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Abstract

In this paper, we propose a straightforward and effec-

tive method for mitotic event detection in time-lapse phase

contrast microscopy image sequences of stem cell popu-

lations. Different from most of recent methods leveraging

temporal modeling to learn the latent dynamics within one

mitotic event, we mainly target on the data-driven spatio-

temporal visual feature learning for mitotic event represen-

tation to bypass the difficulties in both robust hand-crafted

feature designing and complicated temporal dynamic learn-

ing. Specially, we design the architecture of the convolu-

tional neural networks with 3D filters to extract the holis-

tic feature of the volumetric region where individual mitosis

event occurs. Then, the extracted features can be direct-

ly feeded into the off-the-shelf classifiers for model learning

or inference. Moreover, we prepare a novel and challenging

dataset for mitosis detection. The comparison experiments

demonstrate the superiority of the proposed method.

1. Introduction

Mitotic behavior analysis during stem cell proliferation

is an important indicator for cancer screening and assess-

ment, tissue engineering and so on. Previously, this work

could only be qualitatively performed with manual annota-

tion by biologists [17][2][21]. To realize the quantitative

analysis of high-throughput cell data, it is necessary to de-

velop sophisticated methods for automatic mitotic event i-

dentification and localization.

1.1. Background and Related Work

The state-of-the-art methods for mitotic event detection

in microscopy image sequences can be generally classified

into three following categories.

• Tracking-free approaches detect mitosis directly in

an image sequence without relying on cell trajec-

tories [13]. Liu et al. [16] regarded individual

mitotic cell as a special visual pattern. They ex-

tracted the area features (area/convex are), the shape

features (eccentricity/major axis length/minor axis

length/orientation), and the intensity features (max-

imum/average/minimum intensity) and trained the

SVM classifier for identification. They further lever-

aged the sparse coding method [12] and multi-task

learning method [18] for feature representation and

cell modeling. Parthipan et al. [20] proposed the de-

tection method, which can measure the deformation

of the embryonic tissue and then utilize the intensi-

ty changes of the salient regions to identify the loca-

tions of mitosis events. Olcay et al. [19] proposed a

computer-assisted system which can detect the mitotic

cells based on the likelihood functions estimated from

the samples of manually marked regions.

• Tracking-based approaches mainly aim to extract indi-

vidual cell trajectories. Then, the mitotic event can be

identified based on temporal progression of cell fea-

tures and/or the connectedness between the segmented

mother and daughter cells. Li et al. [10] proposed a

cell tracking method with the fusion of multiple filters

to deal with cell tracking and mitosis detection in a uni-

fied framework. Ryoma et al. [1] proposed a cell track-

ing method based on partial contour matching that is

capable of robustly tracking partially overlapping cell-

s, while maintaining the identity information of indi-

vidual cells throughout the process from their initial

contact to eventual separation. They further proposed

a cell tracking method based on global spatiotemporal

data association which considered hypotheses of ini-

tialization, termination, translation, division and false

positive in an integrated formulation. Sungeun et al.

[3] proposed an automated tracking method that can

facilitate the study and expansion of Hematopoietic

stem cells(HSCs) by monitoring the behavior of the

1 55



cells in vitro under serum-free media conditions using

phase contrast microscopy.

• Temporal modeling methods are the mainstream ap-

proaches since they can overcome the limitations

of both tracking-based and tracking-free approaches

[17][14]. This kind of methods typically consist of

candidate detection, feature extraction, and mitosis

classification as consecutive steps. Gallardo et al. [4]

adopted a hidden Markov model (HMM) to classify

candidates based on temporal patterns of cell shape

and appearance features. Liang et al. [11] utilized a

conditional random field (CRF) model [9] to identify

cell cycle phases. This method can effectively han-

dle two challenges, including the small size of training

samples and the datasets obtained under different con-

ditions. Zhou et al. [23] used Markov model to pro-

posed an automated quantitative analysis system that

can be used to segment, track, and quantize cell cy-

cle behaviors. Liu et al. [15] developed the chain-

structured hidden-state conditional random fields mod-

el for mitosis sequence classification by learning the

latent states and the transition between adjacent states

within one mitosis progression. Seungil et al. [6]

proposed the even-detection conditional random fields

model which can not only determine whether a mitot-

ic event occurs, but also provide the time at which the

mitosis is completed and daughter cells are born. Most

recently, Liu et al. [17] designed a semi-Markov model

(SMM) to model four biological states within one mi-

totic event and proposed the max-margin theory-based

method for model learning. This method is the first one

that can simultaneously identify mitosis events and lo-

calize four main stages within cell cycle.

1.2. Our Approach

Although the recent novel methods advance in the way

of temporal modeling, which is independent on the accurate

localization and trajectory extraction of cells and has show

superiority to the other two methods, they still meet a seri-

ous problem whether the hand-crafted visual features (such

as HoG, SIFT, GIST [15]) can really be implemented for

temporal modeling by the proposed models (such as HMM,

CRF, HCRF, EDCRF, SMM). These features are subjective-

ly designed for object detection, salient point detection and

description, scene classification and so on but not specif-

ically designed for cells/mitotic cells, which are non-rigid

objects with drastic and random shape variation. Therefore,

it is impossible to discover whether the feature sequence

representation of one mitotic event lies in a manifold space

which exactly fits the biological state space of the mitotic

event. Consequently, we argue that it is essential to devel-

op the data-driven feature learning method for mitotic event

representation. Particularly, we hope that the designed fea-

ture can be directly utilized together with any off-the-shelf

and practical classifier for mitotic event modeling and in-

ference to avoid the complicated temporal state discovery

and state transition modeling. Inspired by the deep learning

breakthroughs in the image domain where rapid progress

has been made in the past few years, we propose the 3D con-

volutional neural networks (3D CNN)-based method to ex-

tract the holistic feature of the volumetric region where in-

dividual mitosis event occurs. Although various pre-trained

convolutional network models are made available for ex-

tracting image features, these models working on 2D im-

ages can not be directly utilized for mitotic event since it is

a dynamic progression with obvious appearance evolution

and motion characteristic. In this paper we elaborate the

architecture of 3D CNN for spatio-temporal feature extrac-

tion. Especially, we aim to discover the structure of spatio-

temporal filter and the pooling strategy to learn a hierarchy

of increasingly complex features for mitosis event. