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Abstract

We consider the problem of robust rotation optimization
in Structure from Motion applications. A number of different
approaches have been recently proposed, with solutions that
are at times incompatible, and at times complementary. The
goal of this paper is to survey and compare these ideas in a
unified manner, and to benchmark their robustness against
the presence of outliers. In all, we have tested more than
forty variants of a these methods (including novel ones), and
we find the best performing combination.

1. Introduction

The problem of reconstructing a 3-D scene from a series
of images is known as the Structure from Motion (SfM)
problem. It is a classical computer vision problem, with the
following standard pipeline [19]:

1. Extract features from the images, and find pairwise
matches between every pair of images.

2. Use a robust method (RANSAC) to fit an essential
matrix (e.g., [17]), reject outliers and estimate pairwise
relative rotations and translation directions.

3. Combine some of the pairwise estimates to obtain initial
absolute poses and 3-D geometry.

4. Use bundle adjustment to refine the estimate.

In the last decade, the focus of the research in SfM has been
in scaling this basic pipeline to large, heterogeneous datasets
(e.g., crowd-sourced image collections from the Internet),
producing impressive results (see, for instance, [3,4, 14,25]).
One problem of high practical relevance is that the second
step of the pipeline (RANSAC fitting and outlier rejection)
might produce erroneous estimates (i.e., match two unrelated
images or give a vastly erroneous pose). This introduces
outliers in the third step of the pipeline (initial estimation of
pose and geometry). If not properly handled, these outliers

*The authors are grateful for the support of the following grants: NSF-
DGE-0966142 (IGERT), NSF-I1S-1317788, NSF-IIP-1439681 (I/UCRC),
NSF-1IS-1426840, ARL MAST-CTA W911NF-08-2-0004, ARL RCTA
W911NF-10-2-0016, ONR N000141310778.

Xiaowei Zhou*
University of Pennsylvania

Kostas Daniilidis*
University of Pennsylvania

introduces biases in the entier reconstruction which cannot
be recovered with bundle adjustment.

To avoid this, a number of techniques have been explored.
The first solutions (as in the papers cited above) are sequen-
tial: starting from a small set of “good” images (e.g., images
with high inliers counts), they iterate the last two steps of
the pipeline while adding one or a few images at every it-
eration. The results of this method might depend on the
sequence used to add the images, and there might be drifts
due to error build-up [12]. Another approach is given by
skeletal solutions [26], where heuristics are used to pick
a set of images that “spans” the reconstruction. First, the
skeleton is reconstructed, and then all the remaining images
are added. Both techniques rely on the use of intermediate
3-D reconstructions, and effectively use only a subset of all
the available pairwise poses, while employing heuristics to
avoid outliers. A more recent trend is to use a pose-graph
approach, which does not directly include the 3-D structure,
and instead tries to find the absolute poses that best fit the
relative pairwise measurements. This technique has emerged
not only in computer vision, but also in robotics and control
systems [10]. As we will discuss in this paper, it is possi-
ble to use robust fitting techniques to use all the pairwise
estimates at the same time while reducing the influence of
outliers. Moreover, one can further decompose the problem
into two subproblems, one for finding the rotations alone
and the other for finding translations with given rotations.

The goal of this paper is to survey and benchmark the
most promising solutions for the rotations optimization sub-
problem, i.e., finding absolute rotations from relative mea-
surements. We have identified three families of methods:

1. Global, factorization-based methods: all the relative
measurements are collected in a matrix which is then
factorized into absolute poses. These methods give
globally optimal solutions (obtained by solving a con-
vex program or from a Singular Value Decomposition)
after some relaxation of the orthonormality constraints.

2. Local, iterative methods: these methods minimize a
non-convex robust fitting cost starting from an initial
solution while respecting the geometry of the space of
rotations. They are based on local gradient information,
and require good initializations.
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3. Inference-based methods: these techniques do not out-
put a result in terms of rotations, but label each edge
as an outlier or not. They exploit the fact that measure-
ments composed around a cycle in the graph of rotations
should (approximately) give the identity rotation.

It is interesting to notice that these families treat the differ-
ential geometry of the space of rotations differently. Global
methods embed all the rotations into a single subspace, local
methods use the Riemannian manifold structure of the space
while inference-based methods use its group structure. As
such, one might expect that these different families have
complementary stengths and weaknesses. In this paper we
test a few representatives from each family (including ex-
isting and novel variants) and some of their combinations.
Our goal is to find the best performing methods in terms
of robustness to outliers. The only existing analysis with a
similar scope is [10]. That paper, however, did not consider
some of the more advanced methods (such as those based on
low-rank priors), and did not explicitly evaluate the methods
against the presence of outliers.

