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Abstract

The definition of shape spaces as homogeneous spaces

under the action of a group of diffeomorphisms equipped

with a right invariant metric has been successful in provid-

ing theoretically sound and numerically efficient tools for

registering and comparing shapes in the context of compu-

tational anatomy and leading to the so called diffeomor-

phometry. However, when considering not only shapes but

shape evolutions or growth modeling, what could be the

equivalent shape evolution spaces if any and what can be

the natural group actions ? This paper proposes a princi-

pled framework in this direction on stratified shapes.

1. Introduction

Following D’Arcy Thompson’s seminal work [7], the

comparison of two biological shapes SA and SB is struc-

tured under the definition of one to one correspondences be-

tween homologous points. Since biological shapes are em-

bedded in an ambient space, one ends up with the construc-

tion of a global diffeomorphism φ such that φ(SA) = SB .

From that, the first layer of the concept of shape spaces is a

consistent collection of shapes and diffeomorphic mappings

between them. The structure of the mapping is somewhat

simple since it coincides with a group action of diffeomor-

phisms given by transport on shapes and this induces the

differential layer of most shape spaces as recently formal-

ized by Arguillière [1, 2]. The second layer is a metric

layer inherited from the introduction of a metric structure

on the mappings satisfying the triangle inequality and com-

ing from a right invariant metric on the acting group of dif-

feomorphisms. This extra structure allows the development

of various shape population analysis [12]. Shape spaces as

Riemannian manifolds are also well adapted to the study of

shape evolutions and longitudinal analysis by various meth-

ods ranging from parallel transport [6], riemannian splines

[9], geodesic regression [5, 11, 4] including the inference

from a population of a prototype scenario of evolution and

its spatio-temporal variability [3].

However, in important situations, the starting hypoth-

esis of the presence of homologous points between any

two shapes may not be satisfied in particular during a mor-

phogenetic process since new structures may appear (think

about new cells in the biological context). In particular,

partial mappings between shapes have to be considered

with φ(SA) ⊂ SB . A difficult question about shape evo-

lution is the nonlinear combination of two different pro-

cesses: a deformation process when a given organ is de-

forming through time and a growth process when the shape

is evolving through a growing process involving new mate-

rial. However, the situation may be more subtle: consider a

shape evolution (St) by a pure scaling process. A first inter-

pretation would be to explain the evolution by a continuous

creation of new material on the boundary of St (think about

the bark of a tree) preventing a matching between two non

homologous rings (different year). A second interpretation,

in the usual spirit of diffeomorphic registration, would be to

build a one to one correspondence between the two shapes

(perfect homology between points) and to explain the evo-

lution by a pure deformation process. Note that even in this

pure deformation scenario, one could consider that we have

a creation of new material stricto sensus but the homology

structure remains stable.

To deal with some of the core issues about the process-

ing of shape evolutions in the context of growth, we pro-

pose in this paper to follow a somewhat axiomatic point of

view that can be parallel to the development of the shape

space point of view. In section 2, we first introduce a proper

definition of the objects that are the atoms for the study of

partial mappings and growth evolutions (St)t∈T with the

notion of growth mapped evolutions incorporating the ad-

dition of a flow of mappings (φs,t)s≤t∈T providing the ho-

mology correspondences between points within the evolu-

tion sequence. Then we define a web of morphisms be-

tween the objects organizing the relationship between the

atoms. A core result will be to show that part of this web

can be interpreted as coming from space-time group actions

from which we can derive a metric on appropriate orbits of

growth mapped evolutions. In section 3, we analyse fur-
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ther these orbits by showing the role of the centered evolu-

tions corresponding to pure expansion scenarios for which

the homology correspondences are trivial and on which a

simple subgroup of space-time mappings can act. Finally, in

section 4, we show that under reasonable regularity assump-

tions, any growth mapped evolution can be equipped with

a tagging function, called the birth function, that provides a

consistent stratification of the evolving shapes generalizing

the idea of tree-ring dating to growth mapped evolutions.

2. Growth Evolutions

2.1. Embedded Shapes

Definition 1 (Embedded Shapes). • An embedded

shape is a pair (E,S) where E is a set called the

embedding space or the ambient space and S ⊂ E.

• Inner Partial Mapping: For any two embedded shapes

A = (EA, SA) and B = (EB , SB) the set

Hom(A,B) of morphisms between A and B is given

as the set of invertible mappings φAB : EA → EB

such that φAB(SA) ⊂ SB .

We check easily that if φAB ∈ Hom(A,B) and φBC ∈
Hom(B,C) then φAC

.
= φBC ◦ φAB ∈ Hom(A,C).

Hom(A,B) will be denoted HomES(A,B). The mor-

phisms will be called inner partial mappings between em-

bedded shapes.

Growth naturally induces inner partial mappings but

the relations between homologous points when they exist

should be preserved through time. This leads to the intro-

duction of a set L of tags and of tagging functions.

