
A Survey on Rotation Optimization in Structure from Motion

Roberto Tron∗

Boston University

Xiaowei Zhou∗

University of Pennsylvania

Kostas Daniilidis∗

University of Pennsylvania

Abstract

We consider the problem of robust rotation optimization

in Structure from Motion applications. A number of different

approaches have been recently proposed, with solutions that

are at times incompatible, and at times complementary. The

goal of this paper is to survey and compare these ideas in a

unified manner, and to benchmark their robustness against

the presence of outliers. In all, we have tested more than

forty variants of a these methods (including novel ones), and

we find the best performing combination.

1. Introduction

The problem of reconstructing a 3-D scene from a series

of images is known as the Structure from Motion (SfM)

problem. It is a classical computer vision problem, with the

following standard pipeline [19]:

1. Extract features from the images, and find pairwise

matches between every pair of images.

2. Use a robust method (RANSAC) to fit an essential

matrix (e.g., [17]), reject outliers and estimate pairwise

relative rotations and translation directions.

3. Combine some of the pairwise estimates to obtain initial

absolute poses and 3-D geometry.

4. Use bundle adjustment to refine the estimate.

In the last decade, the focus of the research in SfM has been

in scaling this basic pipeline to large, heterogeneous datasets

(e.g., crowd-sourced image collections from the Internet),

producing impressive results (see, for instance, [3,4,14,25]).

One problem of high practical relevance is that the second

step of the pipeline (RANSAC fitting and outlier rejection)

might produce erroneous estimates (i.e., match two unrelated

images or give a vastly erroneous pose). This introduces

outliers in the third step of the pipeline (initial estimation of

pose and geometry). If not properly handled, these outliers
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introduces biases in the entier reconstruction which cannot

be recovered with bundle adjustment.

To avoid this, a number of techniques have been explored.

The first solutions (as in the papers cited above) are sequen-

tial: starting from a small set of “good” images (e.g., images

with high inliers counts), they iterate the last two steps of

the pipeline while adding one or a few images at every it-

eration. The results of this method might depend on the

sequence used to add the images, and there might be drifts

due to error build-up [12]. Another approach is given by

skeletal solutions [26], where heuristics are used to pick

a set of images that “spans” the reconstruction. First, the

skeleton is reconstructed, and then all the remaining images

are added. Both techniques rely on the use of intermediate

3-D reconstructions, and effectively use only a subset of all

the available pairwise poses, while employing heuristics to

avoid outliers. A more recent trend is to use a pose-graph

approach, which does not directly include the 3-D structure,

and instead tries to find the absolute poses that best fit the

relative pairwise measurements. This technique has emerged

not only in computer vision, but also in robotics and control

systems [10]. As we will discuss in this paper, it is possi-

ble to use robust fitting techniques to use all the pairwise

estimates at the same time while reducing the influence of

outliers. Moreover, one can further decompose the problem

into two subproblems, one for finding the rotations alone

and the other for finding translations with given rotations.

The goal of this paper is to survey and benchmark the

most promising solutions for the rotations optimization sub-

problem, i.e., finding absolute rotations from relative mea-

surements. We have identified three families of methods:

1. Global, factorization-based methods: all the relative

measurements are collected in a matrix which is then

factorized into absolute poses. These methods give

globally optimal solutions (obtained by solving a con-

vex program or from a Singular Value Decomposition)

after some relaxation of the orthonormality constraints.

2. Local, iterative methods: these methods minimize a

non-convex robust fitting cost starting from an initial

solution while respecting the geometry of the space of

rotations. They are based on local gradient information,

and require good initializations.
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3. Inference-based methods: these techniques do not out-

put a result in terms of rotations, but label each edge

as an outlier or not. They exploit the fact that measure-

ments composed around a cycle in the graph of rotations

should (approximately) give the identity rotation.

