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Abstract

We propose structured output SVM for predicting the ap-

parent age as well as gender and smile from a single face

image represented by deep features. We pose the problem

of apparent age estimation as an instance of the multi-class

structured output SVM classifier followed by a softmax ex-

pected value refinement. The gender and smile predic-

tions are treated as binary classification problems. The

proposed solution first detects the face in the image and

then extracts deep features from the cropped image around

the detected face. We use a convolutional neural network

with VGG-16 architecture [25] for learning deep features.

The network is pretrained on the ImageNet [24] database

and then fine-tuned on IMDB-WIKI [21] and ChaLearn

2015 LAP datasets [8]. We validate our methods on the

ChaLearn 2016 LAP dataset [9]. Our structured output

SVMs are trained solely on ChaLearn 2016 LAP data. We

achieve excellent results for both apparent age prediction

and gender and smile classification.

1. Introduction

While the problem of the physical (i.e. the biological,

real) age estimation has been covered by numerous stud-

ies [1, 4, 7, 12, 22], the estimation of the apparent age is still

in its beginnings and just recently it is getting the well de-

served attention. There are various applications of apparent

age estimation systems, such as medical diagnosis (prema-

ture aging), forensics, plastic surgery, to name a few. The

biggest barrier in apparent age research is the lack of larger

annotated datasets, which should also cover the uncertainty

of the human annotators.
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Figure 1. Exemplary images from the ChaLearn LAP 2016

dataset [9] and their annotations. The graphs show the uncertainty

of the annotators, measured by the standard deviation.

ChaLearn Looking At People (LAP) 2015 challenge [8]

proposed a special track on apparent age estimation and pro-

vided the largest public dataset of annotated face images

for apparent age estimation at that time. ChaLearn LAP

2016 [9] extends the LAP 2015 dataset with new images and

annotations. Figure 1 depicts exemplary images from the

newly released dataset. The apparent age estimation system

should detect faces in the image and output the prediction.

Note that the images are taken in the wild (uncontrolled en-

vironment).

In this work, we build on the approach of Rothe et

al. [21], winner of the ChaLearn LAP 2015 challenge

on apparent age estimation [8], and explore the poten-
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tial of the Structured Output Support Vector Machines

(SO-SVM) [28] in combination with deep features extracted

from face images. The recent advances in computer vi-

sion applications of deep learning [5, 15, 24] and deep fea-

tures [6, 11, 13, 17], but also the deep learning winner so-

lution of ChaLearn LAP 2015 give us the motivation to use

deep features, while the theoretical derivation and its ro-

bustness vouch for SO-SVM.

We use the VGG-16 architecture for our convolutional

neural network (CNN), which was pre-trained on the Im-

ageNet [24] for image classification, modified for the ap-

parent age estimation and fine-tuned on the IMDB-WIKI

dataset [21] (annotated with the physical age) and ChaLearn

LAP 2015 [8] dataset (annotated with the apparent age).

This network showed excellent results in the ChaLearn

2015 challenge, outperforming all the competitors [21]. In

this work, we show that the results can be significantly

improved by taking the deep features and formulating a

SO-SVM multi-class classifier on top of it. The main ben-

efits of SO-SVM algorithm are i) usage of an arbitrary loss

function, which can therefore be identical to the testing er-

ror measure ii) existence of the ε-precise solvers. Our main

contributions are as follows

1. a novel approach to apparent age, gender and smile

prediction using SO-SVM and deep features.

2. a robust system with excellent prediction performance

validated on the latest ChaLearn LAP challenges.

3. experimental results verifying that the SO-SVM in

combination with learned deep features is significantly

better than a direct deeply learned prediction.

1.1. Related work

The most relevant works in apparent age estimation

and related to ours are the ones published as result of the

ChaLearn LAP 2015 challenge [8]. In the next we briefly

review the top works starting with the winning solution

which constitutes the starting point for our SO-SVM solu-

tion and then briefly review related works on gender and

smile estimation in the wild.