Definition 2 (Tagged Embedded Shapes). • A tagged

shape over a set of tags L is defined as A = (E,S, τ)
where (E,S) is an embedded shape and τ : S → L

• For any two tagged embedded shapes A =
(EA, SA, τA) andB = (EB , SB , τB), Hom(A,B) is

given as the set of invertible mappings φAB : EA →
EB such that

1. φAB(SA) ⊂ SB

2. τB ◦ φAB = τA on SA

3. φAB(SA) = (τB)−1(τA(SA))

The elements of Hom(A,B) are tag consistent inner par-

tial mappings between embedded shapes and Hom(A,B)
is noted HomTES(A,B)

See Figure 1 for an illustration.

2.2. Growth mapped evolutions (GMEs)

A growth mapped evolution aims to model the growth

scenario of an individual. The different ages of the object

are represented by a collection of shapes (St)t∈T in a fixed

ambient space E.

Figure 1. LA = τA(SA), LB = τB(SB), etc. denote the

sets of tags involved on SA, SB , etc. A morphism φA,B ∈
HomTES(A,B) must match SA on the subset of SB demarcated

by the tag 0. The tag only defines the image set of the source shape

inside the target shape. Between B and C, the tag also imposes a

constraint inside the image of SB . The points of SB tagged by 0
are sent to the points of SC tagged by 0 and likewise for the points

tagged by 1. The arrows represent invertible mappings between

the level sets of the tag functions, given by the restrictions of φAB ,

φBC and φCD . The appearance of a new tag corresponds therefore

to the creation of matter uncorrelated to the previous shape. Oth-

erwise, as between C and D, the shape is only deformed by φCD .

We will say that the evolution is given by pure deformation. Even

without creation φCD is still constrained by the tags.

Definition 3 (Growth mapped evolution of embed-

ded shapes). A growth mapped evolution of embedded

shapes in E indexed by T ⊂ R is given as g =
(T, (At)t∈T , (φs,t)s≤t∈T ) such that

1. At = (E,St) is an embedded shape for any t ∈ T ,

2. φs,t ∈ HomES(As, At) for any s ≤ t ∈ T ,

3. φs,t ◦ φr,s = φr,t for any r ≤ s ≤ t ∈ T .

We denote GME(T,E) the set of all such growth mapped

evolutions.

Property (4) says that applying successively the defor-

mations between time r and s and between time s and t
gives the deformation between r and t. Note that φt,t = Id.

We will also note φt,s = φ−1
s,t when s ≤ t. (φs,t)s≤t∈T will

be called the flow of g.

Example 1 (Generation of a Circle). Let us show how two

growth mapped evolutions can give two different explana-

tions of the development of a circle. Let T = [0, 2π],
E = R2, and St = {(cos(θ), sin(θ))|θ ∈ [0, t]} a col-

lection of arcs of the unit circle, growing from the point

S0 = {(1, 0)} to the unit circle S2π = S1.

Let us define two GMEs gA and gB sharing E, T and

(St)t∈T as previously introduced (see Figure 2).

1. First scenario: Complete gA with φAs,t = Id. The

arcs are static. A new point appears at every time t
at the extremity (cos(t), sin(t)) ∈ E. The shape is

only evolving by pure expansion.

2. Second scenario: Complete gB with φBs,t = Rt ◦ R
−1
s

where Rθ is the rotation of angle θ. Here the arcs are
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Figure 2. Illustration of Example 1. On the first row, the first sce-

nario. Below, the second scenario. The red arrows show where the

shape is expanding and therefore point to the direction in which

the shape should be extending without any deformation. During

the second scenario, the ambient space is rotated as implied by the

black arrows.

gradually rotated and a new point appears at every

time at the extremity (1, 0) ∈ E. The speed of the

rotation canceled exactly the speed of the creation of

new points so that the arcs seem static.

In both cases, we have an expansion of the shape on its

boundary, but in the second scenario, new points are all

created at the same location.

2.3. Morphisms between GMEs

Morphisms between GMEs are the core of this frame-

work. They allow us to generate a set of GMEs sharing a

common growth pattern and therefore to organize them.

First, a morphism between two GMEs gA and gB re-

quires a time warping ρ between TA and TB . Then at

any time t, a spatial mapping matches the two ”shapes”

A and B at age t and ρ(t) respectively. Moreover, these

mappings must be consistent with the respective flows of

each GME. This means that (assume to simplify that there

is no time warping here) if we consider two points x ∈ SAs
and y ∈ SBs at any aligned ages s ∈ T , then the spatial

mappings between the two GMEs send the evolution of x
in gA, t 7→ xt = φAs,t(x), to the evolution of y in gB ,

t 7→ yt = φBs,t(y). Finally if the GMEs are tagged, the

spatial mappings must be consistent with the tags (modulo

again a mapping between the tag sets of gA and gB).