It is interesting to notice that these families treat the differ-

ential geometry of the space of rotations differently. Global

methods embed all the rotations into a single subspace, local

methods use the Riemannian manifold structure of the space

while inference-based methods use its group structure. As

such, one might expect that these different families have

complementary stengths and weaknesses. In this paper we

test a few representatives from each family (including ex-

isting and novel variants) and some of their combinations.

Our goal is to find the best performing methods in terms

of robustness to outliers. The only existing analysis with a

similar scope is [10]. That paper, however, did not consider

some of the more advanced methods (such as those based on

low-rank priors), and did not explicitly evaluate the methods

against the presence of outliers.

2. Notation and preliminaries

We model the set of images as an undirected graph

G = (V,E), where the vertices V = {1, . . . , N} repre-

sent the images and the edges E ⊆ V × V represent pairs

of images for which RANSAC was able to find a pose with

a large enough support (25 correspondences in our imple-

mentation). We use deg(i) to number of neighbors (degree)

of node i ∈ V . We denote as Ri the rotation component of

the rigid body transformation from camera i to world coor-

dinates, and as R̃ij the measured relative rotation from the

coordinates in camera j to those in camera i. For ideal (noise-

less) measurements, we have R̃ij = RiR
T
j . We denote the

Lie group rotations as SO(3), which has the group structure

given by the usual matrix multiplication, and a Riemannian

manifold structure giving a geodesic distance dSO(3)(·, ·).
Moreover, we use ‖·‖F and ‖·‖1 to denote, respectively, the

L2 (Frobenious) and L1 (sum of absolute values) vector

norms of a matrix. We use [A]ij;3×3 to indicate the three-

by-three block in the i-th block-row and j-th block-column

of a matrix A. Finally, we define the projection of a matrix

A ∈ R
3×3 to SO(3) as

projSO(3)(A) = U diag
(

1, 1, det(UV T
)

V T, (1)

where A = UΣV T is the Singular Value Decomposition

(SVD) of A.

3. Problem formulation

The general formulation for the rotation optimization

problem is given by:

min
{Ri}i∈V ∈SO(3)N

∑

(i,j)∈E

ℓ(Ri, R̃ijRj), (2)

where ℓ is a loss function which is zero when the two argu-

ments are the same. For ideal measurements, and using the

group properties of rotations, (2) is equivalent to

min
{Ri}i∈V ∈SO(3)N

∑

(i,j)∈E

ℓ(RiR
T
i , R̃ij) (3)

We consider below variants of this general formulation.

4. Datasets and testing protocol

We are interested in evaluating the performance of differ-

ent methods under a varying percentage of outliers. In order

to perform this analysis, we need to use synthetic datasets.

However, we would like to use graph topologies and poses

that are realistic. For this reason, we use the ground-truth

rotations that are provided with the datasets of [27], and ob-

tain the pose-graph from the corresponding images. Table 1

contains a summary of the characteristics of these datasets.

For each dataset, we start from the set of relative rotations

obtained from the ground-truth poses and then introduce

corruptions with a increasing percentage of outliers (from

0% to 80% in 5% increments). The location of the outliers

(i.e., the subset of edges in E) is chosen uniformly at random.

The outlying measurements are obtained by corrupting the

ground-truth with a rotation with a random angle between

60 and 90 degrees and a random axis (to approximate the

distribution of real outliers). For each method we test, we

collect all the distances between the relative rotations in the

result and the ground truth (we do not use the absolute poses

because, in the presence of outliers, the alignment with the

ground truth is not generally straightforward). These errors

are aggregated over 100 random outlier realizations. In all

the plots we will show, we report the mean (in solid lines)

and median (in dashed lines) of these aggregated errors.

5. Global, factorization-based methods

All the methods considered in this section share the ideas

of considering the unknown absolute rotations in a single

stacked matrix R = stack({Ri}i∈V ) ∈ R
3N×3, and ne-

glecting the non-linear constraints RT
i Ri = I for all i ∈ V .