1.1.1 Apparent age estimation

Rothe et al. [21], 1st place at ChaLearn LAP 2015 chal-

lenge, propose the Deep Expectation (DEX) method. DEX

employs a robust face detection and alignment based on

the detector of Mathias et al. [20] and an ensemble predic-

tion with 20 CNNs applied on the cropped face. Each net-

work has the VGG-16 architecture [25] and is pre-trained

on ImageNet and then fine-tuned on face images from

IMDB-WIKI with the physical age and ChaLearn LAP

2015 with the apparent age annotations. The networks are

trained to predict with 101 output neurons, each neuron cor-

responds to a discretized age from the interval [0, . . . , 100].
The final prediction is the expected value of the softmax-

normalized output of the last layer, averaged over the en-

semble of 20 networks.

Liu et al. [18], 2nd place, also use an ensemble (of 10)

of large scale deep CNNs based on GoogleNet architec-

ture [26]. CASIA-WebFace database [31] and an large out-

side age dataset are used for training. Two kind of losses

are used— Euclidean loss for single dimension age encod-

ing and a cross-entropy loss of label distribution learning

based age encoding. A face landmark detection is used for

face alignment and a system prediction based on three cas-

caded CNNs for face classification, real age, and apparent

age.

Zhu et al. [32], 3rd place, combines face and face land-

mark detection with a GoogleNet deep architecture trained

on 240, 000 public face images with physical age annota-

tion consequently fine-tuned on augmented ChaLearn LAP

2015 dataset. Age grouping is further applied such that each

face is classified into one of 10 age groups. Within each

group random forest and support vector regression are used

to train the age estimator. Final prediction is formed by

score level fusion of individual classifiers.

1.1.2 Gender and smile prediction

As is the case for apparent age estimation, the recent years

showed tremendous advances in the prediction of facial at-

tributes such as smile or gender fueled by the newly intro-

duced large datasets with annotations and by new methods

or deep learning.

Recently, Azarmehr et al. [2] presented a complete

framework for the video-based age and gender classification

using non-linear SVMs with Radial Basis Function (RBF)

kernel. Also, Liu et al. [19] introduced the CelebA database

containing more than 200, 000 images with 40 annotated fa-

cial attributes, as well as a deep learning framework for at-

tribute prediction in the wild. Li et al. [16] propose a binary

code learning framework for facial attributes prediction and

release a database called CFW 60K.

The rest of the paper is organized as follows. Section 2

introduces our method. Section 3 describes the experimen-

tal setup and the achieved results and discusses them. Fi-

nally, Section 4 concludes the paper.

2. Proposed method

The pipeline of our method is depicted in Figure 2. It

exploits the deep features from DEX [21], the winner of

the previous ChaLearn challenge on apparent age estima-

tion [8], and learns an ensemble of linear SO-SVM clas-

sifiers with the desired loss function, i.e. an ǫ-error (12).

Since we use a binary SVM classifier for the gender and

26



smile prediction, we will describe just the experiments we

made in Section 3.

In the next sections, we describe the deep features and

final classifier in detail.

2.1. Deep features

We adopt the deep network from DEX [21]. Thus,

we use the VGG-16 architecture [25] pre-trained on

the ImageNet dataset [23] subsequently fine-tuned on

the IMDB-WIKI dataset [21] and the ChaLearn LAP

dataset [8].

In contrast to the DEX method, we use the deep network

solely as a feature extractor. We have experimented with

several different options for the features, like to use the fully

connected layers (with or without ReLU), their combination

or the convolutional layers with dimensionality reduction by

PCA. The best results for the apparent age estimation were

achieved with the last fully connected layer (fc7), without

ReLU. For the gender and smile prediction, we got the best

results using the last but one fully connected layer (fc6).

The features are extracted from the fixed size image,

which is formed as follows. Firstly, the faces in the input

image are detected by the off-the-shelf detector of Math-

ias et al. [20]. Since the faces in ChaLearn LAP datasets

are in unconstrained poses, we rotate the input image in the

interval of [−60◦, 60◦] in 5◦ steps and also by −90◦, 90◦

and 180◦. The face box with the strongest detection score

is taken, together with the rotation angle. In the rare case

that no face is detected, we take the entire image for further

processing. Secondly, the face box size is enlarged by 40%
in both width and height and the face image is cropped. The

resulting image is eventually squeezed to 256 × 256 pixels

and used as an input to the deep convolutional network for

the features extraction.

