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Abstract

Segmentation of cervical cells in microscopic images is

an important task for computer-aided diagnosis of cervical

cancer. However, their segmentation is challenging due to

inhomogeneous cell cytoplasm and the overlap between the

cells. In this paper, we propose an automatic segmentation

method for multiple overlapping cervical cells in micro-

scopic images using superpixel partitioning and cell-wise

contour refinement. First, the cell masses are detected by

superpixel generation and triangle thresholding. Then, nu-

clei of cells are extracted by local thresholding and out-

lier removal. Finally, cell cytoplasm is initially segmented

by superpixel partitioning and refined by cell-wise contour

refinement with graph cuts. In experiments, our method

showed competitive performances in two public challenge

data sets compared to the state-of-the-art methods.

1. Introduction

Analyzing individual cervical cells in microscopic cytol-

ogy images, obtained from the Pap smear test, is an impor-

tant task for early diagnosis of cervical cancer [4]. Num-

ber and shape of cells are known to be important features

for pre-cancerous diagnosis of cervical cancer. However,

visual analysis by human experts often suffers from intra-

and inter-observer variability. Recently, computer-aided di-

agnosis and detection have became of interest and numer-

ous attempts have been concentrated on the task of auto-

matic analysis and understanding microscopic images. In

cervical cell microscopy, several works such as segmenting

cell boundaries, rejecting outliers e.g. blood and mucus,

have been studied to support and automate cytology image

analysis and cancer diagnosis systems. Detection and seg-

mentation of cervical cells in cytology images, shown in

Fig. 1, are however considered to be challenging tasks due

to (1) inhomogeneous cell cytoplasm, and (2) the overlap

between the cells. First, since the cytoplasm of cell is inho-

mogeneous, it is not enough to extract the cytoplasm with

(a) Input images (b) Nuclei (c) Cytoplasm

Figure 1: Examples of microscopic images for overlapping

cervical cells, and nucleus and cytoplasm segmentation.

threshold-based segmentation scheme. Furthermore, since

the cells are overlapped in the microscopic image, delin-

eation of cell boundaries in cell overlapping regions is par-

ticularly challenging.

Two grand challenges on the segmentation of overlap-

ping cervical cells in microscopic images acquired from

Pap smear test, have been recently publicized in ISBI 2014

and ISBI 2015 conferences. On these public data sets, nu-

merous works [13, 8, 5, 9, 11] have addressed the prob-

lem in diverse approaches and achieved state-of-the-art-

level performances. In Ushizima et al. [13], the cell masses

were extracted by superpixel clustering and triangle algo-

rithm. Within the extracted cell masses, nuclei were de-

tected by local thresholding, and cytoplasm were parti-

tioned by Voronoi diagram. In Nosrati et al. [8], the cell nu-

clei were detected by combining maximally stable extremal

region detector (MSER) [7] and random forest classifier.

From these nuclei, cytoplasm was represented as multiple

signed distance functions and was segmented by Chan-Vese

method [3]. In Lu et al. [5], the rough segmentation on

cervical cells was first performed including cell mass seg-
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(a) Input image (b) Cell mass detection (c) Nucleus extraction (d) Initial cytoplasm (e) Contour refinement

Figure 2: Overview of our approach; (a) An input image, (b) cell mass detection, (c) nucleus extraction, and cytoplasm

segmentation consisting of (d) superpixel partitioning and (e) contour refinement.

Figure 3: A workflow of the proposed approach.

mentation with quick shift algorithm [14], nuclei detection

and segmentation with MSER detector, and initial cell seg-

mentation with shape prior-based level set approach [12].