2. Notation and preliminaries

We model the set of images as an undirected graph
G = (V,E), where the vertices V = {1,..., N} repre-
sent the images and the edges £ C V' x V represent pairs
of images for which RANSAC was able to find a pose with
a large enough support (25 correspondences in our imple-
mentation). We use deg(4) to number of neighbors (degree)
of node ¢ € V. We denote as R, the rotation component of
the rigid body transformation from camera ¢ to world coor-
dinates, and as Rij the measured relative rotation from the
coordinates in camera j to those in camera ¢. For ideal (noise-
less) measurements, we have Rij = RiRjT. ‘We denote the
Lie group rotations as SO(3), which has the group structure
given by the usual matrix multiplication, and a Riemannian
manifold structure giving a geodesic distance d 50(3)(-, ).
Moreover, we use ||-|| 7 and ||-||; to denote, respectively, the
L2 (Frobenious) and L1 (sum of absolute values) vector
norms of a matrix. We use [A];;,3x3 to indicate the three-
by-three block in the i-th block-row and j-th block-column
of a matrix A. Finally, we define the projection of a matrix
A e R3*3 10 S0(3) as
Projsos (4) = U diag(1,1,det(UVT)VT, (1)
where A = UXVT is the Singular Value Decomposition
(SVD) of A.

3. Problem formulation

The general formulation for the rotation optimization
problem is given by:
> UR @

{Ri }wev650(3 Gf)EE

where £ is a loss function which is zero when the two argu-
ments are the same. For ideal measurements, and using the
group properties of rotations, (2) is equivalent to

> UR;R],Ry) 3)

(i,J)EE

min
{Ri}ieveSOB)N

We consider below variants of this general formulation.

4. Datasets and testing protocol

We are interested in evaluating the performance of differ-
ent methods under a varying percentage of outliers. In order
to perform this analysis, we need to use synthetic datasets.
However, we would like to use graph topologies and poses
that are realistic. For this reason, we use the ground-truth
rotations that are provided with the datasets of [27], and ob-
tain the pose-graph from the corresponding images. Table 1
contains a summary of the characteristics of these datasets.

For each dataset, we start from the set of relative rotations
obtained from the ground-truth poses and then introduce
corruptions with a increasing percentage of outliers (from
0% to 80% in 5% increments). The location of the outliers
(i.e., the subset of edges in ) is chosen uniformly at random.
The outlying measurements are obtained by corrupting the
ground-truth with a rotation with a random angle between
60 and 90 degrees and a random axis (to approximate the
distribution of real outliers). For each method we test, we
collect all the distances between the relative rotations in the
result and the ground truth (we do not use the absolute poses
because, in the presence of outliers, the alignment with the
ground truth is not generally straightforward). These errors
are aggregated over 100 random outlier realizations. In all
the plots we will show, we report the mean (in solid lines)
and median (in dashed lines) of these aggregated errors.

5. Global, factorization-based methods

All the methods considered in this section share the ideas
of considering the unknown absolute rotations in a single
stacked matrix R = stack({R;};cv) € R3V*3, and ne-
glecting the non-linear constraints R} R; = I foralli € V.

Name #poses #edges % edges
Fountain-P11 11 23 41.82
Herz-Jesu-P8 8 13 46.43
Herz-Jesu-P25 25 73 24.33
Castle-P19 19 33 19.30
Castle-P30 30 110 25.29
Entry-P10 10 14 31.11

Table 1: Datasets used to obtain the ground truth poses and
graph topology. The percentage of edges is computed over
the total number of possible pairs.
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This leads to optimization problems that can be solved glob-
ally (even in the presence of outliers), obtaining a (possibly)
approximate solution R. The final estimates are then ob-
tained by using projections:

R; = projsos) (Rlisxs), i€V, 4)

The various methods in how the matrix R is obtained and in
how the constraints are relaxed.

