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Abstract

In this paper, we study the effectiveness of features from

Convolutional Neural Networks (CNN) for predicting the

ambient temperature as well as the time of the year in an

outdoor scene. We follow the benchmark provided by Glas-

ner et al. [3] one of whose findings was that simple hand-

crafted features are better than the deep features (from fully

connected layers) for temperature prediction. As in their

work, we use the VGG-16 architecture for our CNNs, pre-

trained for classification on ImageNet. Our main findings

on the temperature prediction task are as follows. (i) The

pooling layers provide better features than the fully con-

nected layers. (ii) The quality of the features improves little

with fine-tuning of the CNN on training data. (iii) Our best

setup significantly improves over the results from Glasner et

al. showing that the deep features are successful in turning

a camera into a crude temperature sensor. Moreover, we

validate our findings also for time prediction and achieve

accurate season, month, week, time of the day, and hour

prediction.

1. Introduction

The perception of the world set deep roots in humans’

logos. A color, beyond its physical nature and wave length,

can be ‘beautiful’ and ‘warm’ or ‘neutral’ and ‘cold’. The

subjective interpretation of a physical property is due to the

way the humans respond to their habitat, to the nature, and

to life events. For the temperate climate, white correlates

with ‘cold’ and ‘winter’ due to the winter’s snow, green to

‘fresh’ and ‘summer’ as the flora turns green in ‘spring’ and

‘summer’, and bright yellowish light connects to ‘warm’

and ‘summer’ due to the summer sunlight. These correla-

tions besides human senses and subjective interpretations

are factual – snow is unlikely to fall in summer. Given an

outdoor scene one can have an educated guess on the ambi-

ent temperature only by looking at the amount of light and

the saturation of the colors in relation to the natural and/or

man-made objects. The same can be said about the time of

+17◦C, spring, month 04, week 15, day 103 +6◦C, fall, month 11, week 46, day 315

−4◦C, winter, month 12, week 49, day 332 +23◦C, summer, month 7 week 27, day 194

Figure 1. Appearance varies with temperature and time of the year.

the year or the hour of the day.

In this paper we focus on the prediction of both the ambi-

ent temperature and the time of the year at level of season,

month, week, or even day, from an image of an outdoor

scene (see Fig. 1). Also, we predict the hour and the time of

the day.

The correlations between appearance and temperature in

outdoor scenes were explored by the very recent work of

Glasner et al. [3]. As a change in temperature of an ob-

ject or substance usually alters its appearance (e.g. iron at

high temperatures turns red, glows, and melts; thermome-

ters are based on the dilation effect), one should be able

to find correlations between the outdoor scene appearance

and ambient temperature. Glasner et al. study these corre-

lations to finally achieve impressive temperature prediction

results for images depicting outdoor scenes. The features

and the models Glasner et al. found to be most reliable for

temperature prediction are generally hand-crafted, and this

in contrast with the convolutional neural networks (CNN)

features which are learned. We, on the other hand, consider

that the representations learned through CNN training on a

specific task should be more powerful than the handcrafted

ones especially when sufficient training data is available and

the relation between the inputs and outputs is not very well

understood. In the recent years CNNs and the deep features
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extracted from CNNs were applied to a large number of vi-

sion tasks and led to state-of-the-art results (e.g. image clas-

sification [15]). Therefore, we continue the work of Glas-

ner et al. [3] and focus on the deep CNN features using the

VGG16 [15] architecture. As shown by our experiments,

for temperature prediction the pooling layers make better

features that the fully connected layers and lead to substan-

tially better performance than the results of Glasner et al. (a

0.7◦C average error reduction).

The prediction of the time of the year, under the form

of season, month, week, or even day prediction is the other

focus and a novelty of our work. As in the case of ambi-

ent temperature prediction, we work under the assumptions

that appearance strongly correlates with the temperature and

time of the year and use the same deep features for both

tasks. The task is more difficult than the temperature pre-

diction as the time of the year is not directly predicted by

the temperature but is the result of multiple interactions be-

tween the scene objects, the temperature, and sunlight. As is

the case for humans, the accuracy of our prediction is poor

at day level (∼ 1%), gets significantly better at week-level

(∼ 10%), to then reaches good performance at month-level

(∼ 50% or 2.4 months average error) and at season-level

(∼ 69% or 0.6 season average error).