Definition 4 (Morphism between GMEs). For any two

GMEs gA and gB , the set HomGME(g
A, gB) of morphisms

between gA and gB is given by a time warping ρAB : TA →
TB (non decreasing function) and a set of spatial mappings

(qABt : SAt → SB
ρAB(t))t∈TA , such that for any s ≤ t ∈ TA











qABt (SAt ) = SB
ρAB(t)

φB
ρAB(s),ρAB(t) ◦ q

AB
s

∣

∣

SA
t

= qABt ◦ φAs,t
∣

∣

SA
t

.
(1)

2.4. Space­time Group Actions

The definition of a set of morphisms connecting GMEs

that can be parallel to the first layer of the construction of

shape spaces. To go further, let us show that a large sub-

set of morphisms can be identified to a natural group ac-

tion. Consider now that T = [tmin, tmax] and E is a smooth

manifold. We note Diff(T )+ and Diff(E) the groups of C1

diffeomorphisms on T (increasing) and E respectively.

Proposition 1. NoteG(T,E)
.
= Diff(T )+×Diff(E)T and

consider for any Ψ = (ρ, ψ = (ψt)t∈T ), Ψ
′ = (ρ′, ψ′ =

(ψ′
t)t∈T ) ∈ G(T,E) the composition law defined by

Ψ ∗Ψ′ .= (ρ ◦ ρ′, (ψρ′(t) ◦ ψ
′
t)t∈T )) ∈ G(T,E) . (2)

1. (G(T,E), ∗) is a group with neutral element ΨId =
(Id, Id = (Idt)t∈T ) and Ψ−1 = (ρ−1, (ψ−1

ρ−1(t))t∈T ).

2. G(T,E) acts on GME(T,E). For any gA ∈
GME(T,E), any Ψ = (ρ, ψ) ∈ G(T,E), we define

gB
.
= (ρ, ψ) · gA by

SBρ(t) = ψt(S
A
t ) and φBρ(s),ρ(t) = ψt◦φ

A
s,t◦ψ

−1
s . (3)

Ψ induces thus a morphism m = (ρ, (qABt )t∈T ) ∈
HomGME(g

A, gB) with qABt = ψt|
SA
t

.

Proof. The proof of 1) is straightforward. We just

check here that the law is associative. We have indeed

((ρ, ψ) ∗ (ρ′, ψ′)) ∗ (ρ′′, ψ′′) = (ρ ◦ ρ′ ◦ ρ′′, (ψρ′◦ρ′′(t) ◦
ψ′
ρ′′(t) ◦ ψ′′

t )t∈T )) = (ρ, (ψt)t∈T ) ◦ (ρ′ ◦ ρ′′, (ψ′
ρ′′(t) ◦

ψ′′
t )t∈T ) = (ρ, ψ) ∗ ((ρ′, ψ′

t) ∗ (ρ
′′, ψ′′)).

Regarding 2), if gC = (ρ′, ψ′) · gB then SCρ′◦ρ(t) =

ψ′
ρ(t)(S

B
ρ(t)) = ψ′

ρ(t) ◦ ψt(S
A
t ) and φCρ′◦ρ(s),ρ′◦ρ(t) =

ψ′
ρ(t) ◦ φ

B
ρ(s),ρ(t) ◦ (φ

′
ρ(s))

−1 = (ψ′
ρ(t) ◦ ψt) ◦ φ

A
s,t ◦ (ψ

−1
s ◦

(ψ′
ρ(s))

−1) = (ψ′
ρ(t) ◦ ψt) ◦ φ

A
s,t ◦ (ψ

′
ρ(s) ◦ ψs)

−1.

Example 2 (Time and Space Reparameterizations). The

restrictions of G(T,E) to the subgroups Diff(T )+ and

Diff(E) define the basic reparameterizations in time or in

space of a growth evolution. For any ρ ∈ Diff(T )+ and any

ψ ∈ Diff(E), any g ∈ GME(T,E), gρ
.
= (ρ, Id) · g and

gψ
.
= (Id, ψ) · g are respectively given by

gρ = (T, (E,Sρ−1(t))t∈T , (φρ−1(s),ρ−1(t))s≤t∈T ),

gψ = (T, (E,ψ(St), (ψ ◦ φs,t ◦ ψ
−1)s≤t∈T ) .

(4)

2.5. Metrics on GMEs

Let us consider Ṽ , a Reproducible Kernel Hilbert Space

(RKHS) of space-time functions ṽ : T × E → E, C1 with

respect to space, and H a RKHS of functions h : T → R

vanishing at the boundaries of T and satisfying the regular-

ity assumptions

{

supT×E(|ṽ(t, x)|+ |∂xṽ(t, x)|) ≤ K|ṽ|Ṽ
supT (|h(t)|+ |h′(t)|) ≤ K|h|H .