Name # poses # edges % edges

Fountain-P11 11 23 41.82

Herz-Jesu-P8 8 13 46.43

Herz-Jesu-P25 25 73 24.33

Castle-P19 19 33 19.30

Castle-P30 30 110 25.29

Entry-P10 10 14 31.11

Table 1: Datasets used to obtain the ground truth poses and

graph topology. The percentage of edges is computed over

the total number of possible pairs.
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This leads to optimization problems that can be solved glob-

ally (even in the presence of outliers), obtaining a (possibly)

approximate solution R. The final estimates are then ob-

tained by using projections:

Ri = projSO(3)

(

[R]i;3×3

)

, i ∈ V . (4)

The various methods in how the matrix R is obtained and in

how the constraints are relaxed.

5.1. Linear methods

These methods obtain R from the SVD of some ma-

trix containing the measurements {R̃ij}, and use the loss

ℓ(R1, R2) = ‖R1 −R2‖2F in (2). Each term of the cost can

be expressed in different ways:

‖Ri − R̃ijRj‖2F (5)

= ‖Ri‖F − 2 tr(RT
i R̃ijRj) + ‖Rj‖F (6)

= tr

(

[

Ri

Rj

]T [
I −R̃ij

−RijT I

] [

Ri

Rj

]

)

(7)

= 6− 2 tr(R̃T
ijRiR

T
j ). (8)

Note that (7) and (8) are equivalent only if Ri, Rj are

orthonormal matrices. We then define the two matrices

L̃, G̃ ∈ R
3N×3N as

[L̃]ij;3×3 =











deg(i)I if i = j,

−R̃ij if (i, j) ∈ E,

0 otherwise,

(9)

[G̃]ij;3×3 =











I if i = j,

R̃ij if (i, j) ∈ E,

0 otherwise,

(10)

with the convention that R̃ji = R̃T
ij . The matrix L̃ is some-

times referred to as the Graph Connection Laplacian [24].

We can use (7) and (8) to rewrite (2) as:

min tr(RTL̃R), (11)

max tr(RTG̃R), (12)

and use the constraint RT
R = I instead of considering

Ri ∈ SO(3), i ∈ V . Note that this effectively changes

the domain of the problem from the manifold SO(3)N to

the Stiefel manifold V3(R
3N ). We call (11) the Linear L2

formulation and (12) the Linear Trace formulation. They

were first introduced by [21] and [5], respectively. Note that

(11) and (12) are no longer equivalent (this is because the

equality in (8) does not hold). With the relaxed constraint,

problem (11) (resp., (12)) can be solved in closed form after

computing the SVD of L̃ (resp., G̃) and setting R to be equal

to the three singular vector corresponding to the bottom

(resp., top) singular values.

Variant 1: Inspired by normalized cuts [23], we also

consider substituting the Laplacian L̃ with the Normalized

Laplacian D− 1
2 L̃D− 1

2 . The solution is then obtained by pro-

jecting D− 1
2R instead of R directly (a similar modification

is considered with G̃). In general, this enhances the spectral

gap after the top (or bottom) three singular values, leading

to a possible performance improvement. These variant have

been proposed in [5, 24]. In the experiments, these variants

are denoted by the suffix Norm.

Variant 2: Inspired by the metric upgrade in affine SfM

[28], we tested the additional step of finding a matrix K ∈
R

3×3 such that the blocks in RK are close to orthonormal:

argmin
K∈R3×3

‖[R]i;3×3KKT[R]Ti;3×3 − I‖2F . (13)

This variant is denoted by the suffix Upg.

Numerical tests: Figure 1 shows the results of the com-

parison of the linear methods. For both the Laplacian and

the trace formulations, the normalization step leads to worse

perfomances, and the metric upgrade does not make an ap-

preciable difference. Between the two formulations (without

modifications), the trace formulation give slightly better re-

sults. Note that these method are not robust to outliers (as

expected), but they establish a good baseline.

