
Automatic Alignment of Indoor and Outdoor Building Models using 3D Line

Segments

Tobias Koch, Marco Körner

Remote Sensing Technology

Technical University of Munich

{tobias.koch,marco.koerner}@tum.de

Friedrich Fraundorfer

Institute for Computer Graphics and Vision

Graz University of Technology

fraundorfer@icg.tugraz.at

Abstract

This paper presents an approach for automatically align-

ing the non-overlapping interior and exterior parts of a 3D

building model computed from image based 3D reconstruc-

tions. We propose a method to align the 3D reconstructions

by identifying corresponding 3D structures that are part of

the interior and exterior model (e.g. openings like windows).

In this context, we point out the potential of using 3D line

segments to enrich the information of point clouds generated

by SfMs and show how this can be used for interpreting the

scene and matching individual reconstructions.

1. Introduction

A cheap and fast way for generating building models is to

obtain 3D information from image sequences. Typically, 3D

reconstruction pipelines like Structure-from-Motion (SfM)

followed by Multi-View Stereo (MVS), and meshing are used

for small and large scale reconstructions. With the increasing

research on image-based indoor modeling in the recent past,

an integration of indoor and outdoor models of the same

building is consequently the next step. For instance, Fig. 1

shows the reconstruction of our computer-lab which should

be connected to the outdoor façade of the building.

When trying to fit a model of the building interior into an

existing outdoor model, typically there are no visual corre-

spondences for the alignment using tie points. Therefore,

manual work is needed, like using CAD models or floor

plans. An automated way providing the true or at least the

most probable locations in the outdoor model assumes to

reduce human interaction.

Since performing a complete reconstruction using continu-

ous image sequences capturing the entire scene by moving

from the outside into the inside of the building is either

inaccurate caused by drifts or even unfeasible by the lack

of matchable features in most cases, an approach using in-

dividual reconstructions is desirable. This also allows for

(a) building exterior

(b) building interior

Figure 1: Dense point clouds of (a) a building façade from

images captured by an UAV and (b) inside our computer lab.

The true location of the lab is indicated by the red polygon

in (a).

matching models generated from image sequences acquired

at different points in time.

The most challenging task in matching indoor and out-

door models is to find structures that appear in both image

sets but do not describe physically the same part of the scene.

To achieve an alignment of these models, topological struc-

tures must be found which can be seen from both inside and

outside the building, like windows and doors. Identifying
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and detecting these objects could be done by semantic im-

age segmentation (scene parsing [5]) or point cloud analysis

[10]. Exploiting the fact that window and door frames can be

characterized by dominant and co-planar edges, we propose

a method employing 3D line segments.

The contribution of this work is (i) a novel framework for

aligning individual image-based 3D reconstructions by (ii)

using 3D lines for detecting and matching shared geometric

structures in different 3D models.

2. Related Work

Although the field of 3D reconstruction, scene interpre-

tation, and modelling of man-made objects like buildings

is a well-known and widely studied research topic, there is,

to our best knowledge, only little research investigating the

question how to automatically align 3D indoor and outdoor

models reconstructed by individual image sequences.

However, the existing demand of integrating multiple

image-based reconstruction models can be demonstrated by

the example of the very recent Chillon Project [2], which

aimed to fully reconstruct the interior and the exterior of

a complex castle in Switzerland. Due to different camera

models and acquisition modes (terrestrial and aerial), a fully

automatic reconstruction process is not possible. Instead,

multiple sub-models were generated and projected in the

same reference coorinate system afterwards in a rather man-

ual way by using Ground-Control-Points or selecting tie

points in the images by hand. Although the result shows an

impressive reconstruction of a complex architectual object,

it also demonstrates the extensive manual interaction which

is still needed to connect multiple sub-models.

Cohen et al. [6] propose a method for merging multiple

SfM reconstruction models of a single building which can

not be merged due to occlusions or insufficient visual overlap.

The approach exploits symmetries and repetetive structures

of building façades, as well as semantic reasoning to find

reasonable connection points of adjecent models and use

them for stitching the models.

In our scenario, we face a similiar problem of having

no visual overlap when trying to stitch indoor and outdoor

models. However, in place of finding connection points,

which do not exist in the seperated models anyway, we try

to find shared geometrical structures that appear in both

models like window frames and doors. These shapes can

be expressed as edge maps and matched to find suitable

connections. When trying to match similiar shapes in edge

images, chamfer matching [4] is widely used, especially in

presence of clutter and incompleteness. In our approach,

we make use of 3D lines to generate such edge maps which

are finally tested for suitable correspondences using chamfer

matching.
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Figure 2: Workflow of the proposed method for aligning

building interior and exterior. See denoted chapters for de-

tails.