2.2. Structured Output SVM prediction

The age estimation can be posed as a multi-class clas-

sification task, where the classes y ∈ Y correspond to age

discretized by years, i.e. Y = {0, 1, . . . , 100}. Given the in-

put image x ∈ X , we are interested in the best performing

classifier h : X → Y , which minimizes the ǫ-error (12).

Following the SO-SVM framework [28], let us define a

scoring function f : X × Y → R as a linear function of the

parameters w to be learned from m fully annotated training

examples T = {(xi, yi, σi
y)}

m
i=1, where σ denotes the stan-

dard deviation of the age label among annotators, and the

features map Ψ(x, y) ∈ R
n:

f(x, y) = 〈w,Ψ(x, y)〉 . (1)

The classifier then decides based on where the scoring func-

tion attends its maximum

h(x;w) = argmax
y∈Y

f(x, y) . (2)

We define the Ψ(x, y) ∈ R
n as follows

Ψ(x, y) = (0, . . . , 0,x, 0, . . . , 0)
⊤

, (3)

that is, we stack the feature vector x into position y of the

zero vector, which has the dimensionality equal to n = |Y| ·
dim(x) = 101 · 4, 096 = 413, 696.

The SO-SVM algorithm translates the problem of learn-

ing the classifier parameters w into the following convex

task

w
∗ = arg min

w∈Rn
F (w) :=

[

λ

2
‖w‖2 +

1

m

m
∑

i=1

ri(w)

]

,

(4)

where ri(w) is a loss incurred by the classifier on the i-th

training example (xi, yi, σi
y) and λ

2 ‖w‖
2 is a quadratic reg-

ularizer introduced to prevent the over-fitting. The optimal

value of the regularization constant λ is to be found in the

model selection on the independent validation set. The loss

ri(w) is the margin-rescaling convex proxy (c.f . [28]) of

the true loss ∆(y, σ′
y, y

′) defined as follows:

ri(w) = max
y∈Y

[

∆(y, σi
y, y

i) +
〈

w,Ψ(xi, y)
〉

−
〈

w,Ψ(xi, yi)
〉

]

.(5)

The true loss ∆(y, σ′
y, y

′) is set to be the ǫ-error (12).

Note that the evaluation of the proxy loss ri(w) is equiva-

lent to running the classifier with the scoring function aug-

mented by the values of the true loss ∆(y, σ′
y, y

′), and

that the ǫ-error fulfills the requirements of the loss func-

tion posed by SO-SVM framework, because ∆(y, σ′
y, y

′) =
0 ⇐⇒ y = y′.

We solve (4) approximately by the Bundle Methods for

Regularized Risk Minimization (BMRM) algorithm [27],

which is outlined in Algorithm 1. The core idea is to ap-

proximate the original hard problem (4) by its reduced prob-

lem

w
∗ = arg min

w∈Rn
Ft(w) :=

[

λ

2
‖w‖2 + rt(w)

]

, (6)

where the objective Ft(w) is constructed as a cutting plane

model of the original risk term r(w) = 1
m

∑m

i=1 ri(w)

rt(w) = max
i=1,...,t

[r(wi) + 〈r
′(wi),w −wi〉] , (7)

r
′(w) ∈ R

n denotes the sub-gradient of r(w) evaluated at

point wi ∈ R
n.

The BMRM algorithm starts from the initial guess w0 =
0 and in iteration t computes wt by solving the reduced

problem (6), by adding a cutting plane computed at the in-

termediate solution wt to the cutting plane model (7). This

leads to a progressively tighter approximation of F (w).
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Figure 2. Proposed pipeline for the apparent age estimation.

Algorithm 1 BMRM algorithm

Require: ε, first order oracle evaluating r(w) and r
′(w)

1: Initialization: w ← 0, t← 0
2: repeat

3: t← t+ 1
4: Call oracle to compute r(wt) and r

′(wt)
5: Update the cutting plane model rt(wt)
6: Solve the reduced problem (6)

7: until F (wt)− Ft(wt) ≤ ε

The BMRM was proven [27] to converge to an ε-precise

solution (i.e. satisfying F (wt) ≤ F (w∗) + ε) in O( 1
ε
) iter-

ations for arbitrary ε > 0.