5.2. Semidefinite and Nuclear Norm relaxations

These methods can be seen as an evolution of the ones

above. Instead of recovering R directly, these method aim

to recover the matrix G = RR
T, which has four character-

istics: it is positive-semidefinite, has rank three, each block

on the diagonal is equal to I and each block off the diago-

nal [G]ij;3×3 corresponds to the ideal measurement RiR
T
j .

Then, the orthogonality constraints of SO(3) are relaxed to

either positive-semidefinite constraints on G (G � 0, lead-

ing to an Semi-Definite Program, SDP, formulation) or to

a low-rank prior (leading to a Nuclear Norm formulation)

subject to the constraints on the diagonal (which are linear).

These relaxation can be paired with different objective func-

tions. The matrix R is then obtained as in the Linear Trace

formulation, where G is used instead of G̃.

5.2.1 Trace formulation

This formulation has first appeared in [5]. To derive it, note

that the cost in (12) can be written as tr(G̃RR
T) = tr(G̃G).

Together with the SDP relaxation, this leads to solving

max
G�0,[G]ii;3×3=I

tr(G̃G). (14)

This is a convex problem (because we dropped the rank-three

constraint) and it can be efficiently solved (we use CVX [16]

in our implementation).

Variant 1: We can constraint each block [G]ij;3×3 to

be in the convex hull of SO(3) with a minimal number
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Figure 1: Comparison of linear methods
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Figure 2: Comparison for the trace SDP formulation

of convex linear matrix inequalities [22]. This solution is

denoted with the suffix Convex Hull.

Variant 2: Alternatively, we can enforce each block in G

to be a rotation using (1) just before computing the SVD of

G. This variant is denoted with the suffix With proj.

Numerical tests: Figure 2 shows the comparison of the

different variants of the SDP Trace method. The use of

projections and convex hull constraints slightly improves the

results, but not significantly.

5.2.2 Nuclear Norm and SDP formulations

Since the matrix G should contain pairwise poses, we can

rewrite (3) in matrix form as

min
G,E
‖E‖

s.t. PΩ(G+ E) = PΩ(G̃), [G]ii = I, i ∈ V ,
(15)

where PΩ(X) is the projection to the space of matrices hav-

ing the same support (in terms of 3 × 3 blocks) as G̃, and

where the loss ℓ is based on a vector norm ‖·‖. We can use

the L2 norm (‖E‖2F , thus obtaining a formulation similar to

Linear L2), the L1 norm (‖E‖1, promoting sparsity), or the

L12 norm (
∑

ij‖[E]ij;3×3‖F , promoting block sparsity).

We can pair (15) with either the SDP or Nuclear Norm

relaxations. In the first case, we simply solve (15) with

the constraint G � 0. When paired with the L12 norm,

this corresponds to the formulation in [30]. In the second

case, the nuclear norm regularizer leads to the following

optimization problem:

min
G,E∈R3N×3N

‖G‖∗ + λ‖E‖,

s.t. PΩ(G+ E) = PΩ(G̃), [G]ii = I, i ∈ V ,
(16)

where λ is a tuning parameter. When paired with the L1

norm, this formulation is identical to Principal Component

Pursuit (also known as Robust PCA) [9].

5.2.3 Optimization using ADMM

We now briefly review how the SDP and Nuclear Norm for-

mulations above can be solved using the Alternating Direc-

tion Method of Multipliers (ADMM, [7]). We first introduce

the auxiliary variable Z to split the constraints on G:

min
Z,G,E

‖Z‖∗ + λ‖E‖1, (17)

s.t. G = Z, PΩ(G+ E) = PΩ(G), (18)

[G]ii;3×3 = I3, i ∈ V . (19)

The augmented Lagrangian is

L(Z,G,E, Y1, Y2) = ‖Z‖∗ + λ‖E‖1 (20)

+ 〈Y1, G− Z〉+ µ

2 1
‖G− Z‖2F

+ 〈Y2, PΩ(G+ E −G)〉+ µ2

2
‖PΩ(G+ E −G)‖2F .

