (MT-
RBMs). We use an iterative learning approach consisting of
a bottom-up/top-down passes of contrastive divergence [14]
to learn the shared representation of our model and at infer-
ence we use a bottom-up pass to predict the different tasks.
Our approach operates directly on faces and facial landmark
points and learns a joint feature representation over all at-
tributes. We use an off the shelf face detector [ 7] and land-
mark point detector [43] as inputs to our model. This work
leads to a superior classification performance as well as effi-
cient representation shared between the different tasks. Fig-
ure 1 shows an block diagram of our approach. Our model
is trained jointly on normalized faces and facial landmark
points which are treated as multimodal inputs.

We evaluate our approach on three publicly available
datasets, the Celebrity Faces (CelebA) [35], the Multi-Task
Facial Landmarks (MTFL) [43], and the Chalearn chal-
lenge dataset. We show superior classification performance
improvement over the state-of-the-art with reduced number
of model parameters.

Our contributions:
e New multi-task model for facial attributes detection.

e Evaluations on three multi-task public datasets.
Paper organization: In sec. 2 we discuss prior work. In
sec. 3 we give a brief background of similar models that mo-
tivate our approach, followed by a description of our model.
In sec. 4 we describe the inference and learning algorithms.
In sec. 5 we show quantitative results of our approach, fol-
lowed by the conclusion in sec. 6.
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Figure 1: Our approach starts with landmark localization on detected faces and PCA for dimensionality reduction and noise
elimination. Obtained landmark points and the PCA components are then fed into our MT-RBM model as two individual

modalities of the data.

2. Prior work

We first review literature on Facial Attribute Classifica-
tion; second we review Multi-Task Learning; Finally, we
review Representation Learning approaches.

Facial Attribute Classification: There are two main
directions to facial attribute classification, either local
or global methods. Local methods focus on extracting
features from landmarks to train a classifier for the different
attributes [4, 5, 8,21,26]. The problem with these methods
is that if the landmark detector fails, due to occlusion
or lighting noise, then their method would fail. Global
methods focused on processing the full face image to
extract a feature representation that is not reliant on the
landmark points [25, 34-36,41,43]. These methods were
able to outperform the local methods with a significant
margin. Our work follows the work of [25,43], in addition,
we also benefit from the local methods by processing both
the image and the landmark points. [25] used Deep Neural
Networks to address the multi-task problem and applied it
to facial landmark detection and attribute classification.

Multi-Task Learning: Multi-task learning is a nat-
ural approach for problems that require simultaneous
solutions of several related problems [6]. Multi-task
learning approaches can be grouped into two main sets.
The first set focuses on regularizing the parameter space.
The main assumption is that there is an optimal shared
parameter space for all tasks. These approaches regularize
the parameter space by using a specific loss [ 1], methods
that manually define relationships [10], or more automatic
ways that estimate the latent structure of relationships

between tasks [9, 19,27,28,44]. The second set focuses on
correlating relevant features jointly [3, 18, 30, 40]. Other
work focused on the schedule of which tasks should be
learned [29]. Multi-task learning achieved good results
on vision problems such as: person re-identification [33],
multiple attribute recognition [7], and tracking [42].
Deep Neural Networks (DNNs) were used for multi-task
learning and were applied successfully to facial landmark
detection [43], object localization and segmentation [38],
and attribute prediction [2]. Other work used multi-task
autoencoders [45] for object recognition in a generalized
domain [13], where the tasks are different domains.

Representation Learning: Rather than using hand-
crafted features suited for a specific problem [4, 5, 12], by
using HOG features, or mid-level features, deep learning
solved this problem by enabling automatically learned
features. It has been successfully applied to attribute
classification problems [16]. The main two directions
are Convolutional Neural Networks (CNNs) [23] and
Restricted Boltzmann Machines (RBMs) [15]. CNNs
were applied to applications on facial attributes, landmark
detection, verification and identification [8, 36, 41, 43].
RBMs have not been used as extensively. RBMs form
the building blocks of energy-based deep networks [15].
RBMs are trained using the Contrastive Divergence (CD)
algorithm [14]. CD demonstrated the ability of deep net-
works to capture feature distributions efficiently and learn
complex representations. RBMs can be stacked together to
form deeper networks known as Deep Boltzmann Machines
(DBMs). Discriminatively trained RBMs are a natural
extension of RBMs which have an additional discriminative
term for classification [22].
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3. Model