Cell segmentation was then refined by joint level set repre-

sentation with geodesic-based shape prior. In Phoulady et

al. [9], cell nuclei were detected by iterative threshold-

ing and cell masses were segmented by Gaussian mixture

model (GMM) estimation. Cytoplasm was then segmented

by constructing grid-based distance map on multi-focal im-

ages and labeling grids based on these distance maps. In

Ramalho et al. [11], which is an improved version of Ushiz-

ima et al. [13], the boundaries of overlapping cells were

refined by combining boundary information from extended

depth-of-field (EDF) image and multi-focal images. The

set of borders detected by Laplacian of Gaussian (LoG)

method from multi-focal images and the boundary contours

extracted by Canny detector from EDF image were com-

bined to refine the cytoplasm boundaries with morphologi-

cal reconstruction.

In this paper, we propose an automatic segmentation

method of multiple overlapping cervical cells in micro-

scopic images with superpixel partitioning and cell-wise

contour refinement. First, to determine the search area, cell

masses are detected by superpixel generation and adaptive

triangle thresholding. To define the cell placement, nuclei

of the cells are extracted by window-based local theshold-

ing and outlier removal. Finally, to delineate the bound-

aries of the overlapping cells, the cell cytoplasm is seg-

mented by superpixel partitioning and cell-wise contour

refinement. Experiments demonstrate our method shows

competitive results in two public challenge data sets, com-

pared to the state-of-the-art methods. Our major contribu-

tion is on superpixel partitioning and contour refinement in

cell cytoplasm segmentation, which enhances accuracy of

overlapping cell boundaries to the state-of-the-art-level per-

formance, in spite of simple algorithm.

2. Methods

An outline of our approach is summarized in Figures 2

and 3. Our method consists of three major steps: cell mass

detection, nuclei extraction, and cytoplasm segmentation.

64



(a) Input image (b) Filtered image (c) Superpixel edges (d) Mean image (e) Cell masses

Figure 4: Cell mass detection; (a) An input image, (b) filtered image, (c) superpixel edge map, (d) mean-value image for

superpixels, and (e) detected cell masses.

First, the cell masses including nuclei and cytoplasm are

detected by superpixel clustering and adaptive thresholding.

From cell masses, the nuclei for cells are extracted by local

thresholding and outlier removal. Finally, the cytoplasm of

overlapping cells are segmented by superpixel partitioning

and contour refinement.

2.1. Cell mass detection

In cell mass detection, entire cell masses including nu-

clei and cytoplasm of cells are extracted to use the cell mass

as region of interest (ROI). First, an input image is noise-

reduced by median filter, as shown in Fig. 4 (b), and over-

segmented to generate superpixels by SLIC [1] method, as

shown in Fig. 4 (c). Then, mean intensity values are com-

puted for each superpixel to generate the mean-value image,

as shown in Fig. 4 (d). Cell mass is then extracted by an

adaptive thresholding using triangle method [13], as shown

in Fig. 4 (e). The extracted cell mass is used as the search

area for nucleus extraction and cytoplasm segmentation.

2.2. Nucleus extraction

In nucleus extraction, the nuclei of cells are extracted to

locate individual cells in the cell mass. Since the cell nuclei

are usually darker than the cytoplasm, as shown in Fig. 1,

we extract nuclei by local thresholding [13]. In local thresh-

olding, the threshold T for each superpixel is determined as

T = µ(1+p exp(−qµ)+k(σ/s−1)), where µ, σ are mean

and standard deviation of local window intensities, respec-

tively, and p = 2, q = 10, k = 0.25, s = 1 are weighting

variables. The local window for each superpixel is defined

as a group of superpixels whose distances between the cen-

ters are less than d = 0.1× l where l is image width. With

the locally defined threshold T , the superpixels which mean

intensities are less than T , are classified as initial nucleus

candidates.