5.1. Linear methods

These methods obtain R from the SVD of some ma-
trix containing the measurements {R;;}, and use the loss
{(R1, R2) = ||R1 — R2||% in (2). Each term of the cost can
be expressed in different ways:

IR; — Rij Ry || % (5)

= ||Rillr — 2tr(RY Rij R;) + || R; | (6)
T ~

B R; I —Ry][R

-o([f] [ar FIR]) o

=6 —2tr(RLR;R)). (8)

Note that (7) and (8) are equivalent only if R;, IZ; are
grthpnormal matrices. We then define the two matrices
L,G € R3VX3N 44

deg(i)I ifi=j,

[L)ijiaxs = § —Rij if (i,7) € E, )
0 otherwise,
1 ifi = j,

[Glijisxs = § Rij if (i,)) € E, (10)
0 otherwise,

with the convention that Rji = R}; The matrix L is some-
times referred to as the Graph Connection Laplacian [24].
We can use (7) and (8) to rewrite (2) as:

min tr(RTLR),
max tr(RTGR),

(1)
12)

and use the constraint RTR = I instead of considering
R; € SO(3), i € V. Note that this effectively changes
the domain of the problem from the manifold SO(3)" to
the Stiefel manifold V3(R3Y). We call (11) the Linear L2
formulation and (12) the Linear Trace formulation. They
were first introduced by [2 1] and [5], respectively. Note that
(11) and (12) are no longer equivalent (this is because the
equality in (8) does not hold). With the relaxed constraint,
problem (11) (resp., (12)) can be solved in closed form after
computing the SVD of L (resp., G) and setting R to be equal
to the three singular vector corresponding to the bottom
(resp., top) singular values.

Variant 1: Inspired by normalized cuts [23], we also
consider substituting the Laplacian L with the Normalized
Laplacian D=3 LD~ =. The solution is then obtained by pro-
jecting D~ 3R instead of R directly (a similar modification
is considered with ). In general, this enhances the spectral
gap after the top (or bottom) three singular values, leading
to a possible performance improvement. These variant have
been proposed in [5,24]. In the experiments, these variants
are denoted by the suffix Norm.

Variant 2: Inspired by the metric upgrade in affine StM
[28], we tested the additional step of finding a matrix K €
R3*3 such that the blocks in RK are close to orthonormal:

argmin||[R]isxs KK [R] g5 — 1[5
KeR3x3

13)

This variant is denoted by the suffix Upg.

Numerical tests: Figure 1 shows the results of the com-
parison of the linear methods. For both the Laplacian and
the trace formulations, the normalization step leads to worse
perfomances, and the metric upgrade does not make an ap-
preciable difference. Between the two formulations (without
modifications), the trace formulation give slightly better re-
sults. Note that these method are not robust to outliers (as
expected), but they establish a good baseline.

5.2. Semidefinite and Nuclear Norm relaxations

These methods can be seen as an evolution of the ones
above. Instead of recovering R directly, these method aim
to recover the matrix G = RRT, which has four character-
istics: it is positive-semidefinite, has rank three, each block
on the diagonal is equal to I and each block off the diago-
nal [G];j;3x3 corresponds to the ideal measurement RiR]T.
Then, the orthogonality constraints of SO(3) are relaxed to
either positive-semidefinite constraints on G (G = 0, lead-
ing to an Semi-Definite Program, SDP, formulation) or to
a low-rank prior (leading to a Nuclear Norm formulation)
subject to the constraints on the diagonal (which are linear).
These relaxation can be paired with different objective func-
tions. The matrix R is then obtained as in the Linear Trace
formulation, where G is used instead of G.

5.2.1 Trace formulation

This formulation has first appeared in [5]. To derive it, note
that the cost in (12) can be written as tr(GRRT) = tr(GG).
Together with the SDP relaxation, this leads to solving

tr(GG). (14)

max

G=0,[Gliizxz=1

This is a convex problem (because we dropped the rank-three

constraint) and it can be efficiently solved (we use CVX [16]
in our implementation).

Variant 1: We can constraint each block [G];j.3x3 to

be in the convex hull of SO(3) with a minimal number
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of convex linear matrix inequalities [22]. This solution is
denoted with the suffix Convex Hull.

Variant 2: Alternatively, we can enforce each block in G
to be a rotation using (1) just before computing the SVD of
G. This variant is denoted with the suffix With proj.

Numerical tests: Figure 2 shows the comparison of the
different variants of the SDP Trace method. The use of
projections and convex hull constraints slightly improves the

results, but not significantly.

