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Abstract

Video-based human action recognition benefits from

multiple cameras which can provide temporally synchro-

nized, multi-view videos. Cross-video person identifica-

tion, i.e., determining whether at a given time, persons

tracked in different videos are the same person or not,

is a key step to integrate such multi-view information for

collaborative action recognition. For fixed cameras, this

step is relatively easy since different cameras can be pre-

calibrated. In this paper, we study cross-video person iden-

tification for wearable cameras, which are constantly mov-

ing with the wearers. Specifically, we take the tracked per-

sons from different videos to be the same person if their

3D poses are the same, given that these videos are syn-

chronized. We adapt an existing algorithm to estimate the

tracked person’s 3D poses in each 2D video using motion-

based features. Experiments show that, although 3D pose

estimation is not perfect, the proposed method can still lead

to better cross-video person identification than using ap-

pearance information.

1. Introduction

Video-based human action recognition has many impor-

tant civil, military and security applications. Traditional

fixed-camera videos can only cover pre-specified small ar-

eas from fixed view angles. Wearable cameras, such as

Google Glass and GoPro, provide a new perspective to cap-

ture human actions in a much larger area since they are

worn by and moving with the camera wearers. With mul-

tiple camera wearers, e.g., several camera-wearing police

officers working together to process an incident, we may

collect multiple, temporally synchronized videos from dif-

ferent views. In addition, the wearers’ perception and expe-

rience may get them to move to right positions and use the

best views to capture the human actions of interest. These

videos may provide mutually complementary information

and lead to collaborative human action recognition.

Before we make use of such multi-video information

for collaborative action recognition, we need to first per-

form cross-video person identification, i.e., to determine

whether persons detected and tracked in different videos

are the same person or not at a given time. While this task

can be accomplished by prior camera calibration for multi-

ple fixed cameras, it is a much more challenging problem

for multiple wearable cameras because they are constantly

moving and their external parameters cannot be accurately

estimated over time. Appearance matching is a natural ap-

proach that can be used for cross-video person identifica-

tion. However, in many scenarios, especially in the scenario

of multiple or crowded people, different persons may show

similar appearances [13, 21]. In addition, the same person

may show different appearances when viewed from differ-

ent angles. In this paper, we propose a new approach for

cross-video person identification by matching the persons’

poses in 3D space.

The proposed new approach is based on a special charac-

teristic of the problem: the input multiple videos are tempo-

rally synchronized. As a result, at any given time, the same

person’s poses in different views must be identical and their

motion must be synchronized in the 3D space. In addition,

it is very rare for two different people to show identical 3D

poses and synchronized 3D motion over time. Based on this

observation, we propose to estimate the 3D poses for each

person detected and tracked in each video and then match

the estimated poses across videos for person identification.

The proposed method is an off-line method, whose input are

synchronized videos. Specifically, in this paper we adapt an

existing method [9] for 3D pose estimation, followed by a

normalization into the same canonical coordinate for cross-

video pose matching and person identification. To handle

the view change of wearable cameras, we temporally divide

each video of a tracked person into a set of video segments

and perform 3D human pose estimation on each video seg-

ment separately. Over a short video segment, we assume

that the camera motion is small and the view change is neg-

ligible. On each segment, we use the data-driven method

in [9] to estimate the possible 3D poses of the tracked per-
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Figure 1. An illustration of the difference between the person re-

identification problem and the proposed cross-video person iden-

tification problem. (a) Example pair of videos of the same person

in the person re-identification dataset, where the videos are taken

by two fixed cameras and not temporally synchronized. (b) Ex-

ample pair of videos of the same person in the cross-video person

identification dataset, where the videos are taken by two wearable

cameras and temporally synchronized.

son and then link the pose estimation results over the entire

video by using Viterbi algorithm to enforce temporal con-

sistency of poses between neighboring segments.

