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Abstract

A newly developed imaging technique called light-sheet

laser microscopy imaging can visualize the detailed 3D

structures of capillaries. Capillaries form complicated net-

work structures in the obtained data, and this makes it dif-

ficult to model vessel structures by existing methods that

implicitly assume simple tree structures for blood vessels.

To cope with such dense capillaries with network struc-

tures, we propose to track the flow of blood vessels along

a base-axis using a multiple-object tracking framework. We

first track multiple blood vessels in cross-sectional images

along a single axis to make the trajectories of blood vessels,

and then connect these blood vessels to reveal their entire

structures. This framework is efficient to track densely dis-

tributed vessels since it uses only a single cross-sectional

plane. The network structure is then generated in the post-

processing by connecting blood vessels on the basis of ori-

entations of the trajectories. The results of experiments us-

ing a challenging real data-set demonstrate the efficacy of

the proposed method, which are capable of modeling dense

capillaries.

1. Introduction

It is known that vascular structures are related many dis-

eases, i.e., cancer, malignancy of brain tumor, and analyzing

vascular structure is important in medical biomedical stud-

ies. MRI and CT, which can visualize arteries and veins,

have been widely used for such clinical practice, and many

automatic methods have been developed for segmenting and

modeling blood vessels in MRI and CT, in order to identify

and quantitate morphological abnormalities of vessels.

Recently, in addition to such modalities, novel imaging

techniques, i.e., photoacoustic imaging and light-sheet mi-

croscopy imaging, have been developed to visualize and

analyze more detailed structures of blood vessels. For ex-

ample, a light-sheet microscope, which obtains multi-layer

projections inside a transparent tissue [11], is capable of vi-

sualizing the detailed structures of capillaries on the surface

Figure 1. Examples of maximum intensity projection (MIP) ob-

tained from a sheet-laser microscope. Left: x-y, Middle: y-z,

Right: z-x.

of skins, where this technique is promising for research and

development in biology and medicine. Figure 1 shows ex-

amples of maximum intensity projection (MIP) of a micro-

scopic image at facial capillaries. In this figure, we see that

the blood vessels are densely located and makes dense net-

works.

The main difficulties arise from two aspects of the prob-

lem in modeling such dense capillaries. First, contrast to

arteries and veins that usually have tree structures from the

heart to arterioles or from venula to the heart, capillaries

make dense network structures in the surface of skins. Ex-

isting blood vessel modeling methods that track a single

vessel independently have limitations to track these dense

capillaries, since these methods basically require initializa-

tion of the root position to decide the starting position of

tracking. Second, the number of capillary blood vessels

is much larger than those of blood vessels visualized by

MRI and CT. Existing individual vessel tracking approaches

that search cross-sectional plane for each searching point of

each vessel curve, are not efficient for tracking such many

vessels.

To model the 3D structures of such dense capillaries for

identifying single vessel curves, and their connection, we

propose a multiple-object tracking based modeling method.

The method first tracks multiple blood vessels in cross-

sectional images along a single axis to make the vessel

curves as shown in Figure 2(a), and then connects these

blood vessels (Figures 2(b),(c)). In order to reliably track

multiple cross-sectional blood vessel regions while vessels

are closely located, we modify a cell tracking method in

microscopic images [2] that simultaneously solves the joint
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Figure 2. (a)Illustration of tracking cross-sectional blood vessel re-

gions along a base-axis. (b) Illustration of generated vessel curves,

(c) vessel network structures obtained by connecting vessel curves

from (b), where each color indicates each vessel curve, and the

orange circle indicates the bifurcation.

problem of segmentation and association between succes-

sive frames. This makes it possible to make more reliable

vessel curves under high density conditions compared with

typical detection-and-association methods. In addition, we

newly introduce a connecting method that connects blood

vessels on the basis of orientation of the vessel curves and

the intensities of the original data to identify the network

structures. This framework efficiently track such many ves-

sels since it uses only a single cross-sectional plane for

tracking multiple vessels at once, comparing with the exist-

ing methods that track a single vessel curve. The results of

experiments using a challenging real data-set demonstrate

the efficacy of the proposed method, which are capable of

modeling dense capillaries.