(5)

We have the following theorem:
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Theorem 1. For any (h = (hs)s∈[0,1], ṽ = (ṽs)s∈[0,1]) ∈

L2([0, 1], H × Ṽ ), we have existence and uniqueness of the

flow






∂sψs(t, x) = ṽs(ρs(t), ψs(t, x))
∂sρs(t) = hs(ρs(t))
ρ0 = Id, ψ0 = Id

(6)

between s = 0 and s = 1. If we note Ψh,ṽ
1 = (ρ1, ψ1) the

solution at time 1, then

GH×Ṽ (T,E)
.
= {Ψh,ṽ

1 | (h, ṽ) ∈ L2([0, 1], H×Ṽ )} (7)

is a subgroup of G(T,E) and

D(Ψ,Ψ′) = inf{ ‖(h, ṽ)‖2 | Ψ
h,ṽ
1 ∗Ψ = Ψ′} (8)

is a right invariant distance on GH×Ṽ (T,E).

Proof. (Sketch) The proof of the existence and uniqueness

of the flow is an adaptation of a similar proof given in [10]

where the condition (5) is an extension of the so called ad-

missibility condition introduced in [8].

This right invariant distance can be seen as the Rieman-

nian distance for the metric structure given at (Id, Id) ∈
GH×Ṽ (T,E) by the metric on H × Ṽ . Now, we are ready

to deduce a Riemannian structure induced by the action of

the space-time deformation group GH×Ṽ (T,E) on any or-

bit Og0
.
= { Φ · g0 | Φ ∈ GH×Ṽ (T,E)}.

d(g, g′)
.
= inf{D((Id, Id),Ψ) | g′ = Ψ · g} (9)

for which we deduce from standard arguments on homoge-

neous spaces that

Theorem 2. The function d defines a pseudometric on the

orbit Og0 .

3. Centered Growth Mapped Evolutions and

Centering

Let us recall that we assume that T = [tmin, tmax] and

E is a smooth manifold. We also assume now that the flow

(φs,t)s≤t∈T of a GME is a set of diffeomorphisms on the

ambient space (a subset of Diff(E)).
We introduced previously the concepts of pure deforma-

tion and pure expansion to discriminate specific behaviors

during a growth scenario. In the case of a pure expansion

at all time, we will say that the GME is centered:

Definition 5. We say that g is a centered growth mapped

evolution of embedded shapes if φs,t = Id for any s ≤ t ∈
T .

The first development of the unit circle (GME gA) de-

fined in Example 1 is centered. Another example is dis-

played in Figure 3.

Figure 3. Evolution of a centered scenario. The colors of the

curves correspond to the level sets of the tags. (The dot curves are

drawn by anticipation to highlight the absence of deformation.)

Remark 1. When a GME is centered, we get that for any

s ≤ t ∈ T , Ss = φs,t(Ss) ⊂ St so that the shapes form a

sequence of nested sets. In particular, with T = [tmin, tmax]
any shape St can be seen as a subset of the end shape Stmax

.

We denote

Sall = ∪s∈TSs = Stmax
. (10)

Proposition 2 (Centering a GME). If g =
(T, (E,St)t∈T , (φs,t)s≤t∈T ) is a GME and tc ∈ T ,

then Φc = (Id, (φt,tc)t) belongs to G(T,E) and defines a

new element of GME(T,E)

gc
.
= Φc · g. (11)

gc is centered and called the centered evolution of g at time

tc.

The action of Φc consists in pushing forward and pulling

backward through the flow of the GME every shape St at

time tc. This gives for any time t ∈ T prior to tc the future

image φt,tc(St) ⊂ Stc of St at time tc and gives a fictional

inverse image φ−1
tc,t

(St) ⊃ Stc at the younger time tc of the

more advanced shapes St when t > tc. See an example on

Figure 4.

Figure 4. On the first row, a general GME g. Below, at times ti the

centered evolutions gti of g at times ti. We do not display as for g
the trivial evolution on a time line of each gti but only their final

age with a track of every younger ages.

Remark 2. Note that if g is a centered GME, g is its own

centered evolution at any time: for any c ∈ T, gc = g.

Moreover, all centered evolutions of a general GME g are
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equal up to an invertible spatial mapping: for any pair

(tc, tc′) ∈ T , φtc,tc′ ∈ Diff(E) generates an element

Φc,c′ = (Id, (φtc,tc′ )t) = Φc′ ∗ Φ−1
c of G(T,E) and

gc′ = Φc,c′ · gc. The choice of tc is thus meaningless.

Remark 3 (Invertibility of the Centering). Since for any

tc ∈ T , Φc belongs to G(T,E), the orbit of any GME g is

generated by any centered evolution gc of g:

Og = Ogc

Any general GME can thus be retrieved from one of its

centered evolution and its flow. We can also generate

new GMEs from centered evolutions and flows. Explicitly,

given any centered evolution g∗ and any flow (φs,t)s≤t∈T
of Diff(E) satisfying the transitive property (4) of Defini-

tion 3, then for any tc ∈ T , Φc = (Id, (φt,tc)t) belongs to

G(T,E) and g
.
= Φ−1

c · g∗ belongs to GME(T,E) and

satisfies

g = (T, (E, φtc,t(St), (φs,t)s≤t∈T ), gc = g∗ (12)

Proposition 3 (Stability of Centered GMEs). The image

of a centered GME by an element Ψ = (ρ, (ψt)t∈T ) ∈
G(T,E) is centered if and only if (ψt)t is constant in

time. It defines thus an action of the subgroup Diff(T )+ ×
Diff(E) < G(T,E) on the subset of centered evolutions.