The proposed cross-video person identification

shows certain similarities to the problem of person

re-identification [18, 19, 22], which aims at determining

whether persons shown in different images or videos are the

same person or not. However, different from the proposed

cross-video person identification, person re-identification

usually handles fixed-camera videos without temporally

synchronization, as shown in Fig. 1. In practice, most of the

existing person re-identification methods use the traditional

appearance matching for identifying the same person from

different images or videos.

To demonstrate the effectiveness of the proposed

method, we collect synchronized videos using two GoPro

cameras. Experiment results show that, although 3D human

pose estimation used in the proposed algorithm is not highly

accurate, it can still improve the cross-video person iden-

tification and outperforms existing person re-identification

methods, which mainly use the appearance matching. The

main contributions of this paper are: 1) We introduce the

problem of cross-video person identification for wearable

cameras as well as a new dataset, 2) we propose to use 3D

human pose estimation to address cross-video person iden-

tification, and 3) we propose to use Viterbi algorithm to im-

prove the 3D human pose estimation from wearable-camera

videos.

The remainder of the paper is organized as follows. Sec-

tion 2 introduces prior related works. Section 3 elaborates

on the proposed method. Section 4 reports the experimental

results, followed by a brief conclusion in Section 5.

2. Related Work

In this section, we briefly overview the prior works on

person re-identification and human pose estimation, that are

related to the proposed research on cross-video person iden-

tification.

2.1. Person Re­identification

Person re-identification aims to match persons in dif-

ferent images or videos from different cameras. With-

out the temporal synchronization, it usually uses appear-

ance features for cross-image or cross-video person match-

ing. Motivated by human vision system, such a person

matching can be achieved by identifying and matching a

small portion of salient regions. Zhao et al. [19] pro-

pose to learn human salience from dense SIFT and dense

color histogram in an unsupervised way by extracting fea-

ture patches that are distinctive and reliable across differ-

ent views. To account for the variations across subjects,

attribute-centric and part-based feature representations are

proposed to learn adaptive weighted features for each indi-

vidual [14, 11, 12]. Spatial information of body parts are

also considered in person re-identification. Farenzena et

al. [8] model human appearance with Symmetry-Driven

Accumulation of Local Features (SDALF) and exploit all

the information from different body parts for person re-

identification. Bak et al. [6] propose an appearance model

based on spatial covariance regions extracted from human

body parts. The consideration of spatial information, es-

pecially human body parts, has been proved to be useful.

However, many appearance/color-based approaches suffer

from the lack of temporal information in multi-shot per-

son re-identification scenarios. Recently, spatial-temporal

information has been used in person re-identification. Wang

et al. [18] extract HOG3D to represent video fragments for

person re-identification. However, the extracted features are

still in the 2D space and sensitive to the change of view an-

gle. As in many other computer vision applications, deep

convolutional neural networks have also been used to refine

the features for person re-identification [4, 10, 20].

2.2. 3D Human Pose Estimation

In this paper, we will estimate 3D human pose for match-

ing persons across different videos. Pose estimation in

monocular image/video is an ill-posed problem without

considering human body models, because human pose has

many degrees of freedom and camera has intrinsic and ex-

trinsic parameters. Agarwal et al. [2, 3] describe a learning-

based method for 3D pose estimation from a single image

or a monocular video. It recovers pose by direct conducting

nonlinear regression against shape-descriptor vectors ex-

tracted automatically from the image silhouettes. Andriluka

et al. [5] propose to track human body parts by exploiting

2D human pose estimation, then recover 3D pose with the
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Figure 2. An illustration of the proposed framework. The input pair of videos are cropped such that only one person is contained in each

of them. We estimate 3D poses for each video by adapting nCTE algorithm in [9]. For each video, we temporally divide it into segments.