Our main contributions are:

1. An analysis of (deep) features for the task of tempera-

ture prediction in outdoor scenes.

2. A novel time prediction task in outdoor scenes.

3. A dataset of time-lapse sequences and their corre-

sponding day, week, month, and season of the year

annotations.

4. Large improvements on temperature prediction and ro-

bust accuracy on time prediction for outdoor scenes.

1.1. Related Work

As early as 1998, Szummer and Picard [16] addressed

the problem of indoor-outdoor image classification and

studied several low level image features.

In a series of papers Narasimhan, Nayar, and their coau-

thors (e.g. [12, 13]) study the outdoor images in relation to

weather. They start from a physics foundation and build

models that capture the weather effect on the images. Also,

they introduce in [13] the WILD dataset with calibrated and

registered images of a fixed outdoor scene exhibiting a wide

range of weather conditions.

The largest public database with outdoor webcam im-

ages is the Archive of Many Outdoor Scenes (AMOS), a

project started in 2007 by Jacobs, Pless, and their collab-

orators [7]. By now, AMOS collected 884 millions of im-

ages and still counting from publicly accessible outdoor we-

bcams from all over the world and therefore has a broad di-

versity of contents. Jacobs et al. [6, 5] use AMOS to predict

wind velocity and vapor pressure while others such as Is-

lam et al. [4] align collected weather data to webcams from

AMOS and study the utility of such information in predict-

ing scene appearance.

Laffont et al. [9] study what they call “transient at-

tributes”(TA) and their effect on the outdoor scene appear-

ance. TA are high level properties such as “spring”, “rain”,

and “fog”. For each such TA they train regressors for esti-

mation and demonstrate the synthesizability of the appear-

ance of a scene for different weather conditions with an im-

age editing application.

Recently, Lu et al. [10] propose a collaborative learn-

ing approach for labeling outdoor images as either sunny or

cloudy and a corresponding annotated dataset with 10,000

images. Under the same settings, Elhoseiny et al. [2]

use convolutional neural networks for classification. Mur-

dock et al. [11] go further and connect webcam observations

to satellite imagery so that to build cloud maps directly from

ground level webcam readings across USA.

The most related work to ours is the very recent work of

Glasner et al. [3]. They study the ambient temperature pre-

diction starting from an image of a specific outdoor cam-

era with known past recordings. They succeed to achieve

impressive prediction with handcrafted features and simple

regression models. We, on the other hand, analyze and sup-

port the use of deep features for this task and consistently

improve upon their results.

For the first time, to the best of our knowledge, we ad-

dress prediction of the time of the year from an outdoor

input image for a specific camera, and this with a good ac-

curacy.

The remainder of the paper is structured as follows.

First, in Section 2 we describe the experimental setup of

our study, then, in Section 2.3, we analyze the deep fea-

tures with and without fine-tuning on training data and com-

pare their performance for temperature prediction. In Sec-

tion 3 we explore a related task, the time prediction in out-

door scenes and validate the same deep features by achiev-

ing good results. We conclude the paper in Section 4.

Code is available at https://github.com/voanna/

Deep-Features-or-Not

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2. Sample images from Glasner et al. GB dataset [3] for

each sequence (a–j).
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GD[3] (a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

train 287 298 334 321 320 234 329 341 291 313

test 257 321 348 340 333 230 346 354 276 299

TYD (ours) (i) (ii) (iii) (iv) (v) (vi) (i-vi)

train 2048 5357 2348 2735 2012 2475 16975

test 86 5308 235 208 310 76 6223

Table 1. Datasets for temperature prediction (GD) [3] and time of

the year prediction (TYD) (ours) and their partitions (# images).

