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Abstract

Threat detection in computer vision can be achieved by

extraction of behavioural cues. To achieve recognition of

such cues, we propose to work with Semantic Models of be-

haviours. Semantic Models correspond to the translation

of Low-Level information (tracking information) into High-

Level semantic description. The model is then similar to a

naturally spoken description of the event. We have built se-

mantic models for the behaviours and threats addressed in

the PETS 2016 IPATCH dataset. Semantic models can trig-

ger a threat alarm by themselves or give situation aware-

ness. We describe in this paper how semantic models are

built from Low-Level trajectory features and how they are

recognised. The current results are promising.

1. Introduction

In the PETS2016 IPATCH dataset, threat event detection

corresponds to the automatic recognition of suspicious be-

haviours or clear indications of attack from boats in the near

or long range vicinity from the main vessel. The dataset

contains acted scenarios from maritime-domain real end-

user piracy experiences. As expected, piracy attacks oc-

cur in a large variety of forms. Sometimes pirates disguise

themselves as fishermen; sometimes pretending to follow

an unrelated course to the main vessel before deviating to

attack and sometimes devising a slow-approach to their at-

tack. Despite the different forms of attack, the contextual

area of the attack, possible weather and other conditions,

recorded sequences consistently contain threat behaviours

such as a skiff speeding up towards the ship, suddenly head-

ing towards the ship, approaching at high speed, for which,

although we cannot recover the boat movements and timing,

the conveyed semantic is clear and leaves no doubt of a po-

tential threat to the main vessel. To achieve threat recogni-

tion in the PETS2016 IPATCH dataset we propose to work

with Semantic Models of threats. Semantic Models corre-

spond to the translation of Low-Level information (track-

ing information) into High-Level semantic description. The

model is then similar to a naturally spoken description of

the event. This translation and building of models have been

first proposed by Patino et al [10] to translate trajectory in-

formation from people walking around in a scene to a se-

mantic model. Learning the model is based on the learning

of activity zones of the scene; extracting semantics from

key points in the trajectory and expressing the trajectory as

a sequence of visited zones. Semantic models in IPATCH

can trigger a threat alarm by themselves or give situation

awareness as input to further analysis or processing by the

end-user. We describe next how semantic models are built

from Low-Level trajectory features; which threats we ad-

dress and how they are recognised.

2. Related work

Threat detection and suspicious behaviour recognition

has been widely researched for surveillance of human activ-

ities. Depending on the application domain, such systems

may specialise in the detection of some targeted events. In-

frastructures with valuable assets are interested in detecting

a person in a forbidden or sensitive area [13]. Counting peo-

ple is an important feature in space/ environment planning

in ambient intelligence applications [9]; this can increase

management efficiency in public spaces making system op-

erators aware of areas with high congestion or signalling

areas that need more attention. This has led to a research

interest on behaviours such as panic, fighting, and vandal-

ism.

In the maritime case, threat and behaviour analysis has

been less developed. The event detection and raising of

an alarm has focused on detection of boat behaviour abnor-

malities. By abnormalities we understand anomalous events

occurring infrequently in comparison to normal events; or

anomalous events that have significantly different charac-

teristics from normal events. This links to suspicious be-

haviour detection, where we search for events which have

specified different characteristics from normal events. Well

known abnormal behaviours are related to AIS transmis-

sion. These include the switching on or off of AIS systems

and spoofing a ship’s name or other details. However, the
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most common researched abnormalities are related to the

vessel route and associated kinematics (still with AIS and/or

radar-based datasets as inputs). These correspond to abnor-

mal traffic patterns that could be related to a vessel travel-

ing in an anomalous direction, a vessel traveling in a sea

lane but at an anomalously high speed, a vessel crossing the

main sea lane at an anomalous location or a vessel at a pro-

hibited anchoring zone. Trajectory analysis has been widely

used in these cases. Spline-based trajectory clustering [3];