5.2.2 Nuclear Norm and SDP formulations

Since the matrix GG should contain pairwise poses, we can
rewrite (3) in matrix form as

min|| E|
G,E ) (15)

s.t. PQ(G + E) = PQ(G), [G]“ =1,1€eV,
where Pq (X)) is the projection to the space of matrices hav-
ing the same support (in terms of 3 x 3 blocks) as G, and
where the loss £ is based on a vector norm ||-||. We can use
the L2 norm (|| E||%, thus obtaining a formulation similar to
Linear L2), the L1 norm (|| E'||1, promoting sparsity), or the
L12 norm (3, [|[E]ij;3x3| r, promoting block sparsity).
We can pair (15) with either the SDP or Nuclear Norm
relaxations. In the first case, we simply solve (15) with

the constraint G > 0. When paired with the .12 norm,
this corresponds to the formulation in [30]. In the second
case, the nuclear norm regularizer leads to the following
optimization problem:

min
G,ECR3Nx3N

s.t. Po(G + E) = Py(G),

1G]l + AIEL,

[G]“ =1,1€V,

(16)
where A is a tuning parameter. When paired with the L1
norm, this formulation is identical to Principal Component
Pursuit (also known as Robust PCA) [9].

5.2.3 Optimization using ADMM

We now briefly review how the SDP and Nuclear Norm for-
mulations above can be solved using the Alternating Direc-
tion Method of Multipliers (ADMM, [7]). We first introduce
the auxiliary variable Z to split the constraints on G:

puin (|1 2]+ AllE]s, (17
st. G=2Z, Po(G+ E)=PoG), (18)
(Gliiaxs =13, i € V. (19)
The augmented Lagrangian is

+ (1,6 -2)+ 5 |G- 23
+ (Ya, Pa(G + B = @) + "Z||Pa(G + B = Q)5

The matrices Y7 and Y, are dual variables and p; and o
are constants that control the step sizes in the optimization.
Note that the equality (19) is kept since, as we will see, it
is easy to handle. Then, ADMM alternately updates the
primal variables Z, G and E by minimizing £ and the dual
variables Y; and Y5 by gradient ascent until convergence.
Minimizing £ over Z can be analytically solved by singular
value thresholding (in the nuclear norm formulation, [8])
or eigenvalue thresholding (with a threshold equal to zero).
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Figure 3: Comparison of nuclear norm and SDP formulations with different losses.

Minimizing £ over E also admits a closed-form solution by
elementwise soft-thresholding [6]. Minimizing £ over G is
the same as computing a projection to the set of matrices
satisfying (19), which is straightforward.

Variant 1: We tested a modification of the basic ADMM
algorithm where we constrain [G];;.3x3 € SO(3) for all ¢
and j. The constraint is enforced by adding the projection (1)
after the update of each block in GG. Note that this makes the
problem non-convex again, and we loose global optimality
guarantees. We use the solution given by the original convex
optimization as initialization. In the experiments, we use the
suffix No proj. to denote the original convex formulation,
and do not use any suffix for the variant with projections.

Numerical tests: Figure 3 shows the results for the low-
rank nuclear norm and SDP formulations of this section
using the L2, L1 and L12 losses for the fitting error. We
compare the SDP Trace in lieu of the SDP L2 formulation
(due to the fact that it was shown to be better in the linear
methods). The nuclear norm regularizer cannot be mixed
with the trace formulation, as the latter is a maximization
problem while the former requires a minimization problem.

For all norms and formulations, the additional iterations
using the projections on SO(3) significantly improve the
results. In fact, for the L1 and L12 norms, we notice the
appearance of some degree of robustness as evinced by the
flat region in the curve of the median between 0% and 20%
outliers (i.e., in this regime, at least half of the relative poses
were estimated correctly). The L12 norm is slightly better
than the L1 norm, but the difference is not significant. Re-
garding the use of the SDP formulation versus the nuclear
norm prior, both methods give very similar results. Finally,
there is one caveat in the use of these methods: in some
cases, even without outliers, the results do not correspond to
the ground truth (i.e., the curves do not start from the origin).
We investigated this issue, and we found that the problem
appears in very sparse datasets (low number of edges). For
instance, with the nuclear norm, it is not possible to find a
value for A for which the recovered matrix G matches the
ground truth measurements, while being low rank at the same
time. For the experiments shown, we used A = 0.5v/3N.