3. System Pipeline

This section describes the pipeline of our proposed model

matching approach, as illustrated in Fig. 2. After giving an

overview about the basic concept of the method, a detailed

description of the individual parts is provided.

3.1. Overview

Given two sets of 3D line segments L1 =
{

l11, ..., l
n
1

}

and

L2 =
{

l12, ..., l
m
2

}

, the overall goal is to find a transformation

T = (R, t, s) to align L1 to L2, where t, R and s define

the parameters of a 3D similarity transformation as a 3D

translation vector, a 3× 3 rotation matrix and a scale. Each

segment l is defined by its two endpoints. After identifying

i = 1, .., k corresponding line segments in L1 and L2, the

parameters of T can be estimated by

T = argmin
T

k
∑

i=1

d
(

li2, π
(

li1, T̂
))

, (1)

where π
(

l, T̂
)

projects a line segment l with T̂, and

d (l2, l1) computes the length of the perpendicular of two 3D

line segments extended to infinity.

As only a small subset out of several thousand pairs of

3D line segments in L1 × L2 are expected to be correct

3D line matches, an exhaustive matching scheme is not

applicable. Instead, the matching problem is reduced to

2D by defining multiple plane hypotheses in both models,

projecting 3D lines onto these planes, and performing 2D

binary matching. From the resulting distance maps, local

minima can be extracted which indicate potentially matching

locations of the indoor model. After coarse alignment and

identifying 3D line correspondences, a refinement of T is

applied in 3D by minimizing Eq. (1).

3.2. 3D Line Generation

In a first step, for interior and exterior models, 3D line

segments have to be generated from a set of overlapping

images. This is realized by initially computing image ori-

entations using, e.g., classical SfM pipelines, like VSfM [1],

Pix4D [3], or Bundler [13]. As the following line segment
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(a) building exterior (b) building interior

Figure 3: Sparse point cloud (left) and corresponding 3D line segments (right) for building exterior (a) and interior (b) of the

Office dataset.

reconstruction step assumes images to be undistorted, radial

distortion in the images should be removed in advance or

modeled within the SfM process. Further, both models need

to be approximately equally scaled. This can be achieved

by fixing the scale in the SfM process by including one

known real-world distance, the usage of GPS information, or

a calibrated stereo camera configuration. Although the build-

ing interior often consists of poorly textured walls - which

translates into problems during image matching due to the

low number of matchable feature points - a feasible number

of feature points for the pose estimation process should be

found in most cases.

Subsequently, the computed camera orientations and

undistorted images are used to generate 3D line segments

following the Line3D method proposed by Hofer et al. [8].

Figure 3 shows a comparison of the sparse point cloud ob-

tained from the SfM process and the 3D line segment recon-

struction of the building in Fig. 1. It can be clearly seen that

the derived sparse point clouds do not contain information

in low textured areas, while reconstructed feature points at

the façade and window frames only populate on corners and

junctions. A detection of shared structures in both models
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Figure 4: Number of supported 3D line segments for the 35

most dominant 3D planes in the Office dataset.

based on the point cloud seems to be unfeasible. MVS ap-

proaches help to increase the density of the point cloud, but

still perform bad in poorly textured areas like walls or win-

dows, as exemplary shown in Fig. 1. Additionally, the enor-

mous number of obtained 3D points handicap an efficient

analysis of the scene structure. However, the reconstructed

3D line segments contain much more geometric information

of the scene, particularly in terms of interpreting façades

and windows. Additionally, analyzing 3D lines can be done

far more efficient by the drastically lower number of lines

compared to the densified point cloud, as noted in Table 1.

The alignment of both models by matching corresponding

3D line segments of window frames seems reasonable.

We do not assume prior information of the building struc-

ture, but expect that window frames can be dissembled to

orthogonal and co-planar 3D lines. This allows us to first

define possible window plane hypotheses and then to reduce

the matching problem from 3D to 2D.

3.3. Window Plane Hypotheses Generation

This section describes the generation of possible win-

dow plane hypotheses which are further used to apply 2D

matching and find corresponding 3D line segments in both

models.