2. Related works

Vascular segmentation and modeling methods have been

intensively studied in 3D volume in MRI and CT, these

are well overviewed in [7], [8]. Vascular structure mod-

eling methods can be roughly classified into two groups:

the segmentation-and-modeling group, and tracking-based

group.

The first group segments vascular regions on the ba-

sis of intensity distributions around each pixel, and model

each blood vessel as the center line of segmented regions

and their bifurcations. The simple segmentation algorithms

were developed based on thresholding and region growing

[1], [16]. Since the segmentation largely depends on im-

age intensities, neighboring non-vessel tissue is sometimes

misclassified as blood vessels when the contrast of an origi-

nal image is low. For more robust segmentation, vessels are

extracted as tubular structure in a pre-processing step by

examining the eigenvectors of the Hessian matrix of a local

area, to compute the likeliness of tubular structure [4], [9].

More recently, energy minimizing deformable models, i.e.,

level-set, have been applied to define contours of the ves-

sel surfaces [15],[18],[5]. These pixel-driven segmentation

techniques, however, do not take the shapes of brood vessels

into consideration and are thus largely affected by noise.

Figure 3. Examples of a z-slice obtained from a sheet-laser micro-

scope. Left: original image, Right: Frangi-filter response.

Even when they succeed in segmenting the blood vessel re-

gions, the complicated modeling procedures as identifying

the center-lines of each blood vessel and their connection

are further required for revealing the vascular structures.

The second group of vascular modeling methods tracks

each blood vessel, where these methods identify the center

line of each vessel during the segmentation. This group can

be sub-classified into ridge tracking, tubular tracking, and

cross-section tracking, that are well reviewed in [6]. Ridge

tracking methods track vessels as intensity ridges using gra-

dient information [17] or second-order information in the

Hessian matrix [10]. Tubular tracking approaches track ves-

sels with modeling a local area of a vessel as a linear tube

segment using cylindroidal superellipsoid [14] and 3D tem-

plate matching [6]. The cross-section tracking methods fit

a 2D structure model, such as ellipse, into the 2D cross-

sectional vessel region while identifying the cross-sectional

plane based on the orientation of the vessel [3],[12]. These

methods basically track a single vessel independently and

require initialization of a root position, where the meth-

ods implicitly assume that vascular structures are tree struc-

tures, not as network: the vessel curves flows from a root to

branches in one direction.

The sheet-laser microscope can provide much richer in-

formation on capillary blood vessels that often make com-

plicated networks. This requires the initialization process

for identifying endpoints of each vessel for the current

cross-sectional tracking methods. In addition, the number

of capillary blood vessels is much larger than those of blood

vessels in MRI and CT. The individual vessel tracking ap-

proaches that search cross-sectional plane for each search-

ing point of each vessel curve, are not efficient for tracking

such many vessels. Our method tracks many blood vessels

along a single base-axis at once and connects the vessels:

This is efficient to tracks many blood vessels comparing

with the existing methods.

3. Method

In this paper, we propose a multiple-object tracking

based modeling method that can reveal the details structures

of dense capillaries. The proposed method first enhances
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Figure 4. Overview flow of blood vessel curve generation.

the blood vessel regions using the multi-scale Frangi-filter

[4]. Next, the method models vessel structures by tracking

blood vessels detected in each slice of base-axis, Then, the

method models the network structure by connecting blood

vessels on the basis of orientations of the vessel curve. The

details of this procedure are described in the following sec-

tions.

3.1. Blood vessel enhancement

The multi-scale Frangi-filter [4] is applied to the 3D

volume to reduce the noise and enhance blood vessels.

The multi-scale Frangi-filter method computes the likeli-

ness of tubular structure on the basis of the eigenvectors

of the Hessian matrix for multiple scale Gaussian filters,

then combines their responses. We briefly explain the filter-

ing method below. The axes are first scaled up using linear

spline interpolation to provide isotropic voxels as required

in the multi-scale Frangi-filter method. The 3D volume

data L(x) is convolved with a three-dimensional isotropic

derivative of a Gaussian filter G(x, σ) for each local area

around pixel x, where the standard deviation σ indicates the

scale of the tubes. Then, the likeliness of tubular structure

at each voxel is computed based on the eigenvalues of the

second derivative of a Gaussian kernel (Hessian) at each σ

as:

