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Abstract

Collagen fibres form important structures in tissue, and

are essential for force transmission, scaffolding and cell ad-

dition. Each fibre is long and thin, and large numbers group

together into complex networks of bundles, which are lit-

tle studied as yet. Serial block-face scanning electron mi-

croscopy (SBFSEM) can be used to image tissues contain-

ing the fibres, but analysing the images manually is almost

impossible - there can be over 30,000 fibres in each image

slice, and many hundreds of individual image slices in a

volume. We describe a system for automatically identify-

ing and tracking the individual fibres, allowing analysis of

their paths, how they form bundles and how individual fi-

bres weave from one bundle to another.

1. Introduction

We describe a system for tracking large numbers of col-

lagen fibres in Serial Block-Face Scanning Electron Mi-

croscopy (SBFSEM) images volumes. Collagen fibres are

found in many types of connective tissue, often forming a

matrix which helps hold the tissue together [11]. In tendons

they are formed into rope-like bundles. To study such struc-

tures SBFSEM images of tendons can be collected. How-

ever, since each may contain tens of thousands of individual

collagen fibres, automatic methods are essential to analyse

such images.

To learn more about tendon development the exact po-

sitions and trajectories of these fibres need to be examined.

During different stages of development significant changes

occur (see Figure 1). For example, for mouse-tail tendon at

embryonic day 15.5 fibres have a circular shape and are or-

ganised in small groups. At birth their diameter and radii

have increased and their number increased roughly four

times [5]. The analysis of these fibres requires tracing thou-

sands of fibres over hundreds of images, which is hugely

time consuming to do manually.

Recent technological developments have led to auto-

matic 3D electron microscopes allowing the acquisition of

large voxel volumes. These high resolution images are es-

sential in fields such as connectomics, which aims to re-

construct the structures comprehensively using these im-

ages. Serial-Sectioning TEM (ssTEM) can produce large

3D datasets to be reconstructed. This technique has a limita-

tion in terms of volume size since it is time-consuming and

laborious to collect serial sections of the sample. Thin sec-

tions are difficult to acquire and image deformation could

be observed between slices which is challenging because of

the ambiguity between coordinate transformation and struc-

ture changes.

Serial block-face scanning electron microscopy (SBF-

SEM) involves repeatedly removing a very thin slice (as thin

as 25nm) from a sample block (with a diamond knife) then

taking an EM image of the remaining face. The individ-

ual slices can be put together into a volume [4] and provide

large 3D datasets. This technique allows biologists to study

fibre connectivity from the visual inspection of image vol-

ume. Figure 2 shows an example of the image volume with

reconstructed fibres.

A fully automatic system for locating and tracking fibres

is challenging due to the complexity of the networks that

the bundles form and the variation of shape of fibres within

the image volume.

Particular challenges include:

• The tortuous morphology of fibres.

• Fibres may disappear and appear again due problems

in sectioning.

• The large numbers of individual fibres - as many as

20,000 per slice.

• Bundles of fibres may split or merge.

• Some individual fibres may leave one bundle and join

another, following significantly different paths to the

majority of the fibres in the bundle - these are often
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Figure 1. Images of mouse-tail tendon through development. The first row is for newborn where most fibres are grouped into distinct

bundles. Stars represent bundles and circles show lone fibres. Second row shows the fibres after 6 weeks where fibres are larger and

bundles have merged.

the most interesting to biologists, but are the hardest to

track.

The aim of our work is to automate the process of iden-

tifying and tracking structures through image volumes, al-

lowing the structures to be measured and visualised in 3D.

Fibres appear as small dark blobs as shown in Figure 1. The

approach we take is to first detect candidates for fibres in

every image, then to link candidates between neighbouring

images to form extended fibres. The linking stage can make

mistakes, which we attempt to identify and correct in a third

stage.

Having tracked all the fibres, we can then identify bun-

dles and lone fibres to study the networks that they form.

2. Related work

Automatic reconstruction methods for ssEM typically

focus on obtaining a 2D segmentation of each section.

They then match these 2D segments across next slice in the

stack [8] [12] [9]. This method relies on the assumption that

the initial 2D segments of each slice are good enough for

linkage step. Thus the tracking result is dependent on the

detection quality. Some of these methods include indirect

penalties by setting a stopping conditions or have rules to

ensure that the algorithm converges to the right answers [9].

There are several works are focused on reconstruction neu-

rons from ssEM. These use Markov Random Fields (MRFs)

at the pixel level. Such methods are sensitive to the align-

ment between slices due to anisotropic nature of ssEM [7].