We perform nCTE for each segment to obtain top-K candidates of 3D pose sequences. Then Viterbi algorithm is used to enforce the

temporal consistency between estimated 3D poses of neighboring segments. An optimal path is selected to obtain the 3D pose estimation

for the whole video. Finally, we calculate the per-frame Euclidean distance between normalized 3D poses of the two videos. If the average

distance is less than a pre-set threshold, then the videos are predicted to contain the same person.

help of 3D pose exemplars. Wang et al. [15] represent a 3D

pose as a linear combination of learned 3D pose bases and

use existing 2D pose estimation as the input. They recover

3D poses from a single image by minimizing the projec-

tion error between the 3D pose and the corresponding 2D

pose detection. These methods are primarily used to esti-

mate 3D human pose for a single image, in which temporal

dynamics are not considered when they are applied to pose

estimation through videos. Gupta et al. [9] propose a non-

parametric model to recover 3D human pose by matching

extracted dense trajectories with a database of synthetic tra-

jectories [9]. Using the synthetic data, they successfully

achieve the view invariance to the model. In this paper,

we will adapt this method [9] and further apply the Viterbi

algorithm to estimate the 3D human pose for each person

tracked in a video.

3. Proposed Method

Cross-video person identification aims at identifying the

same person from temporally synchronized videos taken by

multiple wearable cameras from different, varying view an-

gles. For convenience, we study a simplified case of two

synchronized videos taken by two wearable cameras. The

proposed method can be easily extended to the case of more

than two videos by reducing it to person identification be-

tween each pair of videos and then combining the pairwise

identification results. Furthermore, we assume that there

is only one person and its bounding box well fills each

frame of the video, as shown in Fig. 2. In the cases where

the person’s bounding box does not fill the frame well or

each video contains multiple people, we can first apply per-

son detection and tracking. We then crop each person out

of each video in the spatial-temporal domain and use the

proposed method to match each possible pair of persons

cropped from the two videos, respectively.

The proposed method mainly consists of two parts: 3D

human pose estimation on video and person identification

via pose matching. The key step of the proposed method is

to estimate the 3D human pose for each frame in each of the

two input videos as described above. Given that two videos

are temporally synchronized, we can compare the estimated

3D poses of a pair of videos at each corresponding frame to

determine whether the persons in these two videos are the

same person or not, as illustrated in Fig. 2. In this paper, we

adapt an existing data-driven algorithm of non-linear Cir-

culant Temporal Encoding (nCTE) [9] to estimate the 3D

human poses from a video.

In [9], the input videos are assumed to be taken from

fixed but unknown view angles. Motion features are ex-

tracted from each video. At the same time, a large number

of 2D mocap sequences are synthesized from 3D mocap se-

quences provided in CMU mocap database [1], by project-

ing along a set of possible view angles. In mocap database,

each 3D mocap sequence is represented by a sequence of

3D human joint locations over time. Similarly, a 2D mocap

sequence is the corresponding projection of a 3D mocap se-

quence with a specific camera view angle. Motion features

of 2D mocap sequences are also extracted. By aligning mo-

tion features of the input video and all 2D mocap sequences,

we find the best matched 2D mocap sequence and then take
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its underlying 3D human pose as the estimated 3D human

pose for the input video.