Rather than immediately defining our Multi-Task Multi-
modal RBM (MTM-RBM) model, we discuss a sequence of
models, gradually increasing in complexity. We start with
the basic RBM model (sec. 3.1), move to a discriminative
D-RBM (sec. 3.2), which we then extend to the multi-task
model MT-RBM (sec. 3.3), and then finally introduce the
multimodal MTM-RBM (sec. 3.4).

3.1. Restricted Boltzmann Machines

RBMs [31] shown in Figure 2(a), define a probability
distribution pg as a Gibbs distribution (1), where v is a vec-
tor of visible nodes, h is a vector of hidden nodes, Ek is the
energy function, 7 is the partition function, @ are the model
parameters. a and b are the biases for v and h respectively,
and W is the weight matrix. The RBM is fully connected
between layers, with no lateral connections. This architec-
ture implies that v and h are factorial given one of the two
vectors. This allows for the exact computation of pg(v|h)
and pg (h|v).

pR(h7 V) = W7
Z0) = >, exp[—Er(h,v)], N
0 = {a7 b}

-bias,

{W?} -fully connected

In case of binary valued data v; is defined as a logistic func-
tion. In case of real valued data, v, is defined as a multivari-
ate Gaussian distribution with a unit covariance. A binary
valued hidden layer h; is defined as a logistic function such
that the hidden layer is sparse [37]. The probability distri-
butions over v and h are defined as in (2).

pR(Ui = 1|h) = O'(CLZ‘ —+ Z_j hjwij), Binary,
pR(’Ul|h) = N((ZZ + Zj hjwij, 1), Real,
pR(hj = 1|V) = U(bj + Zl 'inij)7 Binary.
2)

The energy Ex for the real valued v is defined as in (3).
(ai — v;)*
Er(h,v) = Z e XJ: bihj — z]: viwizhy (3)

3.2. Discriminative Restricted Boltzmann Machines

DRBMs, shown in Figure 2(b), are a natural extension
of RBMs which have an additional discriminative term for
classification [22]. The DRBM defines a probability distri-
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Figure 2: The representation learning models described in
sections 3.1, 3.2, 3.3, and 3.4: (a) RBM (b) DRBM (c) MT-
RBM (d) MTM-RBM.
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bution ppg as a Gibbs distribution (4).

por(y, v, hlv) = —CXP[_%(Réf”v’h)]v
Z(e) = Zy,v,h eXp[_EDR(Y7V7h)]7
0 — {a, b, s} -bias
~ |{W,U} -fully connected
“)

The probability distribution over the visible layer will fol-
low the same distributions as in (2). The hidden layer h is
defined as a function of the labels y and the visible nodes
v. Also, a new probability distribution for the classifier is
defined to relate the label y to the hidden nodes h as in (5).

por(vilh) = N(a; +32; hjwi;, 1),

por(hj =1y, v) = o(bj +uu+ 3 viwig),  (5)

exp[si+3°; ujih;l
2o eXP[Sl*"’Z_,’ ujixhyl”

por(yi|h)

The new energy Fpr is defined similar to (6),

Z S1Y1 — Z hjujiy

Discriminative

Epr(y,v,h) = Er(v,h) —
A/—’

(6)

Generative

3.3. Multi-Task Restricted Boltzmann Machines

In the same way the RBMs can be extended to the DC-
RBMs by adding a discriminative term to the model, we can
extend the RBMs to be multi-task MT-RBMs shown in Fig-
ure 2(c). MT-RBMs define the probability distribution pyr
as a Gibbs distribution (7). The MT-RBMs learn a shared
representation layer for all tasks.

exp|— L v
par(y" hv) = SRRl
Z(0) >y mv eXP[—Eur(y", h, V)],
0 — {a,b,s’} -bias,
{W,U%*} -fully connected.