Proof. For any gA, gB ∈ GME(E) such that gA = Ψ ·gB ,

gA and gB are centered if and only if φAs,t = φBρ(s),ρ(t) = Id

for any s, t ∈ TA. Then equation (3) gives that ψs = ψt for

any s, t ∈ TA since φs,t = Id (gA is centered).

Any gA, gB ∈ GME(T,E) are in the same G(T,E)-
orbit if and only if there exists c ∈ TA, c′ ∈ TB , such

that ḡAc and ḡBc′ are in the same Diff(T )+ × Diff(E)-orbit.

On the diagram below, Ψρ ∈ G(T,E) exists if and only if

Ψ̄ρ ∈ Diff(T )+ ×Diff(E) exists.

gA
ΦA

c−−−−→ ḡAc




y

Ψρ





y

Ψ̄ρ

gB
ΦB

c′−−−−→ ḡBc′

(13)

We have explicitly

Ψ̄ρ = ΦBc′ ∗Ψρ ∗ (Φ
A
c )

−1 (14)

=
(

ρ, φBρ(t),tc′ ◦ ψt ◦ φ
A
tc,t

)

(15)

=
(

ρ,
(

ψρ−1(tc′ )
◦ φAt,ρ−1(tc′ )

◦ ψ−1
t

)

◦ ψt ◦ φ
A
tc,t

)

(16)

=
(

ρ, ψρ−1(tc′ )
◦ φAtc,ρ−1(tc′ )

)

. (17)

If the centered evolutions ḡAc and ḡBc′ are aligned with re-

spect to ρ, meaning tc′ = ρ(tc), then Ψ̄ρ = (ρ, ψtc). More-

over, as noticed in Remark 2, the choice of c can be changed

by the action of Diff(E). Hence, we can always assume that

tc = tmin (or tmax). Then, all centered evolutions of a same

orbit are aligned for any time warping ρ.

In conclusion, we can reconstruct the G(T,E)-orbit of

gA from ḡAtmin
, the action of Diff(T )+×Diff(E) to retrieve

all the centered GMEs of the orbit and finally the set of

all diffeomorphic flows (φs,t)s≤t∈T on the ambient space.

Figure 5 illustrates this structure.

*

Figure 5. Growth Evolution Space. The gray area represents an

orbit of centered GMEs under the action of Diff(T )+ ×Diff(E).
The trivial evolution of each centered GME is implicitly displayed

by a unique shape. The action of the flows of the embedding space

is then represented by the vertical fibers.

4. Birth Function and Temporal Tagging

In the following, we will explain how to build canoni-

cally a temporal tagging on a large class of GMEs. Denote

S = (St)t∈T the time-varying shape as a single entity. We

will first introduce an auxiliary function, the birth function,

then formally define the birth tag and study some of their

properties.

Let us start with centered GMEs. The growth process

is given by pure expansion so that the shapes are simply

nested and not deformed. Recall the introduction of the en-

compassing shape Sall = ∪s∈TSs.

Definition 6 (Birth Function of a Centered GME). When a

GME is centered, one can introduce a function b : Sall →
T , called hereafter the birth function and defined as

b(x)
.
= inf{s ∈ T | x ∈ Ss}. (18)

Note that since T is closed, b(x) ∈ T . This function

gives the onset of a point x in the evolution of (St)t∈T .
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Likewise, the centered evolutions of a general GME gen-

erate a collection of encompassing shapes denoted

S
t

all
.
= ∪s∈Tφs,t(Ss) = φtmax,t(Stmax

) . (19)

The notion of birth function can be defined for any arbitrary

GME as follows:

Definition 7 (Birth Function for a General GME). Let g be

a growth mapped evolution of embedded shapes embedded

in E and defined on the index set T . Let (φs,t)s≤t∈T be its

flow. We define b the birth function of g as the birth function

of its initial centered evolution g (see Proposition 2). Hence,

b is defined on S
tmin

all = ∪s∈Tφs,tmin
(Ss) and for any x ∈

S
tmin

all we have

b(x) = inf{s ∈ T | φtmin,s(x) ∈ Ss} . (20)

The birth function is thus defined on the projection S
tmin

all

of all shapes at time tmin. These birth dates can now be

pushed forward to the original shapes (St)t∈T to define the

birth tag.