However, one prerequisite of nCTE for 3D human pose

estimation is that the person in the input video is viewed

from a fixed angle when taking the video. If the cam-

era is moving and the view angle changes over time, we

could not simulate such view angle changes to synthesize

the corresponding 2D mocap sequence and motion features

for matching. In this paper, the input videos are taken by

wearable cameras which are moving over time. Thus, the

camera view angle is constantly changing. To address this

problem, we propose a new strategy to adapt the nCTE, as

illustrated in Fig. 2. Specifically, we first temporally divide

each video into shorter video segments. By assuming that

view angle is relatively stable in each shorter video segment,

we can apply nCTE to estimate the 3D human pose in each

segment. However, considering that a short video segment

may not provide sufficient information for accurate 3D pose

estimation, we take top-K (K > 1) best matched 2D mocap

sequences and their underlying 3D poses as the estimation

for each segment. This way, for each frame, we have K es-

timated poses. We then link the estimated 3D human poses

across video segments by seeking an optimal solution over

the whole video, using Viterbi algorithm. Viterbi algorithm

is primarily used to enforce the temporal consistency of 3D

poses over time. In the following sections, we elaborate on

each component of the proposed 3D human pose estima-

tion, including motion feature extraction, pose estimation

for each video segment with nCTE, and optimal pose link-

ing across video segments. Finally we will describe how we

conduct cross-video person identification with estimated 3D

poses.

3.1. Motion Features based on Dense Trajectories

Dense trajectories are very effective 2D motion features

and they have been widely used for action recognition. Mo-

tion features based on dense trajectories also show certain

level of robustness to camera motions. In this paper, we

extract dense trajectories from an input video using a pub-

licly available code in [16, 17]. Specifically, dense trajecto-

ries are extracted by tracking densely sampled points using

optical flow fields. Given a trajectory of length L frames

(here we use L = 15), it can be described by a sequence

of displacement vectors S = (∆Pt, · · · ,∆Pt+L−1), where

∆Pt = (Pt+1 − Pt) = (xt+1 − xt, yt+1 − yt) and Pt =
(xt, yt) is the coordinate of a tracked feature point at frame

t. Then the sequence is normalized by its magnitude as

S′ =
(∆Pt, · · · ,∆Pt+L−1)

∑t+L−1
j=t ‖∆Pj‖

. (1)

Given a video described with dense trajectories, we use

bag-of-words technique to compute per-frame motion de-

scriptor for this video. For each frame of the video, we

(a) (b) (c)

Figure 3. An illustration of projecting 3D mocap sequences to

2D sequence and computing dense trajectories from 2D mocap se-

quences. For each 3D mocap sequence (a), we approximate the

3D human body parts with cylinders. Points on the cylinder sur-

face are sampled. We then project these points to 2D spaces using

different camera view angles. (b) shows an example of the syn-

thesized body surface points of the projected 2D mocap sequence.

(c) shows the dense trajectories extracted from this 2D mocap se-

quence. They are extracted by tracking the body surface points

and computing their inter-frame displacements over L consecu-

tive frames. Normalization is applied to the displacement vectors

afterwards as in Eq. (1).

aggregate all the dense trajectories ending at this frame and

quantize them into a frame descriptor with a learned dictio-

nary. Then the per-frame motion descriptors are obtained

for this video. The dictionary is learned from the dense tra-

jectories of 2D mocap sequences, which will be discussed

in the next section.

3.2. Pose Estimation on Video Segments

As described earlier, to handle the view angle change in

a wearable camera video, we divide each video into shorter

video segments in the temporal domain. In this section, we

follow the nCTE algorithm in [9] to estimate the 3D human

pose for each video segment, by assuming that the cam-

era view angle is relatively stable in each video segment.

Specifically, we take a set of 3D pose sequences from mo-

cap dataset, project each 3D pose sequence to 2D sequences

and then compute trajectory-based motion features for each

2D sequence, as shown in Fig. 3. 3D human pose on a video

segment can then be estimated by matching its motion fea-

tures, as described in Section 3.1, against the constructed

2D mocap sequences.

In this paper, we project each 3D mocap sequence to

2D along 12 different directions: the azimuthal angle is se-

lected from φ ∈ {0, π/3, 2π/3, π, 4π/3, 5π/3} and the po-

lar/zenith angle is selected from θ ∈ {π/12, π/6}. These

12 projection directions well cover the possible view angles

to a person in practice. As described in [9], we use a cylin-

der to approximate each body part, such as a limb, the head,

and the torso. Sampled points on the surface of such cylin-
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ders are projected from 3D space to 2D space. To account

for self occlusions, invisible surface points are removed by a

hidden point removal operation. Finally, the dense trajecto-

ries of each 2D mocap sequence are produced by connecting

the corresponding surface points over L consecutive frames

and computing their inter-frame displacements.