@)
The probability distribution over the visible layer will fol-
low the same distributions as in (5). The hidden layer h is
defined as a function of the multi-task labels y* and the vis-
ible nodes v. A new probability distribution for the multi-
task classifier is defined to relate the multi-task labels v to
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(b) Fusion MT-RBM

Figure 3: We first classify the unimodal data by activating
the corresponding hidden layers h™ as shown in (a), fol-
lowed by classifying the multimodal data by activating the
fusion layer h as shown in (b).

the hidden nodes h as shown in (8).

pur(vilh,) = N(ei+ Zj hjw;j, 1),

pumr(h; = ly*,v) = o(d; + Zl,k yiuék + 225 viawij),

explsj +3; ulyhy)
Zk* eXp[SL* +Ej ué-k* hj] '

pur(yilh) =
(8)

The energy for the model shown in Figure 2(c), Fur, is
defined as in (9).

Eur(y®,h,v) = Ec(v,h) Zskyk Zh Ujkyh

Generative ikl
Multi-Task
)
3.4. Multi-Task Multimodal Restricted Boltzmann

Machines

We can naturally extend MT-RBM to MTM-RBM shown
in Figure 2(d). A MTM-RBM combines a collection of uni-
modal MT-RBMs, one for each visible modality. The hid-
den representations produced by the unimodal MT-RBMs
are then treated as the visible vector of a single fusion MT-
RBMs. The result is a MTM-RBM model that relates mul-
tiple temporal modalities to multi-task classification labels.
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MTM-RBMs define the probability distribution pyry as a
Gibbs distribution (10). The MTM-RBMs learn an extra
representation layer for each of the modalities, which learns
a modality specific representation as well as the shared layer
for all the tasks.

pMTM(yL7 h7 hl:Mv V1ZM)

eXp[_EMTM(yL, h7 hl:Ma VI:M]/Z(0)7

2(0) =3, v nexp[—Bvmm(y", b, b v,
{atM p:M e gL} -bias,

{wtM M W UL} -fully connected.
(10)

Similar to the MT-RBMs (8), the hidden layer h is defined

as a function of the labels y~ and the visible nodes v. A

new probability distribution for the classifier is defined to

relate the label y” to the hidden nodes h as in (11).

pmrm(v]* [h™) N(a* + 32, hPwit, 1),

0:

m

pvrm (R = 1y%, v™)

N
explsi,+3; uly AT

N k]
Siv explsh. +5, ulp b

purm (v} |h™)

L hl:]bf)

pmrm (hn = 1)y

exp[s%c—kzj ulnkhn]
S explsL A5, wl ]

pyrm (vl h)

1

The new energy function Eyqy is defined in (12) similar to
that of the MT-RBMs (7).

BEvrm(y?, b, hEM vEM) = 3 " Byr(y" W™, v™)
m

Unimodal
h A wa b [ h l l
- fnhn — j Winltn — SpYk — nUn Yk
7 7,k,m k,l n,k,l
Fusion Multi-Task

12

4. Inference and Learning

Inference is described for the MTM-RBM since it is the
most general case. To perform classification at time ¢ given
vI'M we use a bottom-up approach, computing the mean
of each node given the activation coming from the nodes
below it; that is, we compute the mean of h" using v for
each modality, then we compute the mean of h, followed
by computation of the mean of y” for each task using
h, obtaining the classification probabilities for each task.
Figure 3 illustrates our inference approach. Inference in the
MT-RBM is the same as the MTM-RBM, except there is
only one modality, and inference in the D-RBM is the same
as the MT-RBM, except there is only one task.

oen + 32) k Yptbyy + 2 j BT W

o0 + 30; k viuly + 2 vt wl),

m
jn

Learning our model is done using Contrastive Divergence
(CD) [14], where (-)4qzq is the expectation with respect to
the data and (-),econ is the expectation with respect to the
reconstruction. The learning is done using two steps: a
bottom-up pass and a top-down pass using sampling equa-
tions from (5) for D-RBM, (8) for MT-RBM, and (11) for
MTM-RBM. In the bottom-up pass the reconstruction is
generated by first sampling the unimodal layers p(hgn
1|v™ y;) for all the hidden nodes in parallel. This is fol-
lowed by sampling the fusion layer p(h,, = 1|yF, h*M. In
the top-down pass the unimodal layer is generated using the
activated fusion layer p(h* = 1|h,yf). This is followed
by sampling the visible nodes p(v!"|h™) for all the visi-
ble nodes in parallel. The gradient updates are described
in (13). A similar learning algorithm can be applied to D-
RBM and MT-RBM could be done.