Definition 8 (Birth Tag). For any GME g, we define a

canonical temporal tag called the birth tag and given by

τ bt : St → T, τ bt
.
= (b ◦ φt,tmin

)|St
. (21)

Note that for any x ∈ St, Definition 7 gives

τ bt (x) = inf{s ∈ T | φt,s(x) ∈ Ss} . (22)

Remark 4. When the GME is centered, the birth function

and the birth tag coincide, i.e. τ bt = b for all t ∈ T .

The definition of tag consistent partial mappings (see

Definition 2) enforces all points associated to one label to

appear at the same time. However, the birth function does

not specify if a point x that appears at time t = b(x) belongs

to St (for a centered GME). In other words, is the infinium

a minimum in Definition 6 ?

Simultaneously, for a centered GME, one would like the

birth function and the set of all points Sall to be sufficient to

retrieve the evolution. This requires the following topolog-

ical regularity.

Definition 9 (Right Continuity (RC)). We say that a GME

g is right continuous if for any t ∈ T and any decreasing

sequence (tn)n≥0 of elements of T converging to t we have

St =
⋂

n≥0

φtn,t(Stn) . (23)

Remark 5. When g is centered the notion of right-

continuity is reduced to the property

St =
⋂

n≥0

Stn . (24)

Proposition 4. If g is a right continuous centered GME in-

dexed by T then for any t ∈ T

x ∈ St iff b(x) ≤ t . (25)

Proof. Indeed, if x ∈ St, then by definition of b, we have

b(x) ≤ t. Moreover, if b(x) < t, then there exists s ∈ T ,

such that b(x) ≤ s < t so that x ∈ Ss ⊂ St. Now if b(x) =
t and x /∈ St, then there exists a decreasing sequence tn of

elements of T converging to t such that x ∈ Stn . Using the

right continuity, we get that x ∈ St which is a contradiction.

Hence, if b(x) = t, we have x ∈ St.

The proposition can be extended to any GME.

Proposition 5. If g is a right continuous GME indexed by

T then for any t ∈ T , any x ∈ St,

x ∈ φs,t(Ss) iff τ bt (x) ≤ s . (26)

Proof. Indeed, if x ∈ φs,t(Ss), then by definition of τ bt ,

we have τ bt (x) ≤ s. Moreover, if τ bt (x) ≤ s then

b ◦ φt,tmin
(x) ≤ s so that φt,tmin

(x) ∈ S
tmin

s . This im-

plies that φtmin,s ◦φt,tmin
(x) ∈ Ss so that we get eventually

φs,t(x) ∈ Ss.

In conclusion, given any right continuous centered GME

g, the single shape Sall and the birth function completely

describe g. Explicitly, we have for any t ∈ T ,

St = {x ∈ Sall | b(x) ≤ t} . (27)

Then, any right continuous GME can be retrieved from

its initial centered evolution and its flow (φs,t)s≤t∈T . A

GME is thus characterized by these three parameters:

1. an embedded shape (E,Sall),

2. a birth function b : Sall → T ,

3. a flow (φs,t)s≤t∈T .

From a modeling point of view, these two last propositions

say that under the right continuous condition, if g is a cen-

tered GME, for any x ∈ Sall there exists a first shape St
containing x. Likewise if g is a general GME, if we fol-

low any point through the flow xt = φtmin,t(x) (such that

x ∈ Stmin

all = φtmax,tmin
(Stmax

)), there exists a first shape

St containing xt. Formally, the definition of b and τ b can

be rewritten:

b(x) = min{t ∈ T | φtmin,t(x) ∈ St}, (28)

τ bt (x) = min{s ∈ T | φt,s(x) ∈ Ss} . (29)

Finally, the last proposition says that at any time t the

birth tag demarcates in St each transported image of the

preceding shapes Ss for any time s < t ∈ T

φs,t(Ss) = {x ∈ St | τ
b
t (x) ≤ s} . (30)
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All these sets contain the old points of St. The new

points are exactly the points such that τ bt (x) = t. This is the

final ingredient to ensure that the birth function or the birth

tag of a GME gives a consistent stratification coding the

complete creation process during the evolution of the shape

regardless of its spatial localization. Figure 6 highlights the

birth tag of the two GMEs presented in Example 1.

Figure 6. Consider gA and gB as defined in Example 1. We

display the level set of their birth tag τt on St (for t ∈
{π/2, π, 3π/2, 2π}), on top for gA and below for gB . The red

indicates the points that have just appeared and the blue the oldest

points.

We finish this section with a technical remark.

Remark 6. The right continuity is a necessary condition to

Proposition 4 as soon as T is not a discrete set. Indeed, if

there exist t ∈ T and a decreasing sequence tn → t+ such

that St  
⋂

n≥0 Stn , then any x ∈
⋂

n≥0 Stn \ St verifies

x /∈ St and b(x) ≤ t.

4.1. Minimal Extension of a Growth Mapped Evo­
lution of Shapes

We introduce now the notion of growth mapped evolu-

tion of tagged embedded shapes as a GME equipped with a

tagging function τ such that its flow is a set of tag consistent

mappings with respect to τ . The definition of morphisms

between GMEs can then also be extended.