To match the motion features between a video segment

and a 2D mocap sequence, we also use the same bag-of-

words technique to compute the per-frame motion descrip-

tors for each 2D mocap sequence. The bag-of-words tech-

nique requires the construction of a dictionary to quantize

motion features. In this paper, we construct such a dictio-

nary with d = 2, 000 words that are learned using K-means

clustering over the dense trajectories extracted from all the

projected 2D mocap sequences. This learned dictionary is

used for both the considered video segment and the pro-

jected mocap sequences. This way, a 2D mocap sequence

can be represented by a vector z = [z1, · · · , zn] ∈ R
d×n,

where n is the number of frames in the sequence and zi is

the descriptor for the 2D mocap sequence at frame i. Sim-

ilarly, the considered video segment of m-frames can be

represented by a vector v = [v1, · · · ,vm] ∈ R
d×m, where

vi is the descriptor for the video at frame i. We then use

nCTE to retrieve top-K best matched 2D mocap sequences

for each video segment. The similarity between a 2D mocap

sequence and a video segment is defined as:

sδ(z,v) =

∞
∑

t=−∞

〈zt,vt−δ〉 , (2)

where the vectors zt (respectively, vt) are zero when t <
1 and t > n (respectively, t > m). sδ(z,v) varies as δ
varies and it reaches its maximum value when z and v are

aligned. However, Eq. (2) assumes the dot product is a good

similarity measure between v and z, which is not the case

for bag-of-words representations. Therefore, Gupta et al [9]

extend this similarity by adding a kernel that transforms the

data into the reproducing kernel Hilbert space of k:

sδ(z,v) =

∞
∑

t=−∞

k(zt,vt−δ)

=

∞
∑

t=−∞

〈Φ(zt),Φ(vt−δ)〉 .

(3)

In [9], a regularization term is further introduced. For effi-

cient large-scale retrieval, the computation is accomplished

using Fourier transform [9]. For each video segment, nCTE

is performed over all the constructed 2D mocap sequences

to obtain the top-K best matched 2D mocap sequences ac-

cording to

ẑ = argmax
z∈Z

sδ(z,v) , (4)

where Z is the set of all the constructed 2D mocap se-

quences.

...

...

...

...

...

...

...

...

...

...

...

...

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

segment segment segment

.  .  .

Figure 4. An illustration of using Viterbi algorithm for linking the

estimated 3D poses across video segments for the final 3D pose

estimation over the whole video.

More specifically, Eq. (4) is used to find the best matched

2D mocap sequence. We then remove this best matched 2D

mocap sequence from Z and apply Eq. (4) again to find

the second best matched 2D mocap sequence. To obtain

top-K best matched ones, we repeat this process K times.

Each 2D mocap sequence has an associated known 3D pose

sequence. Therefore, we can get top-K candidates of 3D

pose sequences for each video segment.

3.3. Pose Linking: From Video Segments to Whole
Video

In this section, we will explain in detail how we link the

estimated 3D poses across video segments to obtain the 3D

poses through the whole video. Let’s denote the considered

whole video as V and we temporally divide it into nl non-

overlapping video segments V = {V1, V2, · · · , Vnl
}. Each

segment’s length is T frames. As shown in Fig. 4, the de-

tected top K candidates of 3D pose sequences for each Vi,

are denoted by Jk
i where 1 ≤ i ≤ nl and 1 ≤ k ≤ K.

Jk
i where 1 ≤ i ≤ nl represents 3D poses of the k-th best

matched 2D mocap sequence and Jk
i consists of a sequence

of 3D poses {Jk
i,1, J

k
i,2, · · · , J

k
i,T }. In our experiments, we

choose K = 10 candidate 3D pose sequences for each seg-

ment. Then we apply Viterbi algorithm to find the opti-

mal path P = {p1, p2, · · · , pnl
} by selecting and linking

the estimated 3D poses along all the video segments, where

pi ∈ [1,K] is the selected candidate 3D pose sequence for

i-th segment, as shown in Fig. 4.