Aai X <,Uzrn>data - <v1m>recona
Ab] X <h;'n>data - <hjm>recony
Aen X <hn>data - <hn recons
AS%@ X <y§€>data - <y§c>recon7 (13)
Awm < (v h§”>dam - (v h;”)mcon,
Wik X <h?hn>data <hmhn>7'econ7
Aurll/k S <ykhﬂ>dattl <ykhn>recon~

5. Experiments

)7

We now describe the datasets in (sec 5.1), specify the
implementation details in (sec 5.2), and present our quanti-
tative results in (sec 5.3).

5.1. Datasets

Our problem is very particular in that we focus on
multi-task learning for facial landmark detection. We found
three publicly available datasets that vary in size to evaluate
our approach, the Celebrity Faces Attributes dataset (Celeb
A) [35], Multi-Task Facial Landmark (MTFL) dataset [43],
and the ChaLearn Challenge dataset [1]. In the following
subsections we describe each of the datasets.

Celebrity Faces Attributes (Celeb A) [35]: We use
the CelebFaces dataset which contains 202,599 face
images of 10,177 identities (celebrities) collected from
the Internet and annotated with 40 attributes and 5 facial
landmark points. The dataset is split into 162,770 instances
for training and 19,962 instances for testing. For this
dataset we compare our results against the state-of-the-
art [20,24,25,41]. The CelebA dataset contains annotations
of the following 40 binary attributes: {5 o’Clock Shadow,
Arched Eyebrows, Attractive, Bags Under Eyes, Bald,
Bangs, Big Lips, Big Nose, Black Hair, Blond Hair, Blurry,
Brown Hair, Bushy Eyebrows, Chubby, Double Chin,
Eyeglasses, Goatee, Gray Hair, Heavy Makeup, High
Cheekbones, Male, Mouth Slightly Open, Mustache, Nar-
row Eyes, No Beard, Oval Face, Pale Skin, Pointy Nose,
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Classifier |Gender (2)[Smile (2)|Glasses (2)[Pose (5)]
SVM (LMP) 58.8 62.4 91.9 61.3
SVM (PCA) 54.5 39.1 91.9 60.9
SVM (LMP, PCA) 54.5 39.2 91.9 60.9
MT-RBMs(LMP) 59.5 75.2 91.9 68.4
MT-RBMs(PCA) 74.2 77.2 93.3 75.1
MT-RBMs(LMP,PCA) 73.0 79.0 93.1 75.0
MTM-RBMs(LMP,PCA) 79.0 79.0 93.1 75.7

Table 2: Average Classification Accuracy on the MTFL dataset.

’ Classifier

\Gender 2) \ Smile (2)‘

SVM (LMP)

SVM (PCA)

SVM (LMP,PCA)

MT-RBM (LMP)

MT-RBM (PCA)

MT-RBM (LMP,PCA)

MTM-RBM (LMP,PCA)

54.6 69.5
554 63.6
554 63.6
62.8 73.8
70.3 78.0
69.9 79.0
71.7 80.8

Table 3: Average Classification Accuracy on the validation partition of the Chal.earn dataset.

Receding Hairline, Rosy Cheeks, Sideburns, Smiling,
Straight Hair, Wavy Hair, Wearing Earrings, Wearing Hat,
Wearing Lipstick, Wearing Necklace, Wearing Necktie,
Young}.