νo(x, σ) =

{

0, if λ2 > 0 or λ3 > 0

(1− e

−λ2
2

2α2λ2
3 )e

−λ2
1

2β2∥λ2λ3∥ (1− e
−

∑
i λ2

1

2c2 )
(1)

where λ1, λ2, and λ3 (|λ1| ≤ |λ2| ≤ |λ3|) are the eigen-

values of Ho(x, σ), and v1(x, σ), v2(x, σ) and v3(x, σ) are

corresponding eigenvectors respectively. The first term is a

measure between plate-like and line-like structures, the sec-

ond term is a measure of how similar the local structure is

to a blob, and the third term is a measure of the contrast. α

and β are the relative weight of these terms. The responses

of multiple scales are combined by selecting the maximum

response:

νo(x) = maxσ∈{σ0...,σS}νo(σ) (2)

where S is the number of the scale. The corresponding

eigenvectors of the selected σ are V1(x), V2(x), and V3(x).

The left image in Figure 3 shows a z-slice obtained from

a light-sheet microscope, where it is difficult to distinguish

the regions of the closely located blood vessels. The right

image in Figure 3 shows a z-slice of the multi-scale Frangi-

filter response data. In this result, a region of a single blood

vessel is clearer than that in the original image. We use this

vessel-enhanced data in the following steps.

3.2. Blood vessel curve generation

The response values from Frangi-filter at the bifurcation

points are usually not high since a local structure of such

points has a plane-like structure. In this step, we track cross-

sectional regions of each blood vessels along a single axis

to generate vessel curve, without considering connections

of them.

We define the base-axis for tracking on the basis of the

primary direction of vessels. We first segment the blood

vessel regions by Otsu-thresholding1. Then, we define a

base-axis using the principal component analysis (PCA) of

the set of eigenvectors V1(x) in the segmented regions,

which is the smallest eigenvalue at each voxel x, and this

corresponds to the direction of vessels in the local area

around x [9]. We set the first component vector as the base-

axis, and transform the image using the base-axis. Hence,

the base-axis is called as z axis, and the others are x and y

axes in this paper.

1This region is only used for computing the direction of vessels and not

used for the segmentation and modeling. Therefore, the rough segmenta-

tion is enough in this step
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To model the vessel curves, we track the multiple cross-

sectional regions of vessels along the base-axis, which is on

the basis of the fact that the cross-sectional regions of vessel

regions appear ellipse-like shape in each z-slice and the fact

that the cross-sectional regions in successive slices of the

same vessels are nearly located as shown in Figure 4. The

ambiguity parts, i.e., very low intensity part and bifurcation

points, are connected in the next step after generating vessel

curves.

Since this cross-sectional region tracking problem is

similar with a cell tracking problem that tracks multiple cell

regions along the temporal image sequence, we follow a cell

tracking method for dense cell conditions [2] to track ves-

sel regions, which uses the cell region information from the

previous frame to help segment the blurry regions, rather

than relying on only the image appearance at the current

frame. To fit the method to the vessel modeling problem,

we modify several sub-processes: the candidate region tree

pruning, the association score computing and re-initializing

process.

The overview of the vessel curve generation method is

shown in Figure 4. We first detects candidate regions of

blood vessels, so that they include false positives but in turn

very few false negatives. Next, the joint problem of select-

ing optimal regions and associating between the candidate

regions at the current slice and the tracking results from the

previous slice is simultaneously solved. In this example in

Figure 4, four regions are selected as blood vessels. Then, to

identify newly appeared blood vessels, the re-initialization

step tracks non-associated regions at z, that are not con-

flicted with the selected vessel regions, as a candidate track.

This step starts the tracking process for a candidate region

only if the boundary of the candidate has been clear for sev-

eral frames continuously, and removes the other candidate

tracks as noise. This process is iteratively performed for

each z-slice until the end of the sequence to make vessel

curves. The blood vessel generation process is described in

more detail below.