Kohonen maps [12], Gaussian mixture model, or multivari-

ate analysis [14, 11], have been for instance employed to

model normal sea lanes and discover abnormalities. Prob-

abilistic models based on Markovian and Bayesian theory

have also been researched particularly for its intrinsic na-

ture to handle uncertainty. Bayesian networks are used to

combine individual probabilities and calculate the overall

probability of facing an abnormal event [2]. Good success

has been reported on using Hidden Markov models HMMs

[15]; these are particularly interesting to model sequences

of events (e.g. the sequence of ship port arrivals). Suspi-

cious behaviour detection capabilities implemented in real

maritime control rooms are must commonly rule-based sys-

tems. Such systems are set by experts that create rules that

will trigger an alarm. Rule-Based Expert Systems with rules

defined by experts have been proposed for the deduction of

different situations, e.g. dangerous area, smuggling, hijack-

ing, close approach [4, 6, 5, 16]. Such systems employ input

data regarding vessel type, speed, location, report time and

heading, as well as environmental information such as tides,

wind speed and direction.

Compared to the state of the art, the proposed approach

has the advantage to recognise threats in the semantic do-

main, thus allowing recognition of threatening situations

that may occur in a large variety of forms and whose com-

plexity would grow when focusing only on Low-Level tra-

jectory data. Employing semantics, an operator can also

easily specify behaviour patterns of interest, which allow

for system flexibility.

3. Concept description

Semantic modelling is achieved through trajectory anal-

ysis. By employing clustering techniques, activity zones

(context zones) can be learnt characterising the scene dy-

namics. Detected mobile object activities are extracted by

relating mobile trajectories to the learned zones. The activ-

ity of a mobile object can then be summarised as the series

of zones that the person has visited. Semantics are automat-

ically attributed to activity zones and to key points in the

mobile trajectory, allowing expressing activities themselves

with semantics. Figure 1 shows the steps employed to build

the semantic model and to employ them for the recognition

of targeted threats. The assumption is that a fusion mod-

ule is generating trajectories from detected objects from a

series of heterogeneous sensors. These could correspond

to objects observed on different types of camera (visible,

thermal) or other tracking systems (such as radar or AIS).

The proposed system would then start by the analysis of de-

tected mobile trajectories and extracting trajectory points of

interest indicating mobile change of speed or direction (Ex-

traction of points of interest module). Points of interest are

those trajectory points that can give behavioural information

allowing the recognition of targeted behaviours. We are in-

terested to extract points indicating an object mobile ‘has

stopped’, ‘speeds up’ or ‘stands waiting’. As previously

mentioned, the proposed semantic models employ learned

activity zones where mobiles evolve in the scene. This is

the second step in the proposed system. The input, to the

zone learning procedure, is the extracted trajectory points

of interest. Activity zones are built by running a soft com-

puting clustering algorithm on those points. Activity zones

are important because they allow understanding frequent

behaviours. Meeting zones, waiting zones, queuing zones

and user-defined zones are meaningful for this. In an offline

step, semantic models are built by characterising mobile ob-

ject movements as a series of visited activity zones (activity

extraction module). Such characterisation allows recogni-

tion of the targeted threats. Different threats are considered:

boats suddenly changing direction or involving suspicious

fast movements. Detected mobiles can then be inferred as

having a normal, or a threat activity.

Figure 1. Processing chain for the proposed approach

3.1. Addressed behaviours

Specifically we target the recognition of the following

behaviours: ‘boat Meeting’, ‘boat Splitting’, ‘boat sud-

denly detaching from group’, ‘boat chasing/catching up’,

‘boat suddenly changing direction’. While the first two be-

haviours are normal group behaviours, the next ones repre-

sent clear indications of an abnormal activity (potentially an

attack towards the main vessel). We define:

• Skiff (boat) speeding up: Sudden acceleration of the
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mobile object.

• Skiff group formation: A mobile comes close to an-

other and holds an interaction.

• Skiff group separation: A mobile departs from a group.

• Skiff suddenly changing direction: Mobile object sud-

denly changes trajectory.