The BMRM algorithm requires a first order oracle

which, for a given query wt, evaluates r(wt) and the sub-

gradient r′(wt) = 1
m

∑m

i=1 r
′
i(wt). The components of

the sub-gradient r′i(wt) are computed by the Danskin’s the-

orem [3] as:

r
′
i(wt) = Ψ(xi, ŷ)−Ψ(xi, yi) , (8)

where

ŷ = argmax
y∈Y

[

∆(y, σi
y, y

i) +
〈

w,Ψ(xi, ŷ)
〉]

. (9)

Since the LAP apparent age annotations are in floating

point precision, we further investigated the possibility of

giving real-valued prediction instead of the discretized y.

Inspired by the DEX method [21], we compute the softmax

assignment ys based on the values of the scoring function

f(x, y)

si =
ef(x,yi)

∑

ef(x,yi)
, ∀i ∈ Y, ys = E[y] =

100
∑

i=0

yisi , (10)

where si represent the softmax output probabilities and yi ∈
Y are the discrete years.

3. Experiments

In this section we first briefly describe the datasets and

the evaluation protocol from our experiments. Then we pro-

vide the implementation details for our method and discuss

the results.

3.1. Datasets and evaluation protocol

3.1.1 Apparent age estimation

In our experimental validation we use the ChaLearn LAP

2016 dataset [9] as provided by the challenge organizers.

Note that we use only the ChaLearn LAP 2016 dataset for

training our multi-class SO-SVM classifier. This dataset

has 5, 613 face images (4, 113 for training and 1, 500 for

validation) with age annotations and 1, 978 face images for

testing (annotations are not publicly available). The annota-

tion consists of the mean value of the independent annotator

guess of the apparent age and the standard deviation σ of

this guess across the annotators.

The histograms of the apparent age of both training and

validation parts of the ChaLearn LAP 2016 database [9] are

depicted in Figure 3. Note that the age distributions for both

parts are approximately the same, covering the best the 20–

40 years interval. Another significant peak is visible for the

interval 0–15 and around 50, while the years higher than 90
are left completely uncovered.

We evaluate the results by two different statistics. The

first is the mean absolute error (MAE), computed as the

average of absolute errors between the predictions and the

ground truth age annotations:

MAE =
1

m

m
∑

i=1

|yi − yi| , (11)

where m is the number of predictions. The second is the

ǫ-error used by the ChaLearn LAP challenge:

ǫ = 1− e−
(y−yi)2

2σ2 . (12)
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Figure 3. Histograms of apparent age of the training and validation

sets of the ChaLearn LAP 2016 dataset [9].

For a set of m images, we report the average of eq. (12) ac-

quired for individual images. Note that the maximum value

of the ǫ-error is equal to 1, which represents the worst result

and the minimum is equal to 0 representing the best match.

Even though MAE does not take into account the uncer-

tainty of the ground truth age, it is still a useful measure of

the prediction accuracy.

3.1.2 Gender and smile prediction

We use the ChaLearn LAP 2016 dataset [9] for gender and

smile detection. The dataset consists of 9, 257 face images

in total (6, 171 for training and 3, 086 for validation) with

gender (0-male / 1-female) and smile (1-yes / 0-no) annota-

tions. The testing set was kept secret (both the images and

the annotations).

We evaluate the classifiers independently for the devel-

opment purposes, by simply calculating the average mis-

match of the predicted and ground truth labels. The final

evaluation is done jointly, i.e. the mean square error be-

tween the prediction and the ground truth is calculated. The

error ranges between 0 (both gender and smile prediction

matches the ground truth) and 1 (both gender and smile are

misclassified). In case a face was not detected, the error is

set to 1.

3.2. Implementation details

3.2.1 Apparent age estimation

We train 10 different versions of the described multi-class

SO-SVM classifier for the apparent age estimation on 10
different splits of the new ChaLearn LAP 2016 dataset [9]

(both training and validation sets from LAP are included).

The final prediction is the average of the ensemble predic-

tions of these 10 classifiers.

Both the training of the proposed multi-class SO-SVM

classifier and the pipeline for prediction of the apparent age

are coded in MATLAB. We use the Caffe framework [14]

for the CNNs and deep features extraction. For the face

detection, we use the detector from [20].