3.2.1 Candidate region and tree generation

In this step, a set of candidate regions are produced so

that they include many false positives but in turn very

few false negatives. The method is based on the fact that

cross-sectional regions of blood vessels appear bright un-

der Frangi-filter response and on the fact that the intensi-

ties on the inside of a vessel are slightly higher than those

at its boundaries among touching blood vessels. Candidate

regions are identified by segmenting all regions by using

multiple-level thresholding as shown in Figure 5(a). We set

K level thresholds (we set K as 50 in all our experiments),

that are equally spaced, and each threshold is used to seg-

ment images at a particular level of intensity. The holes of
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Figure 5. Illustration of candidate blood vessel region generation

process. (a) Example illustration of detected candidates corre-

sponding with the input image at z in Figure 4. (b) Illustration

of the relationships of the regions and the intensity level. (c) Orig-

inal tree that describes containment relationships among candidate

regions obtained from (b). (d) Pruned tree.

the foreground region are filled since a blood vessel does

not have holes.

The detected blood vessel candidates constitute a tree

structure which describes containment relationships of

those regions (Figure 5), where a candidate region Aj is

a child node of Ai, if Aj is inside Ai.

To reduce computational costs, we prune some nodes of

the tree. We prune the nodes on the basis of two concepts.

First, this step prunes large and small candidate regions that

does not match the expected cross-sectional region size of

blood vessels using the size range [θmin, θmax], where a

candidate region that size is out-of-range is eliminated. Sec-

ond, we prune the similar structure and similar shape re-

gions, which have no brother node, and the size of the re-

gion closes enough to the size of it’s parent node. For exam-

ple in Figure 5(c), A9 is pruned since A5 has only one child

node A9. Since the size ratio between A5 and it’s parent

node A2 is less than a threshold τs, A5 is not pruned though

A5 have no brother node. Finally, the pruned tree nodes are

registered as candidate blood vessel regions. A set of can-

didate regions is denoted as A
z = {Az

i , i = 1, 2, ..., Nz},

where Az
i represents the i-th candidate vessel region, and

Nz is the number of candidate regions.

The tree structure is used to handle non-overlapping con-

straints for solving joint problem of selecting optimal re-

gions from candidates and associating blood vessel regions

successive slices.
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3.2.2 Optimal region selection and association

After generating the candidate blood vessel regions and the

tree structure, we simultaneously solve the problem of se-

lecting optimal regions and association problem between

candidate regions in the current slice z and tracked blood

vessel regions that have been tracked up to slice z− 1. This

problem is solved by a binary linear programming problem

with containing constraints to avoid conflict associations, in

which overlapped regions are not concurrently selected in

the optimal solution.

All possible blood vessel connection hypothesis Hz at

each successive slices are first listed. If the overlap ra-

tio between the tracked region T z−1

i and the candidate re-

gion Az
j is larger than a threshold τo, a connecting hypoth-

esis hz
l = {T z−1

i → Az
j} is added to the hypothesis set

Hz = {hz
k, k = 1, 2, ..., Hz}, where Hz is the number of

hypotheses in slice z.

After listing up the hypothesis, the method selects the

optimal hypothesis set for region selection and association

from all hypotheses Hz with avoiding two types of hypothe-

ses conflict. First, a tracked blood vessel region is associ-

ated to only one candidate region (i.e., one-to-one matching

is allowed in this step). Second, any selected regions in

the solution do not overlap their regions. This problem is

formulated as a binary linear programing problem for max-

imizing the sum of the scores of the hypotheses under non-

overlapping constraints.

Let N1 be the number of tracked blood vessel regions at

the slice z−1, let N2 be the number of candidate regions at

the slice z, let vector ρ store the scores of every possible hy-

pothesis, and let matrix C store the constraints to avoid con-

flict hypotheses, where each row of C has N1+N2 columns

and each column on 1 to N1 indicates tracked vessel index

and each column on N1 + 1 to N1 + N2 indicates candi-

date region index on the association between track results

and candidate regions. Ω(Az
i ) is a set of candidate region

indexes that are all descendant node indexes of Az
i in the

tree, where the set includes itself Az
i . For example, in Fig-

ure 5(d), Ω(Az
1) is {1, 4, 5, 7, 8, 9, 10} since the candidate

region Az
1 is overlapped with all of the other candidates.