Vertical Alignment Like many man-made constructions,

the interior and exterior of buildings mostly consist of planar

horizontal and vertical surfaces. This allows us for making

use of the Manhattan-world assumption and first identify

dominant orthogonal orientations by computing orientation

histograms of the 3D lines followed by aligning the estimated

vertical axis of the model according to the vertical axis of

the coordinate system with the obtained rotation matrix. A

similiar approach is proposed by Furukawa et al. in [7].

Line Filtering In order to reduce the computational over-

head and increase the robustness of the method, subsampling

of the 3D lines is performed by eliminating cluttered and

skewed 3D lines which unlikely belong to window frames

following the Manhattan-world assumption. The set of 3D
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(a) indoor (b) outdoor

Figure 5: Filtered 3D lines and the three most dominant plane hypotheses in the Office dataset. Decreasing number of

supporting 3D lines. (a) indoor: 717 (green), 348 (red), 177 (blue); (b) outdoor: 1326 (green), 1108 (red), 178 (blue).

lines l ∈ L with length |l| and vertical component of the

normalized orientation ϕz are subsampled according to

L′ = {l ∈ L : |l| ≥ τl ∧

(|ϕz(l)| ≤ τϕ ∨ |ϕz(l)| ≥ (1− τϕ)) } ,
(2)

where τl and τϕ are user-defined thresholds defining a min-

imal length (e.g. 20 cm) and deviation along the vertical

and horizontal axes (e.g. 0.05). Table 1 lists the number of

remaining 3D line segments after the filtering step.

Plane Hypotheses From the set of remaining 3D line seg-

ments, multiple window plane hypotheses are generated by

assuming co-planar window frames. A RANSAC estimation

is applied to find dominant 3D planes, wherein inliers are

identified as 3D lines lying on this plane within a threshold

of the thickness of the plane. Each plane is defined by the in-

tercept of close, orthogonal, and co-planar 3D line segments.

The normal of the plane is directed towards the camera from

which these lines were reconstructed in order to distinguish

between indoor and outdoor sides.

We assume that window frames generate substantially

more inliers compared to painted walls or other indoor and

outdoor objects. Figure 4 plots the number of inliers for the

first 35 generated 3D planes of the indoor and outdoor model

shown in Fig. 1. As expected, the number of inliers decreases

rapidly and only a few dominant 3D planes were found.

Depending on the complexity of the building, it is mostly

sufficient to consider the ten most dominant 3D planes. For

the purpose of clarity, only the three most dominant 3D plane

hypotheses together with their corresponding inlier lines are

illustrated in Fig. 5.

For each pair of computed plane hypotheses, T̂ is now

known up to a 2D translation vector within the outdoor plane.

The missing parameters can be estimated by first matching

every plane hypothesis pair in 2D and then evaluating the

matching result to find valid locations.
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Figure 6: Projected 3D inliers onto the first plane hypothesis

in (a) indoor and (b) outdoor scene.
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Figure 7: Number of 3D line matches for different in-plane hypotheses for the three most dominant indoor and outdoor

hypotheses. (a-c) describe different outdoor hypotheses together with their corresponding 2D binary image. Different indoor

hypotheses are indicated by different colors, while in-plane hypotheses are sorted by their number of matches.

3.4. Matching Plane Hypotheses

After computing multiple plane hypotheses, the next step

is to determine corresponding plane hypotheses and find

valid locations of the indoor model in the outdoor model in

order to identify 3D line matches. This is done by performing

oriented chamfer matching as described subsequently.

Binary Image Generation For each indoor and outdoor

hypothesis, corresponding 3D lines considered as inliers by

the plane estimations are projected onto their corresponding

planes for generating 2D lines, as illustrated in Fig. 6. It

has to be noted that, due to the reconstruction process, the

models still contain inaccurate and missing lines, which has

to be considered in the matching process. Furthermore, like

most buildings, the façade shows highly repetitive structures.

In this case, the correct location of the indoor model can

not be identified without any further information like adja-

Figure 8: Chamfer distance maps of indoor hypothesis 1 and

outdoor hypotheses 1 and 2 projected on outdoor 3D lines.

Both maps are equally scaled, while blue color indicates low

distance and therefore likely locations of the indoor model.

cent rooms. Instead, all possible valid locations should be

returned by the method, whereby the correct one is identified

by the user. As chamfer matching requires binary images,

the 2D lines are discretized with a user-defined step size (e.g.