features with finetune no finetune

regression classification

layer generic specific generic specific

pool1 0.27 / 7.67 0.26 / 7.68 0.28 / 7.59 0.28 / 7.62 0.28 / 7.61

pool2 0.35 / 6.70 0.28 / 6.97 0.29 / 7.09 0.29 / 7.06 0.28 / 7.09

pool3 0.68 / 4.95 0.67 / 4.98 0.67 / 5.00 0.67 / 5.00 0.67 / 5.00

pool4 0.66 / 5.04 0.67 / 5.01 0.68 / 4.96 0.68 / 4.96 0.68 / 4.96

pool5 0.63 / 5.28 0.63 / 5.18 0.66 / 5.14 0.66 / 5.14 0.66 / 5.14

fc6 0.56 / 5.72 0.55 / 5.72 0.55 / 5.81 0.55 / 5.81 0.55 / 5.81

fc7 0.04 / 7.46 0.00 / 7.91 0.45 / 6.28 0.45 / 6.29 0.45 / 6.28

pool3 + 4 0.42 / 6.33 0.34 / 6.81 0.43 / 6.27 0.43 / 6.30 0.44 / 6.29

fc6 + 7 0.53 / 5.88 0.51 / 5.95 0.55 / 5.74 0.55 / 5.75 0.55 / 5.74

Table 2. Temperature prediction average (R2 / RMSE) results for

deep features on Glasner et al. [3] (a–j) sequences. The best results

for each setup are with bold.

2. Temperature prediction in outdoor scenes

The first part of this work is a study of deep features

for temperature prediction in outdoor scenes and a direct

comparison with the prior work of Glasner et al. [3] under

the same benchmark.

2.1. Dataset and evaluation protocol

2.1.1 Glasner Dataset (GD)

For temperature prediction Glasner et al. [3] selected ten

stable webcam sequences from the AMOS database, span-

ning two years. The webcams were taken from all over the

USA. From these, only one image at 11AM, local time, per

day and camera was kept. This roughly gives a number of

images equal with the number of days in each sequence (see

Table 1). The first year was used for training and the second

year for testing. For temperature labels Glasner et al. used

the data of nearby weather stations. The authors also pre-

process the data to align the frames. Some sample images

from each webcam are shown in Fig. 2.

2.1.2 Evaluation protocol

Glasner et al. [3] propose two measures for quantitative

evaluation of the temperature prediction: the coefficient of

determination (R2):

R2(y, ŷ) = 1−

∑N

i=1
(ŷi − yi)

2

∑N

i=1
(ȳi − yi)2

(1)

and the root mean square error (RMSE):

RMSE(y, ŷ) =

√

√

√

√

1

N

N
∑

i=1

(ŷi − yi)2, (2)

where y is the true response, ŷ is the predicted response,

ȳ =
∑

N

i=1
yi

N
is the average response. N is the number of

samples. Note that Glasner et al. report 0 when R2 takes

negative values and so we do.

2.2. Prior Methods and Features

In their work [3], Glasner et al. report their results for

temperature prediction using several settings (methods and

features). The temperature from the previous year on the

same day (LY) and the nearest image (NN Image) are taken

as baselines. Other settings used include:

• Local Regression (LR), in which the prediction is a

weighted combination of pixel individually used as a

predictor in a least squares estimate of the temperature.

• Local Regression with a Temporal Window (LRTW)

is a modified version of the above, in which the pixel

intensities of the last nine days are also included.

• Global Regularized Regression (GRR) adds a sparsity

constraint to Local Regression.

• Convolutional features (CNN) taken from the first fully

connected layer of the VGG16 architecture pretrained

for ImageNet image classification [15] are used as in-

puts to an SVM.

• Transient Image Attributes (TA) of Laffont et al. [9]

are also used to fit an RBF-SVM.

2.3. Deep Features for Temperature Prediction

In this section we describe an experimental setup to test

our hypothesis that deep features are effective for the task

of temperature prediction.

First, we create three experimental setups to examine the

effect of finetuning a convolutional neural network on the

temperature data. As our pre-trained network, we select

VGG-16, as this is the same network used by Glasner et

al. in their work [3] and a top performing method for Ima-

geNet image classification benchmark [15]. In this way our

results are directly comparable to those of Glasner et al.