Multi-Task Facial Landmark (MTFL) [43]: This
dataset was collected for the purpose of facial landmark
detection using attributes. However, we decided to use it
for attributes classification. The dataset is annotated by 4
different attributes and annotated with 5 facial landmark
points. This is a medium sized dataset compared to
CelebA. It consists of 10,000 instances for training and
2,995 instances for testing. The MTFL dataset is annotated
for Smile (S) € {Yes, No}, Gender (G) € {Male, Female}
and Glasses (GL) € {Yes, No}.

ChaLearn Smile-Gender [1]: The goal of this dataset is to
classify images from the FotW dataset according to gender
and basic expression. The data is challenging even to the
human eye in uncontrolled environments, such as those
present in the FotW dataset. Chalearn is a rather small
dataset in comparison with CelebA and MTFL. It consists
of 6,171 instances for training, 3,087 for validation, and
11,145 for testing. The Chalearn dataset is only annotated
for Smile (S) € {Yes, No} and Gender (G) € {Male,
Female}.

5.2. Implementation Details

Given an image, we first run an off the shelf face detec-
tion algorithm [17]. After that we applied a landmark point
(LMP) detector [43] outputting 68 landmark point coordi-
nates in the image plane coordinate space. We use the land-
mark points to align the faces by averaging the eye points
such that there are 6 points for each eye. Using the cen-
troid for each eye and the centroid for the mouth we com-
pute an affine transformation that projects the left and right
eyes as well as the mouth to fixed coordinates on the image
plane being (100, 100), (300, 100) and (200, 300) respec-
tively. We then use this transformation to warp the original
images and crop them to be 400 x 400 in size. We then re-
duce the dimensionality of the obtained images using PCA
to 500. There are different tasks defined for each dataset
depending on the given annotations.

Note that in our MT-RBM model, the tasks are assumed
conditionally independent given the hidden representation.
Thus the number of parameters needed for the hidden-label
edges is H - 2521 Y, where H is the dimensionality of
the hidden layer and Y}, is the number of classes for task k.
Contrast this to the number of parameters needed if instead
the tasks are flattened as a Cartesian product, H - H£:1 Y.
Our factored representation of the multiple tasks uses only
linearly many parameters instead of the exponentially many
parameters needed for the flattened representation.
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Approach [ON[AT A1} [24] | [25] |[25]|MT-RBM

Attribute W | L |ANet|LNet|Full] PCA

50.C. Shadow | 85|82 |88 | 8 | 88 |91 90

Arched Eyebrow| 76 | 73 | 78 | 75 | 74 | 79 77

Attractive 78 |77 |81 | 79 | 77 | 81 76
Bags Under Eye | 76 | 71 | 79 | 77 | 73 | 79 81
Bald 8919296 | 92 | 95 | 98 98
Bangs 8818992 | 94 | 92 | 95 88
Big Lips 64 |61 |67| 63 | 66 | 68 69
Big Nose 74170 |75 74 | 75 | 78 81
Black Hair 70 | 74 | 85 | 77 | 84 | 88 76
Blond Hair 80|81 |93 | 8 | 91 |95 91
Blurry 81|77 |86 | 83 | 80 | 84 95
Brown Hair 60|69 |77 | 74 | 78 | 80 83
Bushy Eyebrow | 80 | 76 | 86 | 80 | 85 | 90 88
Chubby 86|82 |8 | 8 | 86 | 91 95
Double Chin 88|85 |88 | 90 | 88 | 92 96
Eyeglasses 98 194 {98 | 96 | 96 | 99 96
Goatee 93 18693 | 92|92 |95 96
Gray Hair 90 | 88 |94 93 | 93 | 97 97

Heavy Makeup | 85|84 (90| 87 | 85 | 90 85

High Cheekbone| 84 | 80 | 86 | 85 | 84 | 87 83

Male 9119397 | 95 | 94 | 98 90
Mouth Open 878293 | 8 | 8 |92 82
Mustache 91 [ 83193 | 87 | 91 | 95 97
Narrow Eyes 82 179 184 | 83 | 77 | 81 86
No Beard 90 [ 87 93| 91 | 92 | 95 90
Oval Face 64162 |65| 65 | 63 | 66 73
Pale Skin 83184 (91| 89 | 87 |91 96