Definition 10 (TGME: Growth mapped evolution of

tagged embedded shapes). A growth mapped evo-

lution of tagged embedded shapes in E is given

as g = (T, (At)t∈T , (τt)t∈T , (φs,t)s≤t∈T ) where

(T, (At)t∈T , (φs,t)s≤t∈T ) is a GME such that for any

s ≤ t ∈ T , φs,t ∈ HomTES(As, At).

Definition 11 (Morphism between TGMEs). For any two

TGMEs gA and gB , the set HomTGME(g
A, gB) of mor-

phisms between gA and gB is given by a time warping

ρAB : TA → TB , a label mapping ηAB : LA → LB

and a set of spatial mappings (qABt : SAt → SB
ρAB(t))t∈TA ,

such that for any s, t ∈ TA

(1) qABt (SAt ) = SBρAB(t)

(2) φBρAB(s),ρAB(t) ◦ q
AB
s

∣

∣

SA
t

= qABt ◦ φAs,t
∣

∣

SA
t

Moreover, for any s ∈ TA and any x ∈ SAs , if we denote

t = ρAB(s) then

(3) τBt (qABs (x)) = ηAB ◦ τAs (x′)

for an x′ ∈ SAs such that qABs (x′) = qABs (x). This means

that if qABs is one to one, τBt ◦ qABs = ηAB ◦ τAs but this is

not equivalent otherwise.

An interesting fact is that when g is a right continuous

GME then the addition of a natural temporal tag, a tagging

function with values in T , can extend it to a TGME. This

temporal tag is given by the birth tag (see Definition 8).

More precisely we have the proposition:

Proposition 6. Let g = (T, (E, (St)t∈T ), (φs,t)s<t∈T ) be

a right continous GME, b its birth function and (τt)t∈T its

birth tag as defined by (21), then for any times s < t ∈ T

• τt ≤ t,

• τt ◦ φs,t|Ss
= τs for s < t ∈ T ,

• if x ∈ St and τt(x) ∈ τs(Ss) then x ∈ φs,t(Ss).

In particular, (τt)t∈T is a consistent tagging

with respect to the flow (φs,t)s<t∈T and g̃
.
=

(T, (E, (St)t∈T ), (φs,t)s<t∈T , (τt)t∈T ) is a TGME.

Proof. From (22), we get immediately that τt ≤ t and from

(21) we get that τt ◦ φs,t = b ◦ φs,tmin
= τs on Ss. The last

point is a direct consequence of Proposition 5.

Definition 12 (Minimal Extension of a GME). The exten-

sion g̃ of a right continuous GME g defined by the previous

proposition will be called the minimal extension of g.

We can now state the central theorem on morphisms be-

tween minimal extensions of GMEs.

Theorem 3. Let mAB = (ρAB , (qABs )s∈TA) be a mor-

phism mAB : gA → gB between two GMEs indexed by

the closed intervals TA and TB such that

1. gA is centered, right continuous, defined on a topo-

logical embedding space EA and SAs is compact for

any s ∈ TA.

2. EB is a topological space and for any t, t′ ∈ TB and

y ∈ SBt , t→ φBt,t′(y) is right continous.

3. The time warping ρAB : TA → TB is a increasing

homeomorphism.

4. For any s ∈ TA, the spatial mapping qABs : SAs →
SB
ρAB(s) is continuous.
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Then gB is right continuous. Moreover, there exists a mor-

phism m̃AB = (ρAB , ηAB , (qABs )s∈TA) between the mini-

mal extensions g̃A and g̃B of gA and gB into TGMEs. We

have necessarily ηAB |ρAB,−1(Im(τB)) = ρAB and for any

s ∈ TA and x ∈ SAs

τBρ(s)(q
AB
s (x)) = inf

S
A,y
s

ρAB(τAs (z)) (31)

where y = qABs (x) and SA,ys

.
= { z ∈ SAs | qABs (z) = y}.

If ρAB(Im(τA)) = Im(τB), m̃AB is unique.

Proof. In the sequel, we use the notation qs for qABs , η for

ηAB and ρ for ρAB . Let (tn) be a decreasing sequence

of elements in TB converging to t ∈ TB . Since ρ is

an increasing homeomorphism, there exists a unique de-

creasing sequence (sn) in TA converging to s ∈ TA such

that ρ(sn) = tn. However, if y ∈
⋂

n≥0 φ
B
tn,t

(SBtn) =
⋂

n≥0 φ
B
tn,t

◦ qsn(S
A
sn
), there exists xn ∈ SAsn such that

qsn(xn) = φBt,tn(y). Since gA is centered and SAs0 is com-

pact, up to the extraction of a subsequence, we can assume

that xn converges to x ∈ ∩n≥0S
A
sn

. We pull forward ev-

ery point at time s0. Since the flow and the spatial map

commute and again gA is centered, we have qs0(xn) =
qs0(φ

A
sn,s0

(xn)) = φBtn,t0(qsn(xn)) = φBtn,t0(y)
On the left, we have qs0(xn) → qs0(x) (qs0 is conti-

nous), so that qs0(x) = lim qsn(xn) = limφBtn,t0(y) =

φBt,t0(y), the last equality coming from the assumption (2).