Our three setups are: 1) finetuning VGG-16 to directly

predict temperature by regressing to a temperature value

(only one output neuron); 2) finetuning to predict a tem-

perature class label; and 3) no finetuning, and relying on

the pretrained VGG-16 on ImageNet classification task. We

used an Euclidean Loss function in the regression case and

a multinomial logistic loss for classification.

Within each of these architectures, the network was fine-

tuned either with training images from only one webcam

sequence (specific finetuning) or with training images from

all ten webcams (generic finetuning). 80% of the training

images were used for training/finetuning, and the remaining
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (average)

LY 0.42 / 9.14 0.56 / 8.16 0.54 / 7.53 0.41 / 5.44 0.61 / 7.35 0.00 / 4.30 0.67 / 6.20 0.59 / 6.77 0.00 / 4.84 0.61 / 7.64 0.44 / 6.74

NN Image 0.47 / 8.72 0.59 / 7.83 0.51 / 7.73 0.15 / 6.51 0.13 / 10.92 0.00 / 4.57 0.16 / 9.89 0.70 / 5.83 0.00 / 4.44 0.62 / 7.47 0.33 / 7.39

LR 0.67 / 6.85 0.65 / 7.24 0.70 / 6.03 0.59 / 4.53 0.76 / 5.77 0.38 / 3.19 0.50 / 7.63 0.77 / 5.09 0.10 / 3.68 0.59 / 7.77 0.57 / 5.78

LRTW 0.61 / 7.52 0.69 / 6.86 0.72 / 5.82 0.64 / 4.23 0.79 / 5.39 0.53 / 2.77 0.54 / 7.35 0.76 / 5.22 0.11 / 3.67 0.58 / 7.85 0.60 / 5.67

GRR 0.00 / 18.16 0.78 / 5.74 0.00 / 35.02 0.00 / 11.37 0.00 / 43.51 0.10 / 3.84 0.74 / 5.54 0.00 / 13.86 0.23 / 3.41 0.46 / 8.91 0.23 / 14.94

CNN 0.49 / 8.55 0.79 / 5.59 0.71 / 5.96 0.24 / 6.17 0.61 / 7.36 0.48 / 2.90 0.39 / 8.48 0.79 / 4.88 0.43 / 2.93 0.66 / 7.12 0.56 / 5.99

TA 0.36 / 9.60 0.70 / 6.69 0.58 / 7.20 0.55 / 4.75 0.68 / 6.62 0.21 / 3.59 0.58 / 7.03 0.65 / 6.31 0.16 / 3.56 0.67 / 7.00 0.51 / 6.23

fc6 0.52 / 8.28 0.80 / 5.46 0.61 / 6.89 0.56 / 4.72 0.80 / 5.30 0.21 / 3.60 0.54 / 7.34 0.79 / 4.90 0.06 / 3.78 0.59 / 7.80 0.55 / 5.81

pool4 0.58 / 7.79 0.84 / 4.87 0.79 / 5.03 0.60 / 4.45 0.87 / 4.22 0.40 / 3.14 0.63 / 6.61 0.80 / 4.72 0.52 / 2.70 0.76 / 6.01 0.68 / 4.96

Table 3. Temperature prediction (R2 / RMSE) results on Glasner et al.’ GD dataset [3].

map 1 map 2 map 3 map 4 map 1 map 2 map 3 map 4 map 1 map 2 map 3 map 4
Figure 3. Examples of images and their corresponding first 4 maps within the pool4 layer of CNN.

20% for validation. We use Caffe [8] framework for all our

experiments and finetuning. The learning rate is set to 1e-9,

the update policy to step. Gamma is set to 0.1, momentum

to 0.9 and weight decay to 5e-4.

Finetuning is stopped when the loss on the validation

data reaches its lowest. For the regression setup, all finetun-

ing is done with 10000 iterations. The number of iterations

for each webcam in the classification setting for specific

finetuning is as follows: (a) 2000, (b) 0, (c) 6000, (d) 6000,

(e) 2000, (f) 100000, (g) 16000, (h) 10000, (i) 100000, (j) 0.