4. Setting semantic models

As mentioned in the previous section, semantic mod-

els are built from two key stages: Extraction of semantics

from points of interest and learning of scene context (activ-

ity zones). We now describe each of these processes.

4.1. Extracting semantics from trajectory

Behavioural indicators for meeting situations are for in-

stance ‘tracked objects stopping to meet ’ or tracked objects

which ‘change direction’ to approach another one. Informa-

tion of this type can be extracted from both the analysis of

the mobile trajectory speed and direction profile. There are

thus two parallel processes: The first is to analyse the mo-

bile speed profile and obtain those speed changing points.

The second is to analyse the mobile direction profile and

obtain those direction changing points.

Each trajectory is defined as the set of points

[��(�), ��(�)] corresponding to their position on the ground

on the t-th frame. The instantaneous speed for that mobile

at point [��(�), ��(�)] is then � (�) =
(

�̇ (�)
2
+ �̇ (�)

2
)

1

2

,

and the direction � that the mobile takes at that point is

� (�) = ������ (�̇ (�) /�̇ (�)).

Each of these two time series is analysed in the frame of a

multiresolution analysis [7] with a Daubichis Haar smooth-

ing function, �2� (�) = � (2��), to be dilated at different

scales �.

In this frame, the approximation � of � (�) by �; where

� is a translation parameter spanning the time domain of

�(�), is such that ��−1 (�) =
∫

� (�) �
(

2�−1�− �
)

�� is

a broader approximation of ��� and correspondingly for

��−1 (�) and ���. The analysis is performed through six

dyadic scales. The effect at performing a broader approx-

imation is to smooth out signal variations at each scale.

We select as speed changing points and direction changing

points those points seen as sharp discontinuities which re-

main present across scales despite the smoothing procedure.

Speed changing points are then labelled according to the

direction of the speed change : ‘with decreasing speed’,

‘with increasing speed’, ‘with normal speed’, ‘stopping’.

Change direction points are labelled on a single category:

‘Change direction’.

4.2. Extracting scene context information

A fuzzy set is a set of ordered pairs such that � =
{(�, �� (�)) ∣ ���}. Any relation between two sets X and

Y is known as a binary relation R:

� = {((�, �) , �� (�, �)) ∣ (�, �) �� × � }

and the strength of the relation is given by �� (�, �)
Let’s consider now two different binary relations, R1 and

R2, linking three different fuzzy sets X, Y, and Z :

• R1 = x is relevant to y

• R2 = y is relevant to z

It is then possible to find to which extent x is relevant to z

by employing the extention principle (noted � = �1��2):

��=�1∘�2 (�, �) = max
�

min [��1 (�, �) , ��2 (�, �)]

It is interesting to verify whether the resulting relation is

symmetric, � (�, �) = � (�, �) , reflexive � (�, �) = 1,

which make of R a compatibility relation and occurs in

most cases when establishing a relationship between bi-

nary sets. Because R was calculated employing the ex-

tention principle, R is also a transitive relation. � (�, �)
is a transitive relation if ∃ � ∈ �, � ∈ �/� (�, �) ⩾

max
�

min [� (�, �) , � (�, �)]

R can be made furthermore closure transitive following

the next steps

Step1. �′ = � ∪ (� ∘�)
Step2. If �′ ∕= �, make� = �′ and go to step1

Step3. � = �′ Stop.

(1)

R is the transitive closure where

� ∘� (�, �) = max
�

min (� (�, �) , � (�, �)) (2)

R is now a transitive similarity relation with � indicating

the strength of the similarity. If we define a discrimination

level � in the closed interval [0,1], an �−��� can be defined

such that

�� (�, �) = 1 ⇔ � (�, �) ⩾ � (3)

From the classification point of view, �� induces a

new partition �� with a new set of clusters �� =
{

���
1
, ⋅ ⋅ ⋅ , ���

� , ⋅ ⋅ ⋅ , ���
∣��∣

}

such that cluster ���
� is

made of all initial elements �, �, � which up to the alpha

level fullfill the final similarity relation in equation 2. It

should be noted that this relation clustering was first pro-

posed by Patino et al. [8] for the learning of activity zones.
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4.3. Relation setup for activity zone computation

Activity zones are computed having as input the track

speed (or direction) changing points calculated as explained

in Section 4.1. These points are first clustered by a fast par-

titioning algorithm. In a second step the partition is cor-

rected leading to the final activity zones.