Let h be the index of a hypothesis hz
h = {T z−1

l → Az
m},

where h-th row of C and a corresponding score of ρ are

determined as:

C(h, i)=

{

1, if i = l or i = N1 +mr,mr ∈ Ω(At
m)

0, otherwise.
(3)

ρ(h) = Pcon(A
z
m|T z−1

l )PTP (A
z
m), (4)

where Pcon(A
t
m|T z−1

l ) is the score of the connecting hy-

pothesis {T z−1

l → Az
m}. PTP (A

z
m) is the score in which

the region of Az
m is a single vessel region. For implemen-

tation, when the interval of z-slice is short enough, we use

’relative overlap’ between tracked vessel region T z−1

l and
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Figure 6. Example of a constraint matrix and score vector for

jointly solving detection and association, where the z-slice index

is omitted.

candidate region Az
m, i.e., Pcon(A

z
m|T z−1

l ) =
T

z−1

l
∩At

m

T
z−1

l
∪At

m

.

For the score of vesselness of the candidate region, we

assume that a cross-sectional region of vessel has a circular

shape since a blood vessel shape has tube structure. For the

implementation, we compute the circularity for the score

in which the candidate region Az
m is a single blood vessel

region as:

PTP (A
z
m) =

4× π × S(Az
m)

B(Az
m)

(5)

where S(Az
m) is the size of the region Az

m (the number of

pixels), and B(Az
m) is the length of boundary of the region.

After computing the score vector ρ and constraint matrix C

of all H hypotheses over N1 tracked blood vessels and N2

candidate regions, the association problem can be formu-

lated as the following binary linear programming:

x∗ = argmax
x

ρTx, s.t. CTx ≤ 1, (6)

where x is a H×1 binary vector and xk = 1 means the kth

hypothesis is selected in an optimal solution. To solve this

problem, we use the branch-and-bound algorithm which di-

vides the original problem into all possible sub-problems,

and solves a series of LP-relaxation problems in each sub-

problem. The constraint CTx ≤ 1 guarantees that conflict

hypotheses are not included in the solution at once.

Figure 6 shows a simple example of a binary linear pro-

gramming problem in which the number of tracking results

at the previous frame is 4 and the number of candidate re-

gions is 10. In the hypothesis T 2
z−1 → Az

1, the set of de-

scendant candidates with Az
1 is {1, 4, 5, 7, 8, 9, 10}. This

constraint indicates that the candidates {4, 5, 7, 8, 9, 10} are

not associated with any tracked vessels if the region Az
1 is

selected as an optimal solution. In this example, the hy-

potheses T z−1
1 → Az

6, T z−1
2 → Az

7, T z−1
3 → Az

10 and

T z−1
4 → Az

6 are selected as the optimal solution. Based on

this process, a set of vessel curves X = {Xi} is generated.
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The term Xi = {Rij} is a vessel curve consisting of an

order list of associated cross-sectional vessel regions where

the associated candidate region is registered as Rij , which

indicates the jth detection result on vessel curve Xi.

3.2.3 Candidate tracking for re-initialization

Blood vessels that connect from upper z-slice suddenly ap-

pear in tracking process along z-slice, since the tracking

process usually track vessel regions from bottom to upper

slices. In addition, a boundary of a blood vessel is some-

times clear and sometimes blurry: this results in failing to

track such blurry vessels even though the candidate region

detection step produces redundant regions. Therefore, re-

initialization is required for re-tracking such vessels.

All candidate regions in z-slice that are not associated

with any tracked blood vessels have possibility to be newly

appeared regions. However, these candidates include many

false-positives as discussed above. To determine which can-

didate regions be registered as new vessels in the set of can-

didate regions and which are not tracked, we only initialize

regions and starts the tracking process if the boundary of the

vessel region has been clear for several slices continuously.

The method first removes conflict candidates that are

overlapped with selected optimal blood vessel regions in

the process described in Section 3.2.2 at each slice z − 1
and z. Here, the rest of the candidate regions is denoted as

A2
z = {A2zi }. Next, the method determines which regions

have boundaries that are continuously clear in several con-

secutive slices, as these are considered reliable. The candi-

dates A2
z and the candidate track regions T2

z−1, that have

been tracked up to slice z−1 as candidate tracks, are associ-

ated by using the similar method proposed in section 3.2.2,

where the only difference is the association score ρ(h) of

the hypothesis T2z−1

l → A2zm.