The initial probabilities are assumed to be uniform for

all candidate pose sequences. The emission probability of

the person in Vi taking pose Jk
i is defined as the similarity

between the motion features of the video segment and the

k-th best matched 2D mocap sequence, as shown in Eq. (3).

The transition probability is defined as:

a(i)qr =
1

d(Jq
i , J

r
i+1) + ǫ

, (5)

where ǫ is a term to avoid dividing by zero, Jq
i and Jr

i+1

are the q-th and r-th best matched 3D pose sequences for

i-th and {i+ 1}-th segment respectively. We use Euclidean
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(a)

(b)

(c)

Figure 5. Human pose estimation comparison: (a) original image sequence. (b) estimated pose sequence with top-1 matched mocap

sequence. (c) estimated pose with Viterbi algorithm applied to top-K matched mocap sequences.

distance to define d(Jq
i , J

r
i+1) =

∥

∥

∥
Jq
i,T − Jr

i+1,1

∥

∥

∥

2
, where

Jq
i,T and Jr

i+1,1 are the estimated 3D poses of last frame in i-
th segment and first frame in (i+1)-th segment respectively.

Figure 5 shows a sample result of our pose estimation

with and without the proposed Viterbi-algorithm based pose

linking. In this figure, we only show frames 1, 4, 7, 10,· · ·
and the 3D poses estimated on these frames. We can clearly

see that the poses of top-1 matched 3D pose sequence for

each video segment (highlighted by red boxes) are not al-

ways correct and do not show good consistency between ad-

jacent video segments. By including top K matched poses,

as well as the proposed Viterbi-algorithm based pose link-

ing, we can get more consistent 3D poses between neigh-

boring video segments and the resulting 3D poses are more

accurate estimations in terms of the underlying 3D poses. In

the later experiments, we will report the quantitative results

when using the proposed video division and pose linking for

3D pose estimation and cross-video person identification.

3.4. Cross­Video Person Matching with Estimated
3D Poses

With the estimated 3D poses for each video, we can

achieve cross-video person identification by comparing 3D

human poses between the two synchronized videos. To

compare the coordinates of the joints in two 3D human

poses, we normalize all the 3D human poses in the mocap

sequences by following the steps suggested in [7]. This nor-

malization step rescales the length of human limbs to the

average length of all the subjects. We also normalize the

zenith and azimuthal angles of the rigid part of human body,

clavicles and hips, to be constants. After normalization,

all 3D poses will be in the same canonical view. In addi-

tion, pose model used in mocap consists of 31 human joints

which are overly detailed for the proposed task of person

identification. In this paper, we only use 15 human joints,

including head, neck, left/right shoulders, left/right elbows,

left/right wrists, waist, left/right hips, left/right knees and

left/right ankles, as shown in Fig. 6.

1

23 4

5
6

7 89
10

11

12
13

14 15

Figure 6. Human joints selected for cross-video person matching.

Given a synchronized video pair with estimated pose se-

quences, we can directly calculate the Euclidean distances

between them after the above described normalization to the

canonical view and a common scale. However, 3D human

pose is a very challenging problem: even if we use Viterbi

algorithm to search for an optimal pose linking across video

segments, the estimated 3D pose sequence may still be in-

accurate. To further improve the robustness, we repeat the

Viterbi algorithm five times to get five optimal paths in

Fig. 4, by removing the candidate poses along the obtained

optimal path after each iteration. This way, we actually ob-

tain five best pose estimations for each video. We then de-

fine the matching distance between a pair of synchronized

video pair by searching for the best matched pose estima-

tions between them, i.e.,

D = min
i,j

∥

∥

∥
J i
1 − J j

2

∥

∥

∥

2
, (6)

where J i
1 and J j

2 are the i-th and j-th optimal pose se-

quences for the pair of videos respectively, with i, j =
1, 2, · · · , 5. With the obtained distance between a synchro-

nized video pair, we determine whether both videos depict

the same person with a pre-set threshold: If their distance
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D is smaller than the threshold, they are the same person;

Otherwise, they are not the same person.