Initial nucleus candidates regularly consist of relatively

dark spots, however, include also non-nucleus outliers, as

shown in Fig. 5 (a). Thus, From the nucleus candidates, out-

lier removal is performed by (1) breaking superpixel clus-

(a) Initial nuclei (b) Final nuclei

Figure 5: Nucleus extraction; (a) Initial nucleus candidates

by local thresholding, and (b) finally extracted nuclei by

outlier removal.

ters, (2) rejecting tiny superpixels, and (3) rejecting nucleus

candidates with low circularity. First, clustered superpixels

as shown in Fig. 5 (a), are reduced by rejecting the brightest

superpixel iteratively. Since the nucleus often contains at

most two superpixels, a superpixel cluster containing more

than three superpixels can be considered to have outlier can-

didates in it. Superpixel clusters are extracted by connected

component labeling and for each cluster containing more

than three superpixels, a superpixel with the highest mean

intensity is rejected. The cluster extraction and superpixel

rejection are iteratively repeated until no clusters are ex-

tracted.

Second, the superpixel candidates with too small sizes

are rejected. In experiments, the superpixels with less than

30 pixels are rejected from the candidates. Finally, the can-

didates with low circularity are rejected since the nucleus

has circular shape. The circularity ρ of a candidate is com-

puted as ρ = 4πA/P 2 where A,P are the area and the

perimeter of a candidate region, respectively. ρ is known

to be 1 for perfect circle and much less than 1 for starfish

shape. In our approach, the candidate superpixels with

ρ < 0.5 are rejected. Throughout the outlier removal, fi-

nally extracted nuclei consist of most of cell nuclei without
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Figure 6: Cell-wise graph cuts for contour refinement in cytoplasm segmentation; Individual cells on the input image by

superpixel partitioning (top row), object (red) and background (blue) seed regions generated for cell-wise graph cuts (middle

row), and fine-segmented cell contours (bottom row.)

outlier regions as shown in Fig. 5 (b). The extracted nuclei

are used as cell indicators in cytoplasm segmentation.

2.3. Cytoplasm segmentation

In cytoplasm segmentation, the boundaries of overlap-

ping cells are determined by superpixel partitioning and

cell-wise contour refinement. In superpixel partitioning,

the cytoplasm of individual cells are roughly extracted by

labeling non-nucleus superpixels into the nearest nucleus,

as shown in Fig. 2 (d) and the top row of Fig. 6. These

distance-based labels of cytoplasm provide fine initial in-

formation of individual cells surrounding nuclei. However

they suffer from incorrect and noisy boundaries especially

in cell overlapping regions.

Boundaries of cytoplasm in cell overlapping regions are

then refined by cell-wise contour refinement. In contour

refinement, graph cut segmentation [2] is iteratively per-

formed for each cell individually, to refine the cell contour,

as shown in Fig. 6. For each cell, from the initial cell labels

extracted by superpixel partitioning, object and background

seed for graph cuts are determined by morphological op-

eration, as shown in the middle row in Fig. 6. In graph

cuts, only the pair-wise cost term in Boykov et al. [2] is

used for the cost function to focus on smoothness constraint.

Throughout the graph cuts, the contours of individual cells

are then refined so that appropriate boundaries of cells are

extracted in cell overlapping regions, as shown in the bot-

tom row of Fig. 6.

3. Results

We have tested our approach on data sets used in two re-

cent challenges held in ISBI 2014 1 and ISBI 2015 2. ISBI-

14 [6] consists of 945 synthetic and 16 real Pap smear slide

images, 135 synthetic and 8 real images used for training

and 810 synthetic and other 8 real images used for testing.

The synthetic images, as shown in top three rows in Fig. 7,

were synthetically generated from real Pap smear slides [6].

In evaluation, 810 synthetic images of 512 × 512 pixels

and their ground truth contours of cell nuclei and cytoplasm

were used. ISBI-15 consists of 17 real extended depth of

field (EDF) images of 1024× 1024 pixels, as shown in bot-

tom three rows in Fig. 7, from which 8 used for training

and 9 for testing. For each EDF image in ISBI-15, a set

of multi-focal images were additionally provided, but were

not used in our experiments. All images were annotated

with the ground truths of cell nuclei and cytoplasm.