ρ(h)=Pcon(A2
z
m|T2z−1

l )PTP (A2
z
m)PTP (T2

z−1

l ) (7)

PTP (A2
z
m)=e

− 1

Eedge

1

σ (8)

Eedge(A
z
m)=

1

length(ΦAz
m
)

∫

ΦAz
m

e(ΦAz
m
)dl, (9)

where the edge energy Eedge measures the edgeness along

the region boundaries. ΦA2zm
is the region boundary of can-

didate region A2zm. The function e(·) is the edgeness met-

ric, which takes a large value if the intensity gradient on

ΦA2zm
is large. length(ΦA2zm

) indicates the length of the

region boundary. When the edgeness of the region bound-

ary takes a larger value, the score PTP (A2
z
m) closes to 1.

Using this score, the optimal candidate regions and asso-

ciations are solved by linear programming. Here, the high

value of the score indicates that both boundaries of the re-

gions A2zm and T2z−1

l are clear and that these regions ap-

pear to be the same object. The purpose of this step is to ini-

tialize the tracker for clear blood vessel regions. Thus, the

(a) (b)
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Figure 7. Example illustration of the process of connecting ves-

sel curves. (a) Example of the process of connecting endpoints.

(b) Example of the process of connecting the endpoint and branch

point. The red regions are the intensity-based search area, and the

green half sphere area is the vessel curve direction and distance

based search area. The shaded area with green diagonal lines is

final search area.

associated candidate region is linked to a candidate track

if and only if its score is higher than a threshold. These

selected regions are tracked until the reliability of the asso-

ciation is less than threshold. Then, if the length of the gen-

erated candidate track is longer than a threshold (default is

5), the vessel curve is registered as reliable. Non-associated

regions in this step are newly added to the candidate track

T2
z, if the non-associated region is not conflict with the

selected candidate track regions at z.

3.3. Vessel curve connection

After generating blood vessel curves, we connect them

by two steps. First we connect endpoints of blood vessels

that are disconnected in tracking step. Second, we also con-

nect a endpoint and a middle point of vessel curves, which

indicates the bifurcation point. In these connecting process,

we only use sequence of centroid points of each region for

vessel curve, instead of regions, and we denote endpoints of

a vessel curve Xi as Xs
i and Xe

i , where Xs
i is the endpoint

on the lower z-slice, and Xe
i is that on the higher slice.

To connect endpoints, we first list up connecting hy-

potheses, in which two endpoints are in a search area. If

the search area is decided on the basis of only the distance

from the endpoint, it results in producing improbable con-

necting hypotheses, in which the connected interpolate ves-

sel curves between two endpoints passes zero-value voxels.

To reduce such problem, we introduce the intensity-based

search area, which relies on the fact that the intensities of

blood vessel curves are slightly higher than the background

in original data, where we use the original data instead of

the filtered data, since Frangi-filter sometimes responses a

very low value when the local structure is not tubular-like

even though the region have some intensities. The intensity-

based area is segmented by a lower thresholding that is r

times the result of Otsu-thresholding of original volume (we

set r as 0.7 on the all of experiments). In addition, we in-

troduce another search area which is decided by the direc-
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Figure 8. Example of volume rendering of the original volume on

the surface of facial skins.

tion of the vessel curves and the distance from the endpoint,

where the direction vector is simply decided by the neigh-

bor points of the endpoint, and the distance is decided by

thresholding γd. The connected intersectional area of these

areas is the final search area to find connecting hypothe-

ses, where unconnected intersectional area is not in search

area. Figure 7(a) shows an example of search area for end-

point Xe
1 . In this example, three hypotheses {Xe

1 → Xs
2},

{Xe
1 → Xe

2}, and {Xe
1 → Xe

3} are registered in the set of

connecting hypotheses.

After listing up connecting hypotheses, we select opti-

mal connections from the set of the all hypotheses. For

each hypothesis, we first interpolate the vessel curve be-

tween the endpoints by linear interpolation, then compute

the hypothesis score calculated as −Σx{1− I(x)}, where

I is the intensity sequence of interpolated vessel curve, x

is a point of I . The score takes a small value if the intensi-

ties on the interpolated vessel curve are small and the length

of the interpolated curve is long. After computing the hy-

pothesis scores, the optimal set of hypotheses is selected by

minimizing the sum of the hypothesis scores with one-to-

one matching constraint in similar fashion with the method

discussed on the previous section. The identification of the

connected vessel curves is re-labeled and registered in the

set of vessel curves X.