4. Experiments

In this paper, we collect our own video data for cross-

video person identification since there is no publicly appro-

priate dataset that provides multiple, temporally synchro-

nized videos by wearable cameras. In the data collection,

each person is captured by two GoPro cameras worn by and

moved with two viewers. The resulting videos are tempo-

rally synchronized using their pre-calibrated time-stamps.

In total we use six different persons who always perform the

action of “walking” for video dataset collection. Each col-

lected synchronized video pair from the two GoPro cameras

is of length 120 frames. In total, we collect 202 such tem-

porally synchronized video pairs that capture a same per-

son from different and varying video angles. In our exper-

iments, we divide these 202 synchronized video pairs into

two subsets, SEQ 1 and SEQ 2, which contains 114 videos

pairs and 88 video pairs respectively.

Given N pairs of synchronized videos as described

above, we take the N videos from one camera as the tem-

plates and the N videos from the other camera as the tar-

gets. For each target video, we match it to the N template

videos one by one by calculating their matching distance

as discussed in Section 3. We then select the top-R ranked

template videos for this target video. If the synchronized

video paired to this target video is among the top-R matched

ones, we consider the matching for this target as correct.

Repeating this for all the targets, we can calculate Cumula-

tive Matching Characteristics (CMC), Precision, Recall and

F-score to evaluate the performance of cross-video person

identification. In our experiments, we compare the perfor-

mance of the proposed method with Discriminative Video

Ranking (DVR) [18], which uses the appearance matching

and 2D motion features for person re-identification. We se-

lect DVR as the comparison method as it has shown to be

superior over all other person re-identification approaches

in multi-shot scenarios [18].

To estimate the 3D pose from a video, we use 60 mo-

cap pose sequences from 14 different subjects in total. All

of them are the sequences of the action “walking”, but vary

in speed, orientation, size and style. For our method, we

divide each collected 120-frame video into 4 video seg-

ments for pose estimation. We set K = 10, i.e., take top-10

matched mocap sequences for each video segment as can-

didates. This process takes about 2 seconds when running

on a 3.2 GHz computer using a single core. Then we use

Viterbi algorithm to link the estimated 3D poses across the

video segments. We select the top-5 optimally linked 3D

pose sequences for each video and then use them for com-

puting the matching distance D in Eq. (6) as discussed in

Section 3.4.
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Figure 7. CMC performance of the proposed method and the DVR

method.

Table 1. Rank (R) rates of the proposed method and the DVR

method.

Dataset Method R = 1 R = 5 R = 10 R = 20 R = 40

SEQ 1
Ours 16.14 50.70 67.02 81.93 96.14

DVR 16.14 50.53 66.84 82.63 97.89

SEQ 2
Ours 17.95 51.82 71.14 89.55 100.0

DVR 11.14 34.09 53.64 77.05 96.82

Average
Ours 17.05 51.26 69.08 85.74 98.07

DVR 13.64 42.31 60.24 79.84 97.36

The proposed method is unsupervised. But DVR, which

we used for comparison, is a supervised method that re-

quires training data to learn a model. Therefore, for DVR,

we split the video dataset randomly into two subsets of

equal size, one for training and the other one for testing.

This process is conducted separately for SEQ 1 and SEQ 2.