Computing Initial Activity Zones. The algorithm

works on-line without needing to specify the number of

clusters in advance. The first point is assigned as Leader

representative of a new cluster. Then the next point is as-

signed to an existing cluster or defines a new cluster de-

pending on the distance between the point and the cluster

leading representative. The process is repeated until all in-

put points are assigned to clusters. In our application, the

cluster influential zone, ��, is defined by a radial basis func-

tion (RBF) centered at the position of the point designed as

cluster leader (or leading representative), �; and the mem-

bership of a new point �(�, �) to that zone is given by:

��(�, �) = �(�, �) = ���(−
∥�− �∥

2

� 2
) (4)

The RBF function has a maximum of 1 when its input

is � = � and thus acts as a similarity detector. An object

element will be included into a cluster �� if ��(�, �) ≥
0.5; the cluster receptive field (hyper-sphere) is controlled

by parameter � .

Final Activity Zone calculation. To calculate the fi-

nal zone partition, the following relationships are set: �1��
:

Zone ���
overlaps Zone ���

. �2��
: zone ���

and zone

���
are destination zones for mobiles departing from any

same activity zone ���
. �3��

: zone ���
and zone ���

are origin zones for mobiles arriving to the the same ac-

tivity zone ���
. �4��

: zone ���
and zone ���

have about

the same number of detected mobiles stopping at the zone.

�5��
: zone ���

and zone ���
have about the same mo-

bile interaction time. All relations are aggregated employ-

ing a bounded product T-norm soft computing operator

� = max (0, �1 +�2 +�3 +�4 +�5 − 4). New zones

����
� are learned employing equation 1. Final activity

zones ����
� are made of all initial zones ��� which up

to the alpha level fullfill the relations set above. Note that

unlike [8], we employ an extended set of relations.

5. Behaviour characterisation

Traectory information can be translated into semantic

terms with the help of discovered zones and speed and di-

rection labels.

Having discovered in total � = 1, ...,� zones ; and

����
� is one zone resulting from the zone learning pro-

cedure, we understand then a mobile behaviour as the se-

quence of transitions between learned zones in its trajectory.

Two different transitions can be defined:

• Mobile with �����− ���������− ����� from Zone

����
� to Zone ����

�′

• Mobile at Zone ����
� with �����− ���������− �����

The complete behaviour is then characterised as the or-

dered sequence of transitions generated as the mobile moves

between zones.

5.1. Addressing PETS2016 behaviours

We employ semantic models to define threat behaviours

of the maritime domain. The addressed behaviours stated in

Section 4.1 translate then as follows:

Skiff (boat) speeding up: mobile with the semantic la-

bel increasing speed.

Skiff (boat) group formation: At least two boats come

to a common zone Zn and hold an interaction: mobileA

‘stopping’ OR ‘with decreasing speed’ at zone Zn before

mobileB ‘stopping’ OR ‘with decreasing speed’ at zone Zn.

Skiff (boat) group separation: A boat departs from a

group at a common zone Zn towards a different zone Zn’:

mobileA ‘stopping’ OR ‘Chg direction’ OR ‘decreasing

speed’ at Zone Zn overlaps mobileB ‘with normal speed’

OR ‘with increasing speed’ from Zone Zn to zone Zn’.

Skiff (boat) suddenly changing direction: mobile with

the semantic label change direction.