In tracking-by-assignment models, the task is considered

as a joint global optimisation problem. It treats every de-

tected object as a potential target by selecting a subset of

candidates solution. Each possible solution is given a cost

based on how likely that one segment is part of another seg-

ment in next frame [6] [2]. Domain knowledge is often used

to guide the cost function. Kausler et al. showed that the

global optimal assignment can be achieved better over sev-

eral frames than just two neighbouring frames.

The Random Forest was introduced as a classifier or re-

gressor by Breiman [3] and has been widely adopted be-

cause of its simplicity and effectiveness. A Random Forest

is an ensemble of decision trees, each trained using random

subsets of the full data, and random subsets of the available
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Figure 2. Visualisation of some of the fibres found by the tracking algorithm.

features. This encourages each tree to give an independent

estimate of the true answer, so that the uncertainty on the

estimates can be reduced by combining results from many

such trees.

Andres et al. [10] proposed a method to segment neu-

ral tissue using a hierarchal classifier in three stages. In the

first stage, a Random Forest classifier is trained on man-

ually segmented samples to validate each voxel. The wa-

tershed algorithm is used to evaluate these classifications,

which produces over-segmentation. Finally, the segments

produced by the watershed algorithm are then classified as

correct or incorrect by another trained Random Forest clas-

sifier. This approach is not appropriate for our task, as the

fibres are small objects in any individual slice - the main

challenge is to find them and link each fibre across slices.

Almutairi et al. [1] describe an approach which involved

locating individual fibre candidates in each frame with

normalised cross correlation (NCC), then linking them

using a tracking algorithm to take account of the drift of

bundles between slices. We find that this has limitations,

including

(a) NCC does not work well for the non-circular cross

sections that occur where fibres are tightly packed (see Fig.

1)

(b) The linking method proposed can make incorrect

assignments when fibres are close

In this paper we propose solutions to these challenges,

using Random Forests to locate fibres, and a Kalman Fil-

ter tracking stage to identify and correct fibre connection

errors.

3. Method

The aim of this work was to build a robust system to

assist biologists to extract 3D structure of collagen fibres.

We focused on image volumes from SBFSEM, which were

gathered so that the image planes are roughly orthogonal to

the direction of the fibres of interest - each fibre then ap-

pears as a small disk or ellipsoid of radii in the range 2 to

25 pixels. Biologists are more interested in the paths of the

fibres than details of their cross-section. Since many fibres

are only a few pixels across, and have little visible inter-

nal structure (see Fig.1) it was found to be sufficient to use

template matching to identify the centre and approximate

radius of each fibre in each image at early stage of tendon

development and to use a trained classifier to locate fibres

in the late development. False template matches are elimi-

nated using a Random Forest classifier. Candidates in each

slice were then linked to identify extended fibres, which are

then checked and corrected in a final filtering stage.

3.1. Fibre Detection and Tracking

For fibre detection and tracking we build on the algo-

rithm described in [1]. We extended the detection algorithm

to deal with non-circular shapes and introduce a new step

to correct errors in tracking by validating the fibres using a

Kalman Filter.

At early stages of embrionic development each fibre has

a roughly circular shape. Our method is based on template

matching for identifying fibres. We defined set of models

each trained to find fibres at a particular radii. To construct

a model we annotate set of fibres, as a training examples,
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by drawing a circle around each. We construct a set of

templates at a range of sizes from the mean of patches ex-

tracted around fibres with similar diameters. During search

for these circular fibres we use normalised cross-correlation

(NCC) to locate candidates at each possible size.

During late development, fibres have a more polygonal

shape. We train random forest (RF) classifiers to distin-

guish non-circular fibres from false positives. Eight RFs

have been trained, each designed to deal with a different

(narrow) range of radii of fibres, centred on r̂. To obtain

training examples we annotate several fibres over a set of

images. Thus, we have a set of circles defining the cen-

tre and radii of each fibre. To increase the training data we

rotated these patches four times. False examples are gen-

erated automatically by by displacing the circle around the

center of fibre’s patch at different scales (see Fig.3). Each

RF was then trained on image patches around all the sam-

ples which fell within it’s radii range, [rmin, rmax], where

rmin = s−1r̂, rmin = sr̂, s = 1.2.

Figure 3. Fibre annotation: Positive example (green circle) and

negative examples (red circles)

Image patches of size 2r̂ + 3 were taken, centred on the

centre of the circle defining the candidate. The features used

to make decisions at each node of each tree in the forest

were based on the difference between intensities in two ran-

domly chosen pixels within the patch.