For the generic case, we use 100000 iterations. Due to the

relatively small number of training samples the finetuning

did not improve the loss on the validation data for a couple

of sequences.

As deep features, we extract neural activations from the

pooling layers pool1 – pool5 and fully connected layers fc6
– fc8 layers. These features, as well as the combination of

pool3 with pool4 and fc6 with fc7 are used to train support

vector machines, with the same parameters as Glasner et

al. [3], which are a linear ν-SVM with ν set to 0.5, and

C to one. We use the LIBSVM [1] implementation from

scikit-learn [14].

The results of our three setups using deep features on

Glasner et al. [3] GD dataset for temperature prediction are

reported in Table 2.

2.4. Findings

The results for temperature prediction (see Table 2) are

overall good, and show a peak R2 value of 0.68 and an error

of 4.95◦ when using pool4 features.

Generic finetuning performs slightly better than spe-

cific finetuning, perhaps due to a larger amount of training

data. More interestingly, finetuning does not improve sig-

nificantly the accuracy over VGG16, and in fact at times

decreases it. For fc6 and pool2 features we can benefit

from finetuning. Overall, there was not enough data in our

dataset to successfully finetune an image-classification net-

work into a temperature prediction one.

Prediction first increases with layer depth and then de-

creases, peaking at the pool3 or pool4 layer in all setups.

Intuitively, layers higher in the network encode semantic

information about object category. The lower layers still re-

tain a lot of spatial information, and respond to simpler at-

tributes of the image such as color, gradient and shape. The

attributes of an image relevant for predicting temperature

are not semantic. Humans can roughly estimate the tem-

perature outside regardless of whether a particular object is

present or absent. While the presence of cars or parasols

may provide some information, the saturation of the colors

in the scene, the brightness of reflections from surfaces and

the color of the sky are much stronger indicators for tem-

perature.

We also find that fc6 performs the best out of the fully

connected layers, probably because it contains more spatial

information than fc7.

Interestingly, the concatenation of pool3 and pool4 per-

forms much worse than either separately. This could be due

to the fact that the dimensionality of this feature becomes
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season (i) (ii) (iii) (iv) (v) (vi)

winter

spring

summer

fall

Figure 4. Sample images for each (i–vi) sequence and season.

too large: 200704 + 100352 = 301056 dimensions. The

combination of fc6 and fc7 is much smaller and has a per-

formance in between what the two features achieve individ-

ually.

In Table 3 we show our results using deep features from

pool4 and fc6 layers in comparison with the methods used

by Glasner et al. and briefly described in section 2.2. We see

that our methods outperform Glasner’s methods on average

and if taking the average over the best method in each case.

In their paper, Glasner et al. also report using the fc6 fea-

ture extracted from VGG-16 without finetuning. The differ-

ence between their and our implementations is small, just

0.01 in R2 and 0.18◦ Celsius.

Our method using features extracted from the pool4 layer

significantly improves on Glasner et al.’s previous best re-

sult by 0.08 in R2 and 0.7◦C in RMSE.

3. Time Prediction in Outdoor Scenes

Having determined that convolutional features are effec-

tive for the temperature prediction task, we attempt to use

them on a related task – the time of the year prediction in

outdoor scenes.

days

weeks

months Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

seasons winter spring summer fall winter

Table 4. Diagram of how the year was partitioned into labels

hour

time of day morning noon afternoon evening
Table 5. Diagram of how the day was partitioned into labels

Figure 5. Distribution of the testing labels in TYD sequence (ii).

3.1. Dataset and evaluation protocol

3.1.1 Time of the Year Dataset (TYD)

For our second task of time of year prediction in outdoor

scene images, we selected 6 image sequences spanning a

minimum of two years. These images are not preprocessed

or aligned, though most images are roughly aligned as the

viewpoint of the camera does not change significantly over

the years. One year of the two is taken as training data and

the rest as testing. In total there are 23,198 images, 16,975

for training and 6,223 for testing. Some example images

from the six sequences are shown in Fig 4.