Pointy Nose 68 | 65|71 | 67 | 70 | 72 73

Recede Hair 76 18285 | 84 | 8 | 89 92

Rosy Cheeks 84 | 81 |87 | 8 | 87 |90 94

Sideburns 94 190 {93 | 94 | 91 | 96 96
Smiling 89189192 92 | 88 | 92 88
Straight Hair 6316769 | 70 | 69 |73 80
Wavy Hair 73176 |77 79 | 75 | 80 72
Earring 7317278 | 77 | 78 | 82 81
Hat 89191196 93 | 96 | 99 97
Lipstick 89 | 88 193] 91 | 90 | 93 89
Necklace 68|67 |67| 70 | 68 |71 87
Necktie 86 | 88 91| 90 | 86 | 93 94
Young 80 |77 | 84 | 81 | 83 | 87 81
Average [81[79]85] 83 |83 [87] 87

Table 1: Average Classification Accuracy on the CelebA
dataset.

5.3. Quantitative Results

We first define baselines and variants followed by the
classification accuracy results on the three datasets.

Baselines and Variants: We use SVMs as our baseline
method and define the following variants of our approach:
MT-RBM, which is our multi-task model presented in
Section 3.3, and MTM-RBM, which is the multi-modal
multi-task model presented in Section 3.4. We define
MT-RBM (LMP) and MT-RBM (PCA) as models that use
either facial landmarks or PCA components extracted from
face images as input, respectively. MT-RBM (LMP,PCA)
performs early fusion of the features and feeds them to
the model. MTM-RBM (LMP,PCA) performs multimodal
fusion by treating each feature type as a modality.

In order to tune the network parameters we performed a
grid search, varying the number of hidden nodes per layer
in the range of {10, 30, 50, 70, 100, 200, 500,1000}. The
best results were obtained using 500 hidden units.

Attribute Classification: For the CelebA dataset, Ta-
ble 1 shows the results of other methods as well as our
MT-RBM (PCA). We follow the same evaluation protocol
provided in [4]. We compare against the state of the art
methods FaceTracer [20], PANDA-W [41], which obtains
the face parts by applying the state-of-the-art face detec-
tion [20] and alignment [34], PANDA-L [4 1], which is the
same approach as PANDA-W, except that it operates on the
ground truth bounding boxes. We also compared against
LocalizationNet and AttributeNet [25], which use a set of
CNNss bootstrapped together for face detection and attribute
classification. Our approach ties with the best performing
method [25] on the averaged results, outperforming it in 18
attributes and tying in 3 attributes. Note that our MT-RBM
(PCA) does not use any convolutions and is relatively
simple compared to that of [25]).

Tables 2 and 3 show our average classification accuracy
for the MTFL and ChaLearn datasets respectively using dif-
ferent features and baseline combinations as well as the re-
sults from our models, since there are no other results avail-
able. We can see that the MTM-RBM outperforms all the
other models in both cases, thereby demonstrating its effec-
tiveness on predicting multi-task labels correctly. The test
partition of the Chal.earn was not made publicly available,
hence the methods presented above were evaluated on the
validation data.

6. Conclusion and Future Work

We proposed a new Multi-Task Restricted Boltzmann
Machine (MT-RBM), that models the distributions of multi-
ple attributes and classifies them. An extensive experimen-
tal evaluation of these models on three different datasets of
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varying size demonstrates the superiority of our approach
over the state-of-the-art for attribute classification. We were
able to model global features (PCA) as well as local features
(landmark points) and fuse them resulting in a new power-
ful representation for attribute classification. Our approach
did not use any convolutions or processing of the data and
was able to tie with the state-of-the-art method that uses
CNNs. This improvement in classification performance is
done with an efficient use of model parameters via factor-
ization across tasks. The factorization of tasks used in our
approach means the number of parameters grows only lin-
early with the number of tasks and classes. This is seen
to be significant when contrasted with a single-task model
that uses a flattened Cartesian product of tasks, where the
number of parameters grows exponentially with the number
of tasks. Our factorized approach makes adding additional
tasks a trivial matter. For future work we plan to explore
the relationships between different attributes and structured
models.
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