6. Local, iterative methods

This family of methods considers (2) as an optimization
problem on manifolds, and use gradient descent methods [1]
or related techniques to find local minima. These methods
can also be seen as a postprocessing step applied to an ini-
tialization obtained from the global methods of Section 5.

It is common to choose the loss function ¢ to be a function
of the distance on SO(3), i.e.,

((Ry, Ry) = f(dsos) (R1, Ra)),

where f : R — R can be chosen to reduce the influence
of outliers (note that the Frobenious loss ||R; — Ra||F is a
particular case of this). In particular, taking inspiration from
M-estimators in the traditional robust fitting literature [32],
we can choose any monotonic function which grows slower
than 22. In this paper, we will consider the two choices
proposed in [29] and [1&]. In both cases, each rotation R;,
1 € V is updated as

2

log(R} R;)

Wis e | (22)
" log (R R;)|

R; + exp Z
Ji(i,j)EE
where exp and log denote the exponential and logarithm
maps in SO(3) [20], and w;; are weights determined by
the specific formulation. Although not considered here, this
formulation can be extended to account for other sources of
information, such as vanishing point and priors [13].

6.1. Reshaped cost

In [29], the function f is chosen to be of the form

f(@) =a(l— (14 bz)exp(—ba)),

where a is a normalization factor, and b controls the influence
of outliers (for higher values of b, the function becomes
flatter at high angles; we use b = 5). The function is twice
differentiable almost everywhere, and we can use a gradient
descent algorithm with fixed step size to minimize it, leading
to the choice of weights

wi; = ef'(dso) (Ri, R;)),

(23)

(24)
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Figure 4: Comparison for iterative methods

where ¢ is a step size that can be computed in closed form
[29] and f” is the derivative of f. All the rotations { R;} can
be updated at the same time in parallel. Interestingly, for
ideal measurements and with b high enough, this algorithm
converges to the correct solution from almost any initial
configuration [29]. Unfortunately, these guarantees do not
hold in the presence of outliers, which is the case we are
interested in this paper.

6.2. Weiszfeld algorithm

In the formulation of [18], the function f is chosen to
simply be f(z) = x. This leads to a formulation which
is the equivalent to an L1 fitting but with the use of the
manifold distance. Unfortunately, the problem becomes
non-differentiable (when one or more of the distances are
equal to zero), and simple gradient techniques cannot be
applied. However, if one fixes all the rotations except one,
the problem reduces to a generalized median problem, for
which the Weiszfeld algorithm has been shown to have good
convergence properties [2]. The corresponding choice of
weights becomes w;; = w; forall j : (¢,7) € E (ie., we
have only one weight) and

wi= Y |llog(RTRy)| "
j:(i,5)EE

Each rotation needs to be updated in sequence, so that
this algorithm performs the minimization of the objective
function in a coordinate-descent fashion, ensuring that the
cost is reduced at every step. However, since the cost is not
differentiable everywhere, there are no strong guarantees of
convergence to a local minimum.

We mention here the work [ | 1], which represents a more
efficient way to optimize the same cost function.

Numerical tests: Figure 4 shows the effect of using the
local iterative methods on top of the Linear Trace, SDP Trace,
and Nuclear norm L12 global methods reviewed in Section 5
(the results for the other formulations are similar to the ones
shown, and have been omitted due to space limitations).

The introduction of the local refinement introduces a dra-
matic boost in performances for all methods, including those

(25)

based on robust losses. The comparison between the func-
tions for reshaping the distance gives inconclusive results, as
the performances are quite similar and depend on the method
used for initialization.

7. Outlier inference

The last family of algorithms aims to identify and re-
move outliers before estimating the rotations. As such, these
algorithm are naturally used as a preprocessing step for
the other algorithms, and rely on the following idea. Let
L = {v1,vs,...,v;,v1} describe a cycle (or loop) in the
graph G. Ideally, the composition of the rotations along the
cycle, that is, R, = Ry, v, Ruy0s - - - Byjv, Would be equal
to the identity transformation for any cycle. We define the
loop closure error as

er, = dsos)(Rr, I). (26)