For fibre tracking, the detection algorithm is run on every

frame giving a set of candidate disks, each of which is likely

to be from a fibre. Each fibre appears as a sequence of can-

didate disks of similar radii in consecutive frames. The first

step is to group the ends of fibres to locate bundles in the

previous frame. Then, we estimate the movement of each

bundle as the translation of all fibres which minimises the

distance of their centres to the centres of candidates in the

next slice.

3.2. Filling Gaps in Fibres

Occasionally a candidate disk for a fibre is not detected

in an image, either due to the failure of the detector, or some

image slices are corrupted by ’tearing’ the surface of the

block when the diamond knife cuts the slice. Such miss-

ing disks cause a long fibre to be split into two (or more)

shorter fibres. To detect and correct small gaps caused by

such detection failures we use a linear prediction of the fi-

bre’s location at frame z. We identify the end of every fibre

at frame z−1 and estimate their center projected onto frame

z. Similarly, we identify every fibre starting at frame z + 1
and estimate their center projected onto frame z, then we

link fibres that satisfy constraint according to the following

procedure:

Let disk i in plane z have centre ~pi,z and radius ri,z ,

i = 1..nz , nz is the number of candidates in plane z. For

every fibre i ending at frame z−1 we estimate the centre of

the fibre at frame z as

pi,z = pi,z−1 + (pi,z−1 − pi,z−2) (1)

For every fibre j starting at frame z + 1 we estimate

pj,z = pj,z+1 − (pj,z+2 − pj,z+1) (2)

Then, we link fibre i to j if |pi,z−pj,z| < 1/2(ri,z+rj,z)
and 0.7 ≤ |ri,z/rj,z| ≤ 1.5.

3.3. Correcting Mis-connections

When two fibres approach closely or a fibre changes

direction, the connection algorithm above can create mis-

matches or lose track. This is particularly common for lone

fibres (which leave one bundle and join another) or when

two bundles split or merge. Because of their stiffness, fi-

bres tend to be fairly straight and thus the position of their

centre point in a slice varies smoothly from one slice to an-

other. We use a Kalman Filter (KF) framework to predict

the position of the fibre centre in sequential frames, and thus

identify when a mismatch may have occurred.

Each fibre will be associated with its own KF. The filter is

initialised by the first five slices using fibre’s centre location.

In subsequent slices we use the Kalman equations to predict

fibre’s location in the next slice and compare it against that

produced by the original linking algorithm. Where it finds

a discrepancy, that position is recorded and the filter is re-

initialised on the next 5 slices.

Each discrepancy is then re-visited, and corrected where

necessary using Algorithm 1. There are several cases to

deal with, including gaps caused by missing detections, two

fibres which have been incorrectly swapped when they are

close and cases where one fibre has terminated.

The algorithm is run forward and then backward through

the volume to locate as many such cases as possible.

3.4. Lone Fibres

Most fibres are grouped together forming bundles. How-

ever, some of the fibres leave their bundle and join others, or

enter other structures. Biologists are interested in the path
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Algorithm 1: Correcting Mis-connections

Input: Fibre fibresnm; // list of fibres

where n is number of fibres and m
is the length of fibre; each

fibre consist of set of disks.

Fibre cfibrem; // fibre to be checked.

z = FindDiscrepancyUsingKalman(cfibrem);
disk d← cfibrez;

for i = 1← to n do

if (isDiskMatchWithF ibre(fibersim, d)) then

if (isFibreStart(fibresim, z)) then

// break fibre cfibrem at

frame z then add its tail

to fibres list

headcf ← BreakFibreH(cfibrem, z);
tailcf ← BreakFibreT(cfibrem, z);
addFibre(fibresnm, tailcf);
joinFibres(headcf, fibresim);

else

// break the two fibres

headcf ← BreakFibreH(cfibrem, z);
tailcf ← BreakFibreT(cfibrem, z);
headfi ← BreakFibreH(fibresim, z);
tailfi ← BreakFibreT(fibresim, z);
addFibre(fibresnm, tailcf);
addFibre(fibresnm, headfi);
joinFibres(headcf, tailfi);

of such lone fibres. Lone fibres leave a bundle as a single

fibre or as a small group of fibres. They might leave their

bundle and merge with another or they might return to the

original bundle.

To identify such fibres we scan each fibre and count the

number of neighbouring fibres within a range of rL within

each slice. Any fibre which has more than two slices with no

neighbours (excluding those close to the image boundaries)

is labelled as a lone fibre.

Examples of such fibres are shown in Figure 4 below.

Figure 4. Lone fibre moving from bundle 1 to bundle 2.