Next, we identifies bifurcation points by connecting an

endpoint and a middle point of a vessel curve. To find this,

we also use the same search area as above. The endpoint is

connected to a vessel curve when a part of the vessel curve

is in the search area. To decide the bifurcation point, we

compute all of scores in the same as above which use inten-

sities and select the minimum one as the bifurcation point.

Figure 7(b) shows the example of this step, where the or-

ange curve is the candidate points of the bifurcation, and

blue line is selected interpolated line.

Figure 9. Example of volume rendering of the segmented blood

vessel regions from the proposed method.

4. Experimental results

The proposed method was applied to the real data of cap-

illarities on the surface of facial skins. To observe inside

skins, the skins were transparent using an effective tissue-

clearing technique [13], and the blood vessels were stained

using fluorescent protein. Then, a z-slice of the stained cap-

illarities in the skin was captured at a resolution of 1920 ×
1920 pixels per image with a digital scanned light-sheet mi-

croscope (DSLM). The number of z-slice was 324, and the

voxel size of each axis was [0.834, 0.834, 5.085]µm. The

z-stack images were treated as 3D volume data, where one

pixel in a z-stack image was treated as a voxel in 3D. To

make the voxel size isotropic, the z-axis was scaled up us-

ing linear spline interpolation. Example of the volume ren-

dering is shown in Figure 8.

For quantitative evaluation, we manually annotated the

centerlines of blood vessels2. Since it is extremely time-

consuming to annotate all blood vessels in the entire data,

all vessels in a box 800 × 800 × 800 were annotated. The

total number of vessels were 141, and the total number

of annotating points were 3476. The manual tracking re-

sults were used for computing the recall ( TP
TP+FN

), preci-

sion ( TP
TP+FP

) and F-measure (2· precision·recall
precision+recall

) for blood

vessel detection accuracies, where TP is the number of true

positives, FP is the number of false positives, FN is the num-

ber of false negatives, and F-measure is the harmonic mean

of precision and recall.

Figure 9 shows the example of the segmentation results

which corresponded with Figure 8. In this results, the main

structures of vessels were well modeled. Since the blood

vessels were too dense, it is difficult to compare the seg-

mentation results and original data in detail. Therefore, we

2Since the annotation was done in a subjective manner, the annotated

positions were not exactly the center positions of the vessels.
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Figure 10. Comparison of the manual annotation and tracking re-

sults. Red dots indicate blood vessel curves obtained from the

proposed method, and blue dots indicate those obtained from the

manual annotation.

compared the center lines of tracking results and manual an-

notation. Figure 10 shows the center line of blood vessels.

The results shows that most blood vessels were correctly

tracked except vessel curves that run along the horizontal

axis (x-y axis). Since our method tracks along a single axis,

the method fails to track these vessel curves traversing the

horizontal axis. In addition, some individual blood vessels

were connected by the connecting step in our method and

this cause false positives. The tasks to address these prob-

lems remain for future works.

In the quantitative evaluation, the method achieved that

the recall is 0.873, the precision is 0.872 and the F-measure

is 0.872. In addition, we also evaluated the accuracy of

the bifurcation detection that is the number of correctly de-

tected bifurcation points divided the number of the total de-

tected bifurcation points. This proposed method achieved

0.741 for this metric. These results show the efficacy of

the proposed method on such challenging data, where many

capillaries are densely located and make dense networks.

5. Conclusion

We proposed a multi-object tracking based modeling

method that first tracks multiple blood vessels in cross-

sectional images along a single axis to make the vessel

curves, and then connects them on the basis of the orien-

tation of the vessel curves and intensities of original data.

The approach, in which the method tracks vessels along

only a single base-axis, is efficient comparing with cur-

rent method that track individual vessels with searching the

cross-sectional plane in each point. The results of experi-

ments using a challenging real data-set demonstrate the ef-

ficacy of the proposed method, which are capable of mod-

eling dense capillaries. To address the limitations of our

method that hard to track vessels traversing along the verti-

cal of base-axis, we will introduce three base-axes instead

of using one axis in the future works.
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