The matrices Y1 and Y2 are dual variables and µ1 and µ2

are constants that control the step sizes in the optimization.

Note that the equality (19) is kept since, as we will see, it

is easy to handle. Then, ADMM alternately updates the

primal variables Z, G and E by minimizing L and the dual

variables Y1 and Y2 by gradient ascent until convergence.

Minimizing L over Z can be analytically solved by singular

value thresholding (in the nuclear norm formulation, [8])

or eigenvalue thresholding (with a threshold equal to zero).
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Figure 3: Comparison of nuclear norm and SDP formulations with different losses.

Minimizing L over E also admits a closed-form solution by

elementwise soft-thresholding [6]. Minimizing L over G is

the same as computing a projection to the set of matrices

satisfying (19), which is straightforward.

Variant 1: We tested a modification of the basic ADMM

algorithm where we constrain [G]ij;3×3 ∈ SO(3) for all i

and j. The constraint is enforced by adding the projection (1)

after the update of each block in G. Note that this makes the

problem non-convex again, and we loose global optimality

guarantees. We use the solution given by the original convex

optimization as initialization. In the experiments, we use the

suffix No proj. to denote the original convex formulation,

and do not use any suffix for the variant with projections.

Numerical tests: Figure 3 shows the results for the low-

rank nuclear norm and SDP formulations of this section

using the L2, L1 and L12 losses for the fitting error. We

compare the SDP Trace in lieu of the SDP L2 formulation

(due to the fact that it was shown to be better in the linear

methods). The nuclear norm regularizer cannot be mixed

with the trace formulation, as the latter is a maximization

problem while the former requires a minimization problem.

For all norms and formulations, the additional iterations

using the projections on SO(3) significantly improve the

results. In fact, for the L1 and L12 norms, we notice the

appearance of some degree of robustness as evinced by the

flat region in the curve of the median between 0% and 20%
outliers (i.e., in this regime, at least half of the relative poses

were estimated correctly). The L12 norm is slightly better

than the L1 norm, but the difference is not significant. Re-

garding the use of the SDP formulation versus the nuclear

norm prior, both methods give very similar results. Finally,

there is one caveat in the use of these methods: in some

cases, even without outliers, the results do not correspond to

the ground truth (i.e., the curves do not start from the origin).

We investigated this issue, and we found that the problem

appears in very sparse datasets (low number of edges). For

instance, with the nuclear norm, it is not possible to find a

value for λ for which the recovered matrix G matches the

ground truth measurements, while being low rank at the same

time. For the experiments shown, we used λ = 0.5
√
3N .

6. Local, iterative methods

This family of methods considers (2) as an optimization

problem on manifolds, and use gradient descent methods [1]

or related techniques to find local minima. These methods

can also be seen as a postprocessing step applied to an ini-

tialization obtained from the global methods of Section 5.

It is common to choose the loss function ℓ to be a function

of the distance on SO(3), i.e.,

ℓ(R1, R2) = f
(

dSO(3)(R1, R2)
)

, (21)

where f : R → R can be chosen to reduce the influence

of outliers (note that the Frobenious loss ‖R1 − R2‖F is a

particular case of this). In particular, taking inspiration from

M-estimators in the traditional robust fitting literature [32],

we can choose any monotonic function which grows slower

than x2. In this paper, we will consider the two choices

proposed in [29] and [18]. In both cases, each rotation Ri,

i ∈ V is updated as

Ri ← exp





∑

j:(i,j)∈E

wij

log(RT
i Rj)

‖log(RT
i Rj)‖



 , (22)

where exp and log denote the exponential and logarithm

maps in SO(3) [20], and wij are weights determined by

the specific formulation. Although not considered here, this

formulation can be extended to account for other sources of

information, such as vanishing point and priors [13].