In the presence of small noise, the composed rotation is
expected to be near the identity and ey, to be small. However,
if the cycle contains one or more outliers, the loop closure
error is likely to be very large. This insight was first used
in [15], which, however, only aimed to find a spanning tree of
inliers. A more recent and complete approach is [3 1], which
follows a two step strategy. The first step is loop sampling.
First, choose all loops of length three. Then, compute a
Minimum Spanning Tree (MST) of the graph, and sample
the loops obtained by adding in sequence the edges that do
not belong to the tree. This is repeated for a desired number
of times, while adjusting the weights for the computation
of the MST to be equal to the number of times each edge
appeared across the previous loops. In our implementation,
we sample at least 6| E| loops. The second step is outlier
inference. We define indicator variables x;;,z; € {0,1}
for each edge (i, j) € F and each sampled loop L, with the
constraint

T = glg}L{ Tij. 27
Ideally, the variables should be equal to one if the corre-
sponding edge or the loop contains an outlier. In practice,
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Figure 5: Comparison for methods with inference preprocessing

these are unknown, and they need to be estimated from the
closure errors {er,} on the sampled loops by minimizing the
following discrete energy:

E({xij},{xL}): Z pijxij—FZpL(eL)xL. (28)

(i.j)eE L

The parameters {p;;} are given by a prior on the likelihood
of an edge to be an outlier or not (we set p(x;; = 0) = 0.9).
The parameters py,(ey,) are given by a probabilistic model
of the error ey, with and without outliers in the loop. The
discrete optimization problem of minimizing (28) subject
to (27) can be relaxed to a linear program with linear con-
straint [31]. In some instances, the solution of the linear
program is exact, in the sense that the variables {z;;} and
{zr} in the solution assume discrete values. If this is not
the case, one can find an exact solution by using branch and
bound (i.e., fix all the variables that are discrete, fix an addi-
tional variable first to zero, then to one, and then recursively
solve the reduced problem).

Note that information about loop closures is implicitly
used also by the global methods when a low-rank solution
is found (see also the discussion in [29]). However, these
method do not perform hard decisions on the location of
the outliers, leading to lower performances. In practice, we
found that this method is rather conservative, labeling the
edges as inliers when the closure errors are inconclusive. We
presume that this is due to the strong prior.

Numerical tests: Figure 5 shows the results of applying
outlier inference before some of the global methods from
Section 5 (again, some of the other methods have a similar
behaviour and have been omitted). As with the local iterative
methods, the addition of the inference step for removing out-
liers shows a dramatic boost in performance. Interestingly,
this boost is more pronounced when the inference is applied
before methods that are originally non-robust.

8. Combined methods

From the results above, we have seen that robust norms,
local iterative refinement and outlier inference are all ways

to significantly improve the robustness to outliers in rotation
optimization. The natural questions now are: what happens
when all these methods are combined, and what is the com-
bination that gives the best results in practice? We now give
the answers.

Numerical tests: Figure 6 compares the results of using
the outlier inference and local iterative methods. When the
two are combined, the performance is better than any one
of them alone. Finally, Figure 7 shows the results with the
different global optimization methods. The use of pre and
postprocessing effectively levels out the differences between
the different global optimization methods, and a simple lin-
ear method performs surprisingly well. Moreover, the over-
all performance shows a behaviour very close to the ideal
breakpoint of 50% outliers.

9. Conclusions and future work

We evaluated a large number of competing and comple-
mentary methods for rotation optimization in a pose graph
with applications to SfM. We have shown that the best results
are obtained by combining a preprocessing step to remove
outliers using loop closure errors, followed by a linear fac-
torization method to obtain a global, approximate solution
and a postprocessing step to refine the estimates. The result-
ing method can tolerate a large number of outliers. This is
not entirely surprising, as a similar procedure is commonly
used in two-view SfM for fitting an essential matrix: first
RANSAC is used to reject outliers, then the eight-point al-
gorithm is used to get an initial, linear estimate, which is
then refined using non-linear optimization. On the other
hand, approaches based on low-rank factorization (such as
Robust-PCA and SDP relaxations), which are more complex
and harder to tune for very sparse datasets, have not shown
significant improvements.

As future work, we will expand our tests to use larger
datasets. We do not expect significantly different results, as
the individual steps (outlier inference, global linear solution,
local non-linear refinement) have already been shown to be
effective on large datasets [2, 10,31]. We will also evaluate
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Figure 7: Comparison of all the methods that combine infer-

ence

pre-processing with iterative post-processing

the effects of noise coupled with outliers (in this paper we
focused exclusively on the latter due to space reasons), and
the computational costs of each method. Finally, we will in-
vestigate theoretical conditions concerning the identifiability
of inliers and outliers.
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