6. Experimental results

We have addressed the challenge set in PETS2016

[1] regarding the recognition of the following behaviours:

‘change direction’, ‘speeding up’, ‘group formation’,

‘group separation’. We have thus processed all sequences

marked in the dataset description as containing at least one

instance of these behaviours. The total number of sequences

processed from the PETS2016 dataset amounts then to nine.

The sequences are multisensor recordings comprising vi-

sual, thermal and GPS data. We employ the latter as input

to our system.

Semantic models are particularly of interest because it

allows recognising an attack or a threat despite the different

forms the attack may take. The core of the approach con-

sists on working on conveyed semantic from boat kinemat-

ics. Semantics are essential to distinguish between a threat

and a non-threat.

Consider two cases; for instance scenarios GPS Sc4 Tk2

and GPS Sc3b Tk1. The former represents a real threat and

the latter only an abnormality. Both sequences have a very

similar development. In sequence GPS Sc4 Tk2 (depicted

in Figure 3), one vessel is at anchorage; a boat approaches

and stops interacting with the vessel. Suddenly two station-

ary skiffs, simulating being fishermen, speed up to attack

the main vessel. In the second sequence, GPS Sc3b Tk1

(depicted in Figure 4), stationary fishing boats are in the

46



vicinity of the vessel. The boats speed up towards the ves-

sel and finally change direction without reaching the ves-

sel. Key behavioural cues in these sequences are boats

speeding-up, changing direction, splitting and meeting.

Our approach succeeds to extract those important boat

speeding-up and changing direction points. Figure 2 shows

how the speed profile of a given trajectory is analysed with

the Haar-based multiresolution approach as described in

Section 4.1. A similar procedure is applied on the instan-

taneous direction at each pont of the trajectory. Important

change of speed points and change of direction points are

extracted and represented over the original trajectory in the

same figure. Qualitatively, the extracted points of interest

correctly indicate the speeding up, decreasing of speed as

well as change of direction correctly. On the nine processed

sequences 23 instances on change direction were obtained

from which 19 are considered True Positives and four False

Positives (see Table 1). Two of those false positives corre-

sponding to boats being almost stationary (and thus change

of direction has no real meaning in this case). However, it

must be noted that being at sea, boats are still moving and

the recorded direction may be changing even with no sig-

nificant displacement. Two more false positives are marked

for short-lived changes of direction, which do not make for

a significant change in the trajectory. Regarding the ‘in-

creasing speed’ behaviour, six instances were detected on

all analysed sequences. All of them correspond to true pos-

itives.

Extracted semantics allow, with activity zones, to recog-

nise meeting and splitting situations. As shown in Section

5.1 the recognition of these behaviours depend on extract-

ing the expected semantic while the tracked object is active

in a given zone. For instance, for the first considered se-

quence (GPS Sc4 Tk2), the boats splitting (see Figure 3)

is correctly recognised because of the extracted ‘speed in-

creasing’ semantic and both boats depart from a common

activity zone to a non-common one. Equally, the attack to

the vessel is confirmed as the skiffs meet the boat. The

meeting situation recognised as the boats are ‘decreasing

speed’ and come to a common zone. Similarly in sequence

GPS Sc3b Tk1 (depicted in Figure 4), the split between the

boats is correctly recognised (see Table 1). There is how-

ever a short-lived meeting situation (mobile 242 meets 240)

between a boat and the detected vessel because the ‘meet-

ing’ takes the ‘decreasing speed’ semantic, in a common

zone, as an indication of willingness or intention to meet.

This meeting situation is cancelled out as the system detects

the boat leaving from the vessel vicinity.

In the nine sequences, 16 pairwise meeting situations

are detected. All of them constitute true positives ex-

cept the shortlived meeting event detected in sequence

GPS Sc3b Tk1. Regarding detected mobiles splitting, the

system recognised nine splitting situations between pairs of
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mobile 233 Chg direction
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mobile 234 with increasing speed

mobile 234 with increasing speed

mobile 234 meets 232 at 2015−04−21 13:07:41
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Figure 3. GPS trajectory data for sequence Sc4 Tk2. Important

behavioural cues detected by the system are signaled over the tra-

jectory.
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Figure 4. GPS trajectory data for sequence Sc3b Tk1. Important

behavioural cues detected by the system are signaled over the tra-

jectory.

mobiles. All of them are true but two. The false positive

would correspond to the ‘boats leaving’ the vessel in se-

quence GPS Sc3b Tk1 if it is considered that no splitting

should be attributed if no actual group formation occured

(as the boats did not stop to interact or attack the vessel).