5 cm).

Oriented Chamfer Matching A popular and efficient

technique for shape-based matching is provided by cham-

fer matching, particulary in presence of incompleteness and

clutter. We make use of the oriented chamfer distance [12],

which is defined as the mean distance of edge points of a

template binary image to their closest edge points in a query

binary image, weighted by the orientation differences of clos-

est edge points. This distance can be efficiently computed

using distance transform, while the orientations of the edge

maps can be extracted directly from the 2D line segments.

The resulting chamfer distance map indicates possible

locations of the indoor model, the so-called in-plane hypothe-

Figure 9: Most probable locations of the indoor model. The

first five hypotheses belong to indoor plane hypothesis 1 and

are all located on outdoor plane hypothesis 1.
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Figure 10: Refining the initial transformation by global 3D

optimization: 429 3D line matches for (red) transformed

indoor and (black) outdoor lines exemplary shown for the

most supported hypothesis.

ses. Figure 8 illustrates the distance maps of matching indoor

hypothesis 1 to outdoor hypotheses 1 and 2 projected onto

the 3D lines of the outdoor model. Note the low distances for

the windows at the first and second floor. However, differ-

ences in the scores for different floors are caused by missing

edges during the reconstruction process and slightly different

window heights for the first and second floor. Mutiple in-

plane hypotheses are subsequently identified by extracting

local minima in the distance maps.

Finding Corresponding 3D Line Segments For each in-

plane hypothesis i, a full initial transformation T̂i is now

available. After transforming all indoor inlier 3D line seg-

ments with T̂i, corresponding 3D line segments can be de-

tected as closest parallel 3D line segments of the outdoor

model. Due to the plane estimation, discretization, and multi-

ple window pane layer, the inlier 3D indoor lines are shifted

along the normal orientation of the plane until a maximum

number of matches is reached.

This procedure is repeated for all possible plane combina-

tions and in-plane hypotheses, while the number of detected

3D line matches indicates the quality of the matching. Fig-

ure 7 shows the number of matches for each pair of planes

and multiple in-plane hypotheses. Most matches are found

by the correct indoor plane hypothesis 1 (green) and the

first outdoor plane hypothesis (a), followed by the second

façade (b), whereby numerous in-plane locations produce a

similiar number of matches. Wrong indoor plane hypotheses

(a) view from outside

(b) view from inside

Figure 11: Aligned point clouds of indoor and outdoor model

from different perspectives.

(red and green) and the wrong outdoor plane hypothesis (c)

generate significantly less matches. Figure 9 illustrates the

location of the five most probable in-plane hypotheses. All

of them correspond to the first indoor plane hypothesis and

first outdoor plane hypothesis.

3.5. 3D Refinement

After obtaining the n most probable in-plane hypotheses

and manually choosing the correct one, the parameters of

the initial transformation T̂ are still errorneous caused by

inaccurate plane estimations, the discretization, or unequal

scale of both models, as exemplary shown in Fig. 10 (a).

A fine alignment is achieved by using the obtained 3D line

matches and minimizing Eq. (1). Due to the fact, that corre-

sponding 3D line segments still can vary in their distance -

as they could be fragmented during the 3D line generation

step - they are extended to infinity. Therefore, the perpen-

dicular distance between matched lines is minimized. Note

that this optimization requires both horzizontal and vertical

line matches in order to eliminate one degree of freedom,

but should be satisfied in most cases.

Table 1 summarizes the intermediate results of the align-

ment and the effect of the global optimization. The mean of

all perpendicular distances of 3D line matches can be consid-

ered as a measure of the alignment accuracy and results in

4.7 cm for the Office dataset. A visualization of the aligned

3D line matches before and after the global optimization is

illustrated in Fig. 10, while Fig. 11 shows the final alignment

of both dense point clouds.
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(a) indoor (b) outdoor

Figure 12: Filtered 3D lines and the four most dominant plane hypotheses in the Building dataset. Decreasing number of

supporting 3D lines. (a) indoor: 2827 (orange), 982 (cyan), 412 (red), 272 (blue); (b) outdoor: 2395 (orange), 1617 (cyan), 721

(red), 676 (blue).

4. Experiments

Beside the dataset and result in the sections before, an-

other experiment was carried out to illustrate the perfor-

mance of the method. After giving an overview about the

data acquisition and properties of the dataset, intermediate

and final results of the alignment are described.