The features extraction takes around 200 ms per image

(on a GeForce GTX Titan Black graphics card). The final

classifier (ensemble of 10 multi-class SO-SVM classifiers

enhanced by softmax expectation) takes approximately 0.5
ms. The slowest part is the face detection, which takes 280–

420 s per image, however it can be easily parallelized. The

training of the whole ensemble of SO-SVM classifiers took

1 day for the whole model selection (i.e. finding the opti-

mal value of the regularization parameter λ in (6) ). We

used only the ChaLearn LAP 2016 [9] dataset for training.

The source codes of both training scripts and final proposed

classifier are publicly available at:

http://cmp.felk.cvut.cz/˜uricamic/LAP2016/

3.2.2 Gender and smile prediction

We train a single classifier per each prediction task employ-

ing the OCAS algorithm [10]. We use fc6 deep features ex-

tracted from the VGG-16 network pretrained on ImageNet

and fine-tuned for gender classification on the IMDB-WIKI

database. The input image for the CNN is constructed sim-

ilarly as in the apparent age estimation case.

In the development phase, we used the commercial face

detector1, implementing the Waldboost detector [30]. This

face detector is much faster than [20] (approx. 4 seconds

for all image rotations, compared to the 280–420 seconds),

however, the scale and position of the detected face box

are not so stable. Therefore, we correct the face box po-

sition and scale based on the facial landmarks. We use the

CLandmark [29] facial landmark detector with 2 different

models— the first one is the multi-view detector, which be-

sides of the facial landmarks provides the discretized yaw

head-pose information, the second one is the coarse-to-fine

detector, which detects 68 landmarks for near-frontal yaw

poses. We use the detected landmarks to construct the cor-

rected face box (we use the 12 eye landmarks from the 68
landmarks set detected for near-frontal poses for correction

of the in-plane rotation and face box size, and eye land-

marks and vertical face size for non-frontal poses), which

is then used to form the input image supplied to the CNN

feature extractor.

We observed that the quality of the constructed input im-

age using this approach is practically the same compared to

the approach used for the apparent age estimation. How-

ever, the Waldboost detector in combination with landmark

detection removes the biggest computational bottleneck and

is therefore more suitable for real-time applications.

We use the RBF kernel function for both gender and

smile classifiers and the ChaLearn LAP 2016 database with

binary gender and smile labels for training.

1Courtesy of Eyedea Recognition Ltd., http://www.eyedea.cz.
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Figure 4. Examples from the validation set where our proposed method obtained the highest absolute errors.
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Figure 5. Examples from the validation set where our proposed method obtained the smallest absolute error.

3.3. Looking At People 2016 Challenge

The ChaLearn LAP 2016 challenge had three tracks. The

track for apparent age estimation, as well as the track for

gender and smile prediction, consisted of two phases: de-

velopment and test. In the next we present the results for

the apparent age estimation. The final test results for gender

and smile prediction will be revealed during the ChaLearn

LAP 2016 workshop.

3.3.1 Development phase

In the development phase of the apparent age estimation

track, only the training set annotations were released and

the methods were evaluated online by submitting the predic-

tions on the validation images to a server. The final leader

board of the development phase is shown in Table 1 and

reflects the performance of the last submitted predictions

during the development phase for each participating team.

The performance of our submission is emphasized by the

bold font.

3.3.2 Test phase

In the test phase of the apparent age estimation track, the

validation annotations and also the testing images were re-

leased. The testing annotations were kept secret and the

teams were invited to submit their results on the testing im-

ages. The organizers announced the final ranking after the

test phase. The results are summarized in Table 2. The re-
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Figure 6. Examples of validation images where our method significantly outperforms DEX [21].

Table 1. Ranking of all participants in the validation phase of LAP

2016 challenge on apparent age estimation. Our entry is with bold.

Rank Team ǫ-error

1 csmath 0.215327

2 xperzy 0.236426

3 uricamic 0.240429

4 OLE 0.265452

5 xbaro 0.272212

6 palm seu 0.339589

7 really 0.345112

8 frkngrpnr 0.384979

9 rcmalli 0.417944

10 stmater 0.427319

Table 2. Ranking of all participants in the final test phase of LAP

2016 challenge on apparent age estimation. Our entry is with bold.