We had images taken over a period of minimum two

years, sampled periodically throughout the day. From these

images we kept only images with daylight, mostly from

9:00 AM until 5:00 PM. Images with snow or fog obstruct-

ing the view completely were discarded. Following the ex-

ample of Glasner et al., we take one year for training the
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data and another for testing.

We discretized the time of year into time classes at the

season, month, week, and day level. To compute the season,

we use the formula

season =
⌊ (day + 31) mod 366

91.5

⌋

(3)

This means mostly that December, January and February

are labeled winter, March, April and May as spring; June,

July and August as summer, and September, October and

November as fall. Months are determined in accordance

with calendar months. Weeks were counted in seven-day in-

tervals from the first day of the year. Table 4 shows how the

year was divided into labels. Figure 5 shows the distribution

of time labels in sequence (ii), which is almost uniform.

3.1.2 Evaluation protocol

The metrics used in the time classification task are the stan-

dard classification accuracy (%)

accuracy(y, ŷ) = 100

∑

y=ŷ ✶

N
(4)

and a modified RMSE, showing the average distance of the

prediction from the true class. Since the time of year is

cyclical, we compute this quantity in the following way:

RMSE(y, ŷ) =

√

√

√

√

1

N

N
∑

1

(min(|ŷ − y|, D − (|ŷ − y|)))2

(5)

where N is the number of samples in the test set and D is the

number of divisions in a year at a particular (season, month,

week, day) level.

3.2. Deep features for time prediction

Predicting time of year is difficult, because there is so

much variability within a season or a month, as shown in

Fig. 6. The appearance of a scene changes most in winter,

when snow falls. However, in Fig. 6 we see that snow is

also present in some days of fall and spring, including in

the middle of those seasons. Furthermore, days with cloudy

skies in summer and in spring are more visually similar

between themselves than two spring days with cloudy and

clear skies.

To visualise the similarity and dissimilarity between im-

ages of sequence (ii) we display them in a 2-D grid using

a projection of the fc6 features with t-SNE [17], shown in

Fig. 8. Fig. 8 shows winter as being the class or cluster that

is most separated from the others, whereas spring, fall and

summer overlap significantly. Although there is structure in

the t-SNE embedding, it is not obvious from looking at the

images that the images are divided into seasons.

correct wrong

(i)

predicted fall, true fall predicted spring, true fall

(ii)

predicted spring, true spring predicted spring, true summer

(iii)

predicted winter, true winter predicted fall, true winter

(iv)

predicted fall, true fall predicted summer, true fall

(v)

predicted summer, true summer predicted winter, true spring

(vi)

predicted winter, true winter predicted fall, true winter

Table 6. Examples of correct and wrong season predictions.

To determine quantitatively how well convolutional fea-

tures work for predicting time of year, two classifiers were

used: nearest neighbor (1-NN) and a linear support vector

machine (SVM). The parameters used for the SVM are a

linear kernel with C set to 1. These were determined by

cross-validation.

3.3. Findings

Table 8 shows the result for nearest neighbor classifica-

tion and Table 7 shows the results using a linear SVM. The

linear SVM yields the best results. The pool4 layer out-

performs the fc6 layer in most of the cases. Classification

accuracy improves from day to season level. Since we have

defined a season to be 91.5 days long, we see that actually in

predicting season, we have an average error of 0.67 × 91.5
days = 61.3 days, compared to prediction at the day level
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winter

spring

summer

fall
Figure 6. Examples of images from sequence (iii) showing how the weather changes a lot during one season and along the year. The images

are shown in chronological order.