Our segmentation results were summarized in Fig. 7 and

Table 1. In Fig. 7 (b) and (c), cell masses and nuclei were

accurately defined by triangle threholding and local thresh-

olding, respectively, in both ISBI-14 and ISBI-15 data sets.

In Fig. 7 (d), the initial cytoplasm segmented by superpixel

partitioning was well located around the nuclei of individual

cells, however cell overlapping regions were omitted and

noisy boundaries occurred. In Fig. 7 (e), the boundaries of

1http://cs.adelaide.edu.au/ carneiro/isbi14 challenge/index.html
2http://cs.adelaide.edu.au/ zhi/isbi15 challenge/index.html
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(a) Input images (b) Cell masses (c) Nuclei (d) Spx. partitions (e) Final cytoplasm (f) Ground truths

Figure 7: Examples of our nucleus and cytoplasm segmentation results; (a) Input images, (b) detected cell masses, (c)

extracted nuclei, (d) initial cytoplasm candidates by superpixel partitioning, (e) final cytoplasm segmentation, and (f) ground

truths.

cell overlapping regions were refined with the help of cell-

wise contour refinement, showing successful delineation of

overlapping cells. As a result, our method extracted accu-

rate cell cytoplasm similar to the ground truth contours, as

shown in Fig. 7 (f).

To validate our method, we evaluated our results by

quantitative measurements [6] including the Dice coeffi-

cients (DC), object-based false negative (FNo), pixel-based

true positive (TPp), and pixel-based false positive rates

(FPp) between our cytoplasm segmentation and ground

truths, on both ISBI-14 and ISBI-15 data sets. Evaluations

were performed on 810 synthetic images in ISBI-14 data set
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Table 1: Evaluation and comparison of our cytoplasm segmentation results with the state-of-the-art methods [13, 8, 5, 9, 11]

on ISBI-14 and ISBI-15 [6] challenge data sets.

data sets Methods DC FNo TPp FPp

ISBI-14 Ushizima et al. [13] 0.872± 0.082 0.267± 0.278 0.841± 0.130 0.002± 0.003

Nosrati et al. [8] 0.871± 0.075 0.111± 0.166 0.875± 0.086 0.004± 0.004

Lu et al. [5] 0.893± 0.082 0.316± 0.295 0.905± 0.096 0.004± 0.005

Spx. partitioning 0.862± 0.079 0.235± 0.243 0.822± 0.122 0.002± 0.002

Our approach 0.897± 0.075 0.137± 0.194 0.882± 0.097 0.002± 0.003

ISBI-15 Phoulady et al. [9] 0.831± 0.079 0.408± 0.163 0.927± 0.098 0.003± 0.002

Ramalho et al. [11] 0.856± 0.078 0.501± 0.180 0.899± 0.113 0.002± 0.001

Spx. partitioning 0.837± 0.081 0.546± 0.144 0.798± 0.134 0.001± 0.001

Our approach 0.879± 0.087 0.434± 0.168 0.877± 0.123 0.001± 0.001

and 9 real EDF images in ISBI-15 data set as the challenge

policy. In numerical evaluation, the average DC, TPp and

FPp were measured over the “good” cell segmentation [10]

which is a segmented region with DC> 0.7. The object-

based FNo was computed as a ratio of cells with DC≤ 0.7.