4.1. Dataset Description

The Building dataset contains an outdoor image sequence

of a complete building captured from an UAV and an indoor

hand-held image sequence inside of the building basement.

Two large windows at both face sides of the building can

be used for stitching the indoor and outdoor model. GPS

tags of the aerial images were included in a SfM pipeline to

compute a georeferenced, vertically aligned, and correctly

scaled reconstruction model. However, one known real-

world distance and direction has been included in the indoor

reconstruction in order to approximate the orientation and

scale of the indoor model. 3D line segments of both models

were further generated using the Line3D method proposed

in Section 3.2 (cf. Fig. 12). A description of the scene and

intermediate results for this dataset are given in Table 1. For

further information of this freely available dataset, please

refer to [9].

4.2. Alignment Result

Unlike the dataset used in section 3, the alignment of these

models is unique up to a 180◦ rotation of the indoor model,

while the connection can be achieved on both windows sides

of the building. The result of the plane hypotheses generation

is illustrated in Fig. 12. The four most dominant plane

hypotheses represent the four façades of the outdoor model

and the two walls and two window sides of the indoor model.

In this dataset, the number of matchable plane hypotheses

can be reduced by a bounding-box criteria. As the indoor

model should not break through the outdoor model, the front

and back sides of the indoor model are not matched to the

side façades of the outdoor model. Further, as the side walls

of the indoor model have no connection to the outdoor model
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Figure 13: Visualization of (red) transformed indoor and

(black) outdoor 3D line matches considering only matches

at one face side of the building (a) and matches at both sides

(b).
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(a) front entrance

(b) back entrance

Figure 14: Final result after joint optimization of front and

back entrance from different perspectives.

and contain different structures, only two main hypotheses

remain after the 2D matching step.

172 inlier 3D matches were found when matching one

window façade. Due to the building structure, another 157

3D line matches can be added when considering the sec-

ond hypothesis on the opposite window façade, as shown in

Fig. 13(a). If only matches at one side of the building are

being used, small inaccuracies of the estimated rotation and

scale togehter with the elongated structure of the building

(60m) cause an imprecise fit observed at the opposite side of

the building (cf. Fig. 13(a)). Therefore, a joint optimization

with matches at both sides is performed which leads to an

accurate and robust estimation of T with a mean error of

5.3 cm (cf. Figure 13(b)). Figure 14 shows the final align-

ment of all 3D lines viewed from both sides of the building.

5. Discussion and Future Work

We have presented an approach for automatically align-

ing individual indoor and outdoor reconstructions that uses

Table 1: Properties, intermediate and final results of the

experiments Office and Building. Note the relatively small

number of 3D line segments compared to the densified point

clouds generated by a standard MVS [11]. Errors are defined

as the mean perpendicular distance between 3D line matches

before and after global optimization.

Dataset

Office Building

In Out In Out

Base area
(

m2
)

75 405 360 1500

Images 247 41 320 228

3D Points (Mio) 9 18 13 134

3D lines 4373 3905 10315 23801

Filtered 3D lines 1724 2764 6616 21385

Matches 429 329

Error before optimization (cm) 5.7 47.7

Error after optimization (cm) 4.7 5.3

SfM and a 3D line segment reconstruction algorithm. As

connecting those kinds of models is mostly restricted to their

geometric shapes like windows and doors, 3D lines are well

suited for this task. Compared to the extensive generation

and analysis of dense 3D points using Multi-View Stereo,

a comparatively small number of 3D lines offer more in-

terpretable information, at least in detecting and matching

geometric shapes.

The proposed system exploits the planar structures of

buildings for generating multiple meaningful matchable hy-

potheses and is therefore not limited by the complexity of

the building. After detecting multiple 3D plane hypotheses,

matching can be applied efficiently in 2D by binary image

matching methods. However, a more discriminative match-

ing method has to be developed for our task, as standard

methods return too many local in-plane minima and hence

result in too much computational overhead. This is also the

case for reducing the number of meaningful plane hypothe-

ses. A preceding labeling of the 3D line segments using

semantic image segmentation could help to include useful

priors in the window plane estimation and 2D matching

steps.

Beside aligning indoor and outdoor models, this method

can also be extended to align individual adjacent room mod-

els which are connected by doors. In case of complex build-

ing interiors containing multiple rooms, a graph-based ap-

proach has to be developed in order to find the correct room

constellation.
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