Rank Team ǫ-error

1 OrangeLabs 0.2411

2 palm seu 0.3214

3 CMP+ETH 0.3361

4 WYU CVL 0.3405

5 ITU SiMiT 0.3668

6 Bogazici 0.3740

7 MIPAL SNU 0.4569

8 DeepAge 0.4573

sults of the proposed method are emphasized by the bold

font. Note that the results on the test phase of the methods

are generally inferior to those on the development phase.

There could be a different distribution of the apparent age

in the test set than in the provided train and validation sets.

3.4. Discussion

3.4.1 Apparent age estimation

In the development phase, the proposed method (using a

single SO-SVM classifier) got a relative improvement of

11.60% in the ǫ-error and 14.13% in MAE compared to

DEX method (with a single CNN predictor, no ensemble).

After the release of the validation annotations, we trained

the proposed classifier in 10 fold cross-validation (on joint

training and validation dataset) and got the ǫ-error reduced

to 0.209 and MAE to 2.5, that is a relative improvement of

23.16% in ǫ-error and 22.38% in MAE compared to DEX.

Applying the softmax on the SO-SVM brings the im-

provement of 0.0042 in ǫ-error and 0.0376 in MAE on av-

erage (i.e. taking into account all instances in the ensemble).

Figure 4 shows the examples from the validation set

where the proposed method performs the worst. In other

words, we show the examples with the highest absolute er-

rors. Note that part of these results are due to face detector

failure, due to the selection of another face from the image

than the one the apparent age annotation was for, due to face

occlusion (glasses) or poor image quality.

In Figure 5, we show the examples from the validation

set, where the proposed method achieved the smallest abso-

lute error in apparent age prediction.

When compared with DEX (one CNN) we note that es-

pecially on the 0–10 years interval, on average, our pro-

posed method gives much better results. In Figure 6 we

show a couple of examples where DEX has errors above 14

years while our method achieves significantly lower errors,

below 2 years.

3.4.2 Gender and smile prediction

We compare the proposed gender classifier to the deep

learning approach by Rothe et al. [21], which was trained

on the IMDB-WIKI dataset and outputs the softmax prob-

ability of male/female class. On the validation set of

ChaLearn LAP 2016 [9] our proposed method achieves a

10.85% classification error, while the pure deep network

gets 15.29% and the nearest neighbor using the same deep

features reaches 16.74% classification error. We conclude

that by using a non-linear SVM classifier and deep features

we get a large relative improvement of 29.09% over the re-

sults achieved directly by the deep CNN predictor.

For smile prediction the nearest neighbor classifier has

a 36.36% error on the validation set, while our SVM smile

classifier achieves 20.97%, i.e. a relative improvement of
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Figure 7. Examples of validation images with gender and smile predictions. First two columns show good predictions. Third and fourth

column show examples where either the gender or the smile prediction is wrong. Last two columns show failure cases were no prediction

matches the ground truth. Note that the bottom rightmost example has probably wrong gender annotation.

42.33%.

We got the following results for the joint evaluation of

smile and gender prediction on validation data: 2.85% of

examples were completely misclassified (i.e. both smile and

gender prediction were wrong), 27.47% of examples were

classified correctly in one class (i.e. either smile or gender

prediction was correct) and 69.67% of examples were clas-

sified correctly completely (i.e. both smile and gender pre-

diction were matching the annotation).

Figure 7 shows several examples with their annotations

and our smile and gender predictions on the ChaLearn LAP

2016 [9] validation dataset.

4. Conclusions

In this paper we proposed the structured output SVM

prediction of apparent age, gender, and smile from deep

features. For apparent age prediction, our method uses

an ensemble of multi-class SO-SVM predictors, which are

learned from the fully annotated examples. Each multi-

class SO-SVM predictor uses a softmax expected value re-

finement. Our experiments on apparent age, gender and

smile prediction showed that our proposed approach leads

to significantly better performance than the pure deep learn-

ing approach. We conclude that the best is to combine the

representation power of the deep features with the robust-

ness power of SO-SVM for prediction.
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