6.1. Reshaped cost

In [29], the function f is chosen to be of the form

f(x) = a
(

1− (1 + bx) exp(−bx)
)

, (23)

where a is a normalization factor, and b controls the influence

of outliers (for higher values of b, the function becomes

flatter at high angles; we use b = 5). The function is twice

differentiable almost everywhere, and we can use a gradient

descent algorithm with fixed step size to minimize it, leading

to the choice of weights

wij = εf ′
(

dSO(3)(Ri, Rj)
)

, (24)
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Figure 4: Comparison for iterative methods

where ε is a step size that can be computed in closed form

[29] and f ′ is the derivative of f . All the rotations {Ri} can

be updated at the same time in parallel. Interestingly, for

ideal measurements and with b high enough, this algorithm

converges to the correct solution from almost any initial

configuration [29]. Unfortunately, these guarantees do not

hold in the presence of outliers, which is the case we are

interested in this paper.

6.2. Weiszfeld algorithm

In the formulation of [18], the function f is chosen to

simply be f(x) = x. This leads to a formulation which

is the equivalent to an L1 fitting but with the use of the

manifold distance. Unfortunately, the problem becomes

non-differentiable (when one or more of the distances are

equal to zero), and simple gradient techniques cannot be

applied. However, if one fixes all the rotations except one,

the problem reduces to a generalized median problem, for

which the Weiszfeld algorithm has been shown to have good

convergence properties [2]. The corresponding choice of

weights becomes wij = wi for all j : (i, j) ∈ E (i.e., we

have only one weight) and

wi =
∑

j:(i,j)∈E

‖log(RT
i Rj)‖−1. (25)

Each rotation needs to be updated in sequence, so that

this algorithm performs the minimization of the objective

function in a coordinate-descent fashion, ensuring that the

cost is reduced at every step. However, since the cost is not

differentiable everywhere, there are no strong guarantees of

convergence to a local minimum.

We mention here the work [11], which represents a more

efficient way to optimize the same cost function.

Numerical tests: Figure 4 shows the effect of using the

local iterative methods on top of the Linear Trace, SDP Trace,

and Nuclear norm L12 global methods reviewed in Section 5

(the results for the other formulations are similar to the ones

shown, and have been omitted due to space limitations).

The introduction of the local refinement introduces a dra-

matic boost in performances for all methods, including those

based on robust losses. The comparison between the func-

tions for reshaping the distance gives inconclusive results, as

the performances are quite similar and depend on the method

used for initialization.

7. Outlier inference

The last family of algorithms aims to identify and re-

move outliers before estimating the rotations. As such, these

algorithm are naturally used as a preprocessing step for

the other algorithms, and rely on the following idea. Let

L = {v1, v2, . . . , vl, v1} describe a cycle (or loop) in the

graph G. Ideally, the composition of the rotations along the

cycle, that is, RL = Rv1v2Rv2v3 . . . Rvlv1
would be equal

to the identity transformation for any cycle. We define the

loop closure error as

eL = dSO(3)(RL, I). (26)

In the presence of small noise, the composed rotation is

expected to be near the identity and eL to be small. However,

if the cycle contains one or more outliers, the loop closure

error is likely to be very large. This insight was first used

in [15], which, however, only aimed to find a spanning tree of

inliers. A more recent and complete approach is [31], which

follows a two step strategy. The first step is loop sampling.

First, choose all loops of length three. Then, compute a

Minimum Spanning Tree (MST) of the graph, and sample

the loops obtained by adding in sequence the edges that do

not belong to the tree. This is repeated for a desired number

of times, while adjusting the weights for the computation

of the MST to be equal to the number of times each edge

appeared across the previous loops. In our implementation,

we sample at least 6|E| loops. The second step is outlier

inference. We define indicator variables xij , xL ∈ {0, 1}
for each edge (i, j) ∈ E and each sampled loop L, with the

constraint

xL = max
ij∈L

xij . (27)

Ideally, the variables should be equal to one if the corre-

sponding edge or the loop contains an outlier. In practice,
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Figure 5: Comparison for methods with inference preprocessing

these are unknown, and they need to be estimated from the

closure errors {eL} on the sampled loops by minimizing the

following discrete energy:

E({xij}, {xL}) =
∑

(i,j)∈E

ρijxij +
∑

L

ρL(eL)xL. (28)

The parameters {ρij} are given by a prior on the likelihood

of an edge to be an outlier or not (we set p(xij = 0) = 0.9).