Table 1 summarizes the numerical evaluation of our seg-

mentation results and comparisons with those of state-of-

the-art methods [6, 13, 8, 9, 11]. Due to erroneous bound-

aries in cell overlapping regions, our initial cytoplasm seg-

mentation by superpixel partitioning, denoted as Spx. par-

titioning, shows relatively low performance with DC of

0.862 ± 0.079, FNo of 0.235 ± 0.243, TPp of 0.822 ±

0.122, and FPp of 0.002 ± 0.002 in ISBI-14, and DC of

0.837±0.081, FNo of 0.546±0.144, TPp of 0.798±0.134,

and FPp of 0.001 ± 0.001 in ISBI-15. However, with the

help of cell-wise contour refinement, our final segmenta-

tion shows fine performance with DC of 0.897 ± 0.075,

FNo of 0.137 ± 0.194, TPp of 0.882 ± 0.097, and FPp

of 0.002 ± 0.003 in ISBI-14, and DC of 0.879 ± 0.087,

FNo of 0.434 ± 0.168, TPp of 0.877 ± 0.123, and FPp of

0.001 ± 0.001 in ISBI-15. In DC, our method achieves the

best performance in both ISBI-14 and ISBI-15 data sets by

improving the top average scores by 0.4 %p and 2.3 %p in

ISBI-14 and ISBI-15, respectively. In other measurements

including FNo, TPp, and FPp, our method shows competi-

tive performance compared to the state-of-the-art methods.

4. Discussions

We proposed an automatic segmentation method of over-

lapping cervical cells in microscopic images. To overcome

the challenge of segmenting overlapping multiple cells, we

proposed superpixel partitioning and cell-wise contour re-

finement by graph cuts for cell cytoplasm segmentation. In

experiments, our method achieved the best performance in

DC metric, and competitive results in other metrics. In

ISBI-15 data set, our method showed competitive perfor-

(a) Superpixel partitioning (b) Contour refinement

Figure 8: Effects of superpixel partitioning and cell-wise

contour refinement in cytoplasm segmentation; (a) Initial

cytoplasm by superpixel partitioning, and (b) final cyto-

plasm by cell-wise contour refinement.
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mance even without using additional multi-focal images, in

which comparative methods [9, 11] have used them.

Further visual assessment of our cytoplasm segmenta-

tion is summarized in Fig. 8. Based on distance-based parti-

tioned cell cytoplasm, our cell-wise contour refinement with

graph cuts enhances cell boundaries especially on the cell-

overlapping regions. With the help of graph cuts, outlier cell

masses along image boundaries in the first and third rows in

Fig. 8 (a), were removed in refinement results. Our contour

refinement, however, has a limitation of delineating bound-

aries along nucleus, as shown in the bottom blue cell in first

row and bottom green cell in third row in Fig. 8. The reason

for this tendency is that the nucleus has the strongest bound-

ary with large contrast. Shape prior segmentation or nucleus

handling can be used to improve the cytoplasm contouring.

In quantitative evaluation, shown in Table 1, the limita-

tions of our method can be discussed. In FNo, our method

showed weaker performance than Nosrati et al. [8] in ISBI-

14 and Phoulady et al. [9] in ISBI-15. Furthermore, in TPp,

our method performed weaker than Lu et al. [5] in ISBI-14,

and Phoulady et al. [9] and Ramalho et al. [11] in ISBI-

15. It can be analyzed that (1) our method often extracts

false cells due to outlier nuclei detected in nucleus extrac-

tion, and (2) non-cytoplasm regions e.g. mucus, blood, and

inflammatory cells are included in the cytoplasm of our seg-

mentation results. For further improvement, it is required to

enhance the outlier removal in both nucleus detection and

cytoplasm segmentation.

5. Conclusion

In summary, we have proposed an automatic segmen-

tation method of overlapping cervical cells in microscopic

images. In cell mass detection, we extracted superpixels

from a microscopy and performed triangle thresholding to

select the cell masses. In nucleus extraction, we have lo-

cated the cells by indicating cell nuclei with local threshold-

ing and outlier removal. In cytoplasm segmentation, we ini-

tially segmented the cytoplasm with superpixel partitioning

by labeling superpixels into the cells with nearest nucleus.

Finally, the cell-wise contour refinement was performed by

cell-wise graph cuts to extract accurate cell boundaries with

overlap. In experiments, our method well detected over-

lapped boundaries of cervical cells in both public challenge

data sets, by showing competitive performances and accura-

cies compared to the state-of-the-art methods. Further im-

provement by enhancing nuclei extraction and incorporat-

ing multi-focal images, and extended analyses on experi-

mental data will be focused as our future works.
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