Note however marking the event as false positive depends

entirely on the interpretation as the two boats ‘leaving the

vessel’ from its anchorage point conveys the right seman-

tic description and it can be an indication of a threat to the

vessel diminishing.

It could be argued that in GPS Sc4 Tk3 there is a false

negative for a splitting situation between the two skiffs

when reaching the vessel. While the two skiffs actually go

to different sides of the vessel, they still remain, together
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Figure 2. Extraction of points of interest for one trajectory in sequence GPS Sc3b Tk1. Panel A) Multiresolution decomposition of the

trajectory speed profile with a Haar wavelet. Vertical lines at all scales indicate the significant change of speed points. Panel B) Change

of speed points (circular markers) overlaid on the original trajectory. Note that the white marker indicates a ‘plateau speed’ (a change in

speed but not as important to label it as ‘increasing’ or ‘decreasing’ speed). Panel C) Change of direction points (yellow circular markers)

are superimposed to the original trajectory.

with the vessel, forming a unique activity zone where the

two skiff boats and the vessel are contained and interacting.

In this case no split is actually detected by the system. In-

terpreting an split situation in this case probably depends

on the granularity at which the activity is observed. The

complete set of our results is presented in Table 1.

7. Conclusions

We have addressed in this paper the PETS 2016 chal-

lenge on the IPATCH dataset recognising behaviours of in-

terest that can account for a maritime threat to a vessel.

Namely, we target detection of the following behaviours set

in the challenge: ‘change direction’, ‘speeding up’, ‘meet-

ing (group formation)’, ‘splitting (group separation)’. The

proposed approach is based on trajectory analysis and auto-

matic learning of activity zones, but the behaviour recogni-

tion is made in the semantic domain. Indeed, the proposed

approach works by setting a semantic model for each tar-

geted behaviour. This is similar to setting a naturally spoken

description of the event as the methodology works by trans-

lating trajectory information from the detected mobile ob-

jects in the scene into semantics. Automatic learning of ac-

tivity zones help us to infer important behaviours of the ob-

served mobile objects in the scene, specifically meeting and

splitting situations. Our results obtained in the PETS 2016

IPATCH dataset are encouraging. From nine processed se-

quences 55 behavioural events are detected from which the

majority of detections is correct and we only obtain a few

false positives (6). Our future work will consist in automat-

ically learning more behavioural cues in order to diminish

the number of false positives and address a wider spectrum

of general behaviours.
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Sequence MobileID Event Event timestamp Visual validation