The parameters ρL(eL) are given by a probabilistic model

of the error eL with and without outliers in the loop. The

discrete optimization problem of minimizing (28) subject

to (27) can be relaxed to a linear program with linear con-

straint [31]. In some instances, the solution of the linear

program is exact, in the sense that the variables {xij} and

{xL} in the solution assume discrete values. If this is not

the case, one can find an exact solution by using branch and

bound (i.e., fix all the variables that are discrete, fix an addi-

tional variable first to zero, then to one, and then recursively

solve the reduced problem).

Note that information about loop closures is implicitly

used also by the global methods when a low-rank solution

is found (see also the discussion in [29]). However, these

method do not perform hard decisions on the location of

the outliers, leading to lower performances. In practice, we

found that this method is rather conservative, labeling the

edges as inliers when the closure errors are inconclusive. We

presume that this is due to the strong prior.

Numerical tests: Figure 5 shows the results of applying

outlier inference before some of the global methods from

Section 5 (again, some of the other methods have a similar

behaviour and have been omitted). As with the local iterative

methods, the addition of the inference step for removing out-

liers shows a dramatic boost in performance. Interestingly,

this boost is more pronounced when the inference is applied

before methods that are originally non-robust.

8. Combined methods

From the results above, we have seen that robust norms,

local iterative refinement and outlier inference are all ways

to significantly improve the robustness to outliers in rotation

optimization. The natural questions now are: what happens

when all these methods are combined, and what is the com-

bination that gives the best results in practice? We now give

the answers.

Numerical tests: Figure 6 compares the results of using

the outlier inference and local iterative methods. When the

two are combined, the performance is better than any one

of them alone. Finally, Figure 7 shows the results with the

different global optimization methods. The use of pre and

postprocessing effectively levels out the differences between

the different global optimization methods, and a simple lin-

ear method performs surprisingly well. Moreover, the over-

all performance shows a behaviour very close to the ideal

breakpoint of 50% outliers.

9. Conclusions and future work

We evaluated a large number of competing and comple-

mentary methods for rotation optimization in a pose graph

with applications to SfM. We have shown that the best results

are obtained by combining a preprocessing step to remove

outliers using loop closure errors, followed by a linear fac-

torization method to obtain a global, approximate solution

and a postprocessing step to refine the estimates. The result-

ing method can tolerate a large number of outliers. This is

not entirely surprising, as a similar procedure is commonly

used in two-view SfM for fitting an essential matrix: first

RANSAC is used to reject outliers, then the eight-point al-

gorithm is used to get an initial, linear estimate, which is

then refined using non-linear optimization. On the other

hand, approaches based on low-rank factorization (such as

Robust-PCA and SDP relaxations), which are more complex

and harder to tune for very sparse datasets, have not shown

significant improvements.

As future work, we will expand our tests to use larger

datasets. We do not expect significantly different results, as

the individual steps (outlier inference, global linear solution,

local non-linear refinement) have already been shown to be

effective on large datasets [2, 10, 31]. We will also evaluate
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Figure 6: Comparison of methods with inference pre-processing and iterative post-processing combined
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Figure 7: Comparison of all the methods that combine infer-

ence pre-processing with iterative post-processing

the effects of noise coupled with outliers (in this paper we

focused exclusively on the latter due to space reasons), and

the computational costs of each method. Finally, we will in-

vestigate theoretical conditions concerning the identifiability

of inliers and outliers.
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