Figure 7. Average confusion matrices for time of the year prediction on the 6 sequences. The confusion happens mostly for neighboring

days, weeks, months, or seasons. Best seen on screen.

time label layer (i) (ii) (iii) (iv) (v) (vi) (average)

season
pool4 76.9 / 0.52 67.1 / 0.63 92.3 / 0.46 42.1 / 0.88 64.0 / 0.59 69.4 / 0.92 68.6 / 0.67

fc6 61.5 / 0.77 61.7 / 0.61 90.2 / 0.52 48.7 / 0.78 53.5 / 0.67 51.6 / 1.12 61.2 / 0.75

month
pool4 54.8 / 1.88 36.3 / 2.63 77.0 / 1.65 32.9 / 3.21 32.6 / 2.84 67.7 / 2.17 50.2 / 2.40

fc6 38.9 / 2.62 29.8 / 2.50 73.6 / 1.82 19.7 / 3.51 20.9 / 2.98 44.8 / 2.21 38.0 / 2.61

week
pool4 21.2 / 9.84 9.6 / 11.46 6.4 / 7.71 7.9 / 14.35 10.5 / 12.61 2.3 / 9.05 9.6 / 10.84

fc6 18.8 / 10.62 7.7 / 11.15 5.1 / 7.66 10.5 / 13.28 8.1 / 12.29 2.9 / 9.16 8.9 / 10.69

day
pool4 0.5 / 80.75 1.4 / 79.45 0.0 / 63.63 0.0 / 88.53 1.2 / 82.41 1.9 / 64.85 0.8 / 76.60

fc6 1.9 / 87.36 1.2 / 80.69 0.0 / 59.79 2.6 / 86.93 0.0 / 82.10 2.3 / 64.11 1.3 / 76.83

Table 7. Comparison of SVM results in terms of classification accuracy (%) and RMSE error when using pool4 or fc6 deep features.

time label layer (i) (ii) (iii) (iv) (v) (vi) (average)

season
pool4 58.7 / 0.80 64.8 / 0.60 85.5 / 0.63 59.2 / 0.62 47.7 / 0.84 62.3 / 1.02 63.0 / 0.75

fc6 48.1 / 0.87 57.4 / 0.69 72.8 / 0.87 63.2 / 0.60 43.0 / 0.85 44.2 / 1.25 54.8 / 0.85

month
pool4 43.8 / 2.65 34.8 / 2.56 69.4 / 1.85 36.8 / 2.84 29.1 / 2.63 53.9 / 2.11 44.6 / 2.44

fc6 36.1 / 2.62 25.4 / 2.68 53.2 / 2.29 36.8 / 3.07 26.7 / 2.54 38.1 / 2.09 36.0 / 2.55

week
pool4 15.9 / 11.49 10.4 / 11.15 1.7 / 8.13 3.9 / 12.55 14.0 / 11.62 3.9 / 9.33 8.3 / 10.71

fc6 15.4 / 11.41 8.1 / 11.69 2.6 / 10.13 7.9 / 13.52 12.8 / 11.23 4.2 / 9.43 8.5 / 11.23

day
pool4 1.0 / 80.51 1.3 / 78.24 0.0 / 57.02 1.3 / 87.88 0.0 / 81.30 1.9 / 65.36 0.9 / 75.05

fc6 1.4 / 79.84 1.0 / 82.01 0.0 / 71.31 1.3 / 94.75 1.2 / 78.61 2.3 / 65.89 1.2 / 78.73

Table 8. Comparison of 1-NN results in terms of classification accuracy (%) and RMSE error when using pool4 or fc6 deep features.

where the average error is 77.55 days.

As discussed above, time prediction is a challenging task

because days of different time labels (season, month, week)

look very alike. Fig. 7 presents confusion matrices. We can
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Figure 8. t-SNE embedding of testing images from webcam (ii)

see that, indeed, winter is the season with the highest classi-

fication accuracy. Also, we notice a strong bias in prediction

to spring.

Despite the difficulty of the task, convolutional features

perform well in the task of predicting time, 68.6% is the

achieved accuracy at season level and 50.2% at month level.

To better understand what the deep features represent,

we visualise the first four responses of the pool4 layer in

Fig 3. In the first two images, map 1 responds to the man-

made structures in the bottom half of the scene. It is difficult

to interpret the other maps.