Pair videos are positive samples. If the template video and

the target video are not a synchronized pair, then such a pair

is a negative sample. To obtain more reliable results, we

repeat the experiments 10 times, each of which uses differ-

ent training and testing data, and report the average perfor-

mance. Figure 7 and Table 1 show the CMC performance of

the proposed method and the DVR method. We can see that

the proposed method achieves comparable matching rates

as the DVR method in SEQ 1 and much better matching

rates in SEQ 2. This verifies that it is feasible to use 3D

pose and pose change for person identification, even if the

estimated 3D pose is not highly accurate. Figure 8 shows

the relation between the rank-1 matching rate and the num-

ber of paired videos in the dataset for the proposed method

and the DVR method. We can see that rank-1 matching rate

decreases with the increase of the number of paired videos.

This indicates that the problem of cross-video person iden-

tification becomes more challenging with the increase of

involved subjects. Note that the rank-1 matching rate of

the proposed method is always higher than the comparison

method.

Precision, Recall and F-score of the proposed method

are computed using varying thresholds to the matching dis-
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Figure 8. Rank-1 rate decreases as the total number of subjects

increases in the dataset.

Table 2. Precision, Recall and F-score of the proposed method

and the DVR method on the collected video dataset.

Dataset Method Precision Recall F-score

SEQ 1
Ours 29.45 23.51 24.98

DVR 18.26 28.07 21.16

SEQ 2
Ours 13.33 35.23 17.93

DVR 8.56 26.36 12.22

Average
Ours 21.39 29.37 21.46

DVR 13.41 27.22 16.69

tance. For the DVR method, it uses a similarity metric

for matching and therefore, a set of different thresholds

are used for computing the Precision, Recall, and F-score.

The average performance over 10 rounds of experiments are

shown in Table 2, from which we can see that the proposed

method performs better than the DVR method although we

only use simple Euclidean distance to measure the similar-

ity between the estimated 3D pose sequences of two videos.
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Figure 9. CMC curves of the proposed method with and without

using Viterbi algorithm in 3D human pose estimation.

To show the effectiveness of the proposed strategy of us-

ing Viterbi algorithm for linking pose estimation over video

segments, we perform a comparison study by removing the

Viterbi-algorithm based pose linking step from the proposed

method. More specifically, for pose estimation without us-

ing Viterbi-algorithm based pose linking, we simply choose

the top-1 match in the mocap database as the estimated 3D

poses for each video segment. Figure 5 shows samples of

the 3D pose estimation results with and without the pro-

posed Viterbi-algorithm based pose linking. We can see

that the Viterbi-algorithm based pose linking can help the

overall 3D pose estimation by enforcing the continuity of

3D poses across neighboring video segments. Quantitative

results are shown in Fig. 9, we can see that the proposed

Viterbi-algorithm based pose linking can substantially im-

prove the performance of cross-video person identification.

In our experiments, we also study the influence of the value

of K, the number of selected candidate poses for Viterbi-

algorithm based pose linking, to the final person identifi-

cation performance. We tried K = 5, 10, 15. As shown in

Fig. 10, the resulting CMC curves of different K are similar.

Our method is not sensitive to the selection of the number

of candidate poses.
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Figure 10. The influence of K over the CMC curves.

5. Conclusion

In this paper, we studied a new cross-video person iden-

tification problem for wearable cameras, i.e., determining

whether tracked persons in temporally synchronized videos

taken by multiple wearable cameras are the same person or

not. Instead of using appearance matching, we proposed a

new approach for person identification based on the 3D pose

matching since it is rare for different people to show ex-

actly identical and synchronized poses over a period of time.

We adapted an existing data-driven algorithm to estimate

3D human poses from a video, by dividing the video into

shorter video segments, estimating poses from each video

segment, and finally using Viterbi algorithm to link the es-

timated poses across the video segments. We collected 202

synchronized video pairs using two GoPro wearable cam-

eras for performance evaluation. Experiment results show

that the proposed method achieves better performance, in

terms of CMC rate, Precision, Recall, and F-measure, than

a previous person re-identification method that is mainly

based on appearance matching.
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