Finally, we get φBt0,t(qs0(x)) = qs(φ
A
s0,s

(x)) = qs(x) = y.

By right continuity of gA, we have x ∈ SAs . Hence

y ∈ qs(S
A
s ) = SBt so that we have proved that

⋂

n φ
B
tn,t

(SBtn) ⊂ SBt . Since the reverse inclusion is

always true, we get that gB is right continuous.

Since gA is centered, note that for any s ∈ TA, τAs does

not depend on s and is now denoted τA. Let us prove first

that if t = ρ(s) with s ∈ TA, y ∈ SBt and SA,ys

.
= { x ∈

SAs | qs(x) = y} then we have for any t′ = ρ(s′) with

s′ ∈ TA, s′ < s that

φBt,t′(y) ∈ SBt′ iff SA,ys ∩ SAs′ 6= ∅ . (32)

Indeed, φBt,t′(y) ∈ SBt′ iff there exists x ∈ SAs′ such

that y = φBt′,t(qs′(x)) = qs(φ
A
s′,s(x)) = qs(x) which is

equivalent to SA,ys ∩ SAs′ 6= ∅.

Then we get if x ∈ SA,ys , τBt (y) ≤ ρ(τA(x))
and τBt (y) ≤ inf

x∈SA,y
s

ρ(τA(x)). Now, if

s′∗ = inf{ s′ ≤ s | s′ ∈ TA, SA,ys ∩ SAs′ 6= ∅ } then since

TA is compact s′∗ ∈ TA and τBt (y) ≥ ρ(s′∗). Moreover,

by right continuity we have SAs′
∗

= ∩u>s′
∗
,u∈TASAu and

since SAs is compact and SA,ys closed (we assume that

qs is continuous) there exists x∗ ∈ SAs′
∗

∩ SA,ys so that

τA(x∗) ≤ s′∗ and qs(x∗) = y. Hence τBt (y) ≤ ρ(τA(x∗))

and we have proved that τBt (y) = inf
x∈SA,y

s
ρ(τA(x)).

Finally, let us prove that η is completely determined on

ρ−1(Im(τB)). With the same notations and t′∗ = ρ(s′∗),
let us introduce y′ = φBt,t′

∗

(y) = qs′
∗

(x∗) and show

that τA(SA,y
′

s′
∗

) = s′∗. We have SA,y
′

s′
∗

⊂ SA,ys so that

τA(SA,y
′

s′
∗

) ⊂ τA(SA,ys ). Now, for any x ∈ SA,y
′

s′
∗

, since

x ∈ SAs′
∗

we have τA(x) ≤ s′∗. Hence, ρ(s′∗) = t′∗ =

τB(y′) = η(s′∗).

The uniqueness property above allows us to transfert the

birth tag of a GME on its images and retrieve the birth tags

of these images:

Corollary 1. Let gA and gB be two GMEs such that gB is

the image of gA by a morphism mAB . With the hypothesis

of the last proposition, if τA is the birth tag of gA, then the

image of this tag defined on gB by equation (31) and given

by

τBρ(s)(q
AB
s (x)) = inf

S
A,y
s

ρAB(τAs (z)) (33)

is the birth tag of gB . Note that the definition of the image

tag is here a bit more precise than in the general definition

of morphisms between TGMEs (Definition 11).

Corollary 2. For any centered GME gA reparameterized by

a time warping ρ into gB
.
= (ρ, Id) · gA, the birth function

becomes bB = ρ ◦ bA. Furthermore, a reparameterization

in time between two minimal extensions g̃A and g̃B (consid-

ered as TGMEs) that preserves the birth tags must be of the

type (ρ, ρ, Id) ∈ Diff(T )+ ×Diff(L)×Diff(E) (where the

label space is actually L = T ).

Remark 7. In practice, if a centered GME is given by an

encompassing embedded shape (E,Sall) and a birth func-

tion b : Sall → T , a reparameterization in time is equivalent

to compose on the left the birth function with an invertible

mapping.

5. Conclusion

As we have seen, the notions of growth mapped evolu-
tions and tagged growth mapped evolutions are quite effec-
tive to build a mathematical framework to handle impor-
tant issues on growth modeling and analysis from a mathe-
matical point of view. Interestingly, a Riemannian point of
view can be developed on a space of growth mapped evo-
lutions leading to the idea of growth evolution spaces as
infinite dimensional Riemannian manifolds. The properties
of such spaces can be understood thanks to the analysis of
the space-time group actions acting on them and the semi-
direct structure of the interactions between space and time.
Many interesting facts are emerging from this point of view
as the key role of centered growth mapped evolutions and
canonical temporal tagging opening new directions for in-
vestigation.
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