Sc2 Tk2 217 Chg direction 21/04/2015 07:42:00 FP

Sc2 Tk2 218 Chg direction 21/04/2015 07:42:00 TP

Sc2 Tk2 219 Chg direction 21/04/2015 07:42:00 TP

Sc2a Tk1 214 Chg direction 21/04/2015 11:08:00 TP

Sc2a Tk1 215 Chg direction 21/04/2015 11:08:00 TP

Sc2b Tk3 222 Chg direction 21/04/2015 14:48:00 TP

Sc2b Tk3 222 Chg direction 21/04/2015 14:49:00 TP

Sc2b Tk3 222 Chg direction 21/04/2015 14:49:00 TP

Sc2b Tk3 222 Chg direction 21/04/2015 14:49:00 TP

Sc2b Tk3 221 Chg direction 21/04/2015 14:51:00 FP

Sc2b Tk3 221 Chg direction 21/04/2015 14:52:00 TP

Sc2b Tk3 221 Chg direction 21/04/2015 14:52:00 TP

Sc2b Tk3 221 Chg direction 21/04/2015 14:52:00 TP

Sc2b Tk3 222 Chg direction 21/04/2015 14:52:00 TP

Sc2b Tk3 222 Chg direction 21/04/2015 14:52:00 TP

Sc2b Tk3 221 Chg direction 21/04/2015 14:52:00 TP

Sc3 Tk1 227 speed up 21/04/2015 12:01:00 TP

Sc3 Tk1 228 speed up 21/04/2015 12:01:00 TP

Sc3 Tk3 230 speed up 21/04/2015 12:18:00 TP

Sc3 Tk3 231 speed up 21/04/2015 12:18:00 TP

Sc3a Tk2 224 Chg direction 21/04/2015 12:29:00 TP

Sc3a Tk2 225 Chg direction 21/04/2015 12:29:00 TP

Sc3b Tk1 242 mobile 242 meets 241 21/04/2015 12:41:12 TP

Sc3b Tk1 241 mobile 241 meets 242 21/04/2015 12:41:12 TP

Sc3b Tk1 242 speed up 21/04/2015 12:41:16 TP

Sc3b Tk1 241 speed up 21/04/2015 12:41:24 TP

Sc3b Tk1 242 mobile 242 Leaves 241 21/04/2015 12:41:24 TP

Sc3b Tk1 241 mobile 241 Leaves 242 21/04/2015 12:41:24 TP

Sc3b Tk1 241 Chg direction 21/04/2015 12:41:48 TP

Sc3b Tk1 242 Chg direction 21/04/2015 12:41:48 TP

Sc3b Tk1 242 mobile 242 meets 240 21/04/2015 12:41:40 FP (242 is with decreasing speed)

Sc3b Tk1 241 mobile 241 Leaves 242 21/04/2015 12:41:48 TP

Sc3b Tk1 242 mobile 242 Leaves 240 21/04/2015 12:41:48 FP (If we consider there was no meeting)

Sc3b Tk1 241 mobile 241 Leaves 240 21/04/2015 12:41:48 FP (If we consider there was no meeting)

Sc3b Tk1 240 mobile 240 Chg direction 21/04/2015 12:41:56 FP (static boat)

Sc3b Tk1 240 mobile 240 Chg direction 21/04/2015 12:42:04 FP (static boat)

Sc4 Tk2 234 mobile 234 meets 233 21/04/2015 13:05:52 TP

Sc4 Tk2 233 mobile 233 meets 234 21/04/2015 13:05:52 TP

Sc4 Tk2 234 mobile 234 Leaves 233 21/04/2015 13:05:52 TP

Sc4 Tk2 235 mobile 235 meets 232 21/04/2015 13:05:11 TP

Sc4 Tk2 234 mobile 234 Leaves 233 21/04/2015 13:05:52 TP

Sc4 Tk2 232 mobile 232 meets 234 21/04/2015 13:07:41 TP

Sc4 Tk2 234 mobile 234 meets 232 21/04/2015 13:07:41 TP

Sc4 Tk2 232 mobile 232 meets 233 21/04/2015 13:07:41 TP

Sc4 Tk2 233 mobile 233 meets 232 21/04/2015 13:07:41 TP

Sc4 Tk3 238 mobile 238 meets 236 21/04/2015 13:14:57 TP

Sc4 Tk3 237 Separation(mobile 237 leaves 239) FN

Sc4 Tk3 239 Separation(mobile 239 leaves 237) FN

Sc4 Tk3 237 mobile 237 meets 236 21/04/2015 13:18:41 TP

Sc4 Tk3 236 mobile 236 meets 237 21/04/2015 13:18:41 TP

Sc4 Tk3 236 mobile 236 meets 239 21/04/2015 13:18:41 TP

Sc4 Tk3 239 mobile 239 meets 236 21/04/2015 13:18:41 TP

Table 1. Recognised behaviours in the PETS 2016 IPATCH dataset.
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