4. Experiments

4.1. Data

We use images from three different datasets; (i) an em-

bryonic 16.5 day wild type mouse tail sample used as a con-

trol for an MT1 knock out protease that cleaves collagen

molecules (among other things), (ii) an embryonic 17.5 day

wild type mouse tail sample used as a control for a collagen

mutation that protects the fibrils from cleavage, (iii) an em-

bryonic wild type mouse close to 17.5 day used as a control

for a collagen receptor knock-down mouse.

The datasets were collected by SBFSEM system [4] un-

der the brand name 3View. The images were created by col-

lecting the back-scattered electrons before an in-chamber

ultramicrotome removes a section [11] with assist of Gatan

DigitalMicrograph software.

Annotated Data To quantitatively assess the perfor-

mance of the tracking algorithm. We manually annotated

209 fibres across 102 slices. The location of the centre of

each fibre was recorded on each of 102 images in a sequence

- a total of 21019 points.

To compare our detection algorithm using RF with the

work of [1] which based on NCC. we manually annotated

531 fibres across four images from 6 week dataset. Fibres at

this stage have a more polygonal shape rather than a circular

shape.

4.2. Evaluation Measure

To evaluate the performance of the algorithm we defined

the following metric. Let mj(z) define the position of the

marker for jth fibre at the zth slice.

The tracking for fibre i at slice z is defined as correct

if mi(z) falls inside the circle that is identified by the de-

tection and tracking algorithm for the outline of that fibre.

We also report mismatched errors that occur when two fi-

bres are swapped as they pass close to each other. Then we

consider whether the fibre is correctly tracked after the error

correction algorithm (see Figure 5).

Figure 5. Evaluation measure
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Method

Gap Filling Kalman Filter

Correctly Tracked 20949 20951

Miss 70 68

Mismatched 289 82
Table 1. Improvements given by Kalman Filter based correction

Table 1 shows the tracking algorithm result against the

ground truth. Here we excluded the false positives since

there are over 5000 fibres in the image. The Kalman Filter-

based method corrects over 70% of the matching errors.

We have performed three experiments on three datasets

to show the tracking performance with gap filling and

Kalman correction. Figure 6 shows a histogram of the num-

ber of fibres with particular lengths (number of consecutive

frames in which they are located) when analysing a block

of images. As can be seen from all the figures that many

more longer fibres are tracked when Kalman is applied. The

first experiment shows the number of fibres with a length

183 were about 5000. However, after applying the Kalman

based error correction the number increased to 6600.

We performed experiments to evaluate how well the ran-

dom forest classifiers could discriminate between fibres and

non-fibre. Manual annotation on a set of images gave 952

true fibre candidates and 3808 non-fibre candidates, which

were used for training and testing the classifier. The testing

data consist of 363 true fibres and 1452 non-fibres. To in-

crease the training and testing data we performed rotation

and scaling on the data.

We train eight RF classifiers, each consisting of 10 trees,

with mean radii of 4, 5, 7, 9, 11, 13, 15 and 17 pixels. Figure

7 shows the Random Forest performance for each radii.

We performed a pilot experiment to compare Random

Forest classifier for locating fibres with the work of [1]

which based on NCC. We compute the precision and re-

call, where we define recall = TP/(TP+FN) and precision =

TP/(TP+FP), where TP is the number of true positives, FN

is the number of false negatives and FP is the number of

false positives. We summarise the precision-recall in single

number using the F1 score:

F =
2 ·Recall · Precision

Recall + Precision
(3)

The F1 score for finding fibres using template matching

achieved 62% where the Random Forest classifier achieved

96%.

5. Discussion

We have demonstrated a system to detect fibres and track

them across image volumes which is fully automatic. The

detection system involves finding candidates using template

matching for circular shape and Random Forest classifier
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Figure 6. Histograms of the number of fibres with particular

lengths on three data sets, with gap-filling and with Kalman cor-

rection, performed on dataset (i) (above), dataset (ii) (middle) and

dataset (iii)(bottom). It demonstrates that Kalman significantly in-

creases the number of longer fibres detected.

for polygonal shape, then discarding false matches using a

Random Forest classifier. Locating fibres that have polygo-

nal shape using template matching produced a large number
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of false positives.

A relatively simple tracking algorithm, which takes ac-

count of the movement of fibre bundles, is found to be ef-

fective for linking the detected disks together into extended

fibres (see Fig.8). However, there are some errors when

two fibres almost touch. To identify such errors we use a

Kalman Filter to look for inconsistencies. Each discrepancy

is then re-visited, and corrected where necessary.

The algorithm is able to track thousands of fibres across

hundreds of slices, showing that the fibres follow complex

paths through the tissue (see Fig. 9 and Fig.10).
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