Finally, in Fig. 6 we display some cases in which the sea-

son was and was not correctly predicted. In the left column,

the dominant color of the image coincides with our intuition

about the season. For example the saturated yellow in se-

quence (v) strongly suggests summer, while the gray in (iv)

suggests fall. Many of the images in the right column could

have plausibly belonged to the predicted season.

3.4. Influence of the Training size

We claim that our attempts at finetuning VGG-16 in

sec. 2.4 were not successful due to having too little train-

ing examples (3068 in the generic scenario). To validate

this claim, we now attempt to finetune VGG-16 using more

images for the time prediction task. We select sequence (a),

AMOS id 17603, from Glasner et al.’s dataset and down-

load all available images from the AMOS online database,

yielding 28427 images spanning 4.4 years after downsam-

pling to a uniform sampling rate. Year 1 (5623 images) and

year 2 (7111) were used for training, year 3 (6353) for val-

idation and the remaining year 4 and part of 5 (9340) for

testing. We exclude nighttime pictures and keep only im-

ages taken between 13:00 and 23:00 UTC (approx. 8:00

to 18:00 in local time). To see the effect of increasing the

amount of training data, we finetuned VGG-16 first with

only images from year 1 and then with images from years

1 and 2 for predicting the season, month, week and day as

before. Table 9 shows the (cyclical) RMSE for each of the

experiments. We see that increasing the amount of training

data decreases the loss in all cases. As a reference, we in-

season month week day time of day hour

train year 1 0.84 2.85 12.09 82.67 35.31/0.68 20.50/1.79

train year 1+2 0.59 2.15 9.60 73.07 79.64/0.37 59.24/0.83

TYD (SVM, pool4 ) 0.67 2.40 10.84 76.60

Table 9. CNN (VGG-16) prediction results on sequence (a) when

finetuning with one and two years of train data. We report RMSE

and accuracy (%)/RMSE for time of the day and hour prediction.

Train data year 1 year 1+2 year 1 year 1+2

Finetune × × X X

pool4, SVM 37.36/0.70 37.14/0.64 38.43/0.70 37.00/0.64

fc6, SVM 41.84/0.83 36.08/0.65 44.50/0.84 35.79/0.62

CNN (direct) /0.84 /0.59

Table 10. Season prediction results (accuracy % / RMSE) on (a).

clude the average RMSE values from time prediction using

pool4 features on our TYD dataset, and see that we achieve

better performance in finetuning the net directly for the task.

In Table 10, we compare SVM predictions of the sea-

son using finetuned features from the neural network to

using features without finetuning and find that increasing

the number of training examples increases performance: in

both the scenarios with and without finetuning, using two

years of training data decreases the loss. Here, the best loss

is achieved by the direct CNN with finetune on 2 years.

Time of the day prediction. Furthermore, using the

same dataset (a), we also attempt to predict the time of day

(morning, noon, afternoon and evening) and the hour of the

day (partitions shown in Table 3) and report both the ac-

curacy and RMSE in Table 9. An additional year of train-

ing data improves the time of day prediction accuracy from

35% to 80%, and the hour prediction from 20% to 60%,

which is very impressive given that the appearance of a

scene changes depending not only on the hour of the day,

but also on the day of the year.

4. Conclusions

In this paper, we studied the effectiveness of deep fea-

tures for ambient temperature and time of the year pre-

diction in outdoor scenes. Our main findings are that the

pooling layers provide better features than the commonly

employed fully connected layers for these tasks and that

the CNN finetuning on training outdoor data leads to small

improvements over the CNN pretrained for image classi-

fication on a much larger dataset (ImageNet). Our results

are 0.7◦C better than those of Glasner et al. [3] using

handcrafted features on temperature prediction, showing the

power of the deep features. On our proposed dataset and

time of the year prediction task we obtain robust perfor-

mance (especially at month and season level). To the best

of our knowledge, it is the first attempt at predicting the

time of the year and time of day in outdoor scenes. The

good accuracies achieved on diverse scenes are promising

and show that we have the tools to turn cameras into crude

but effective ambient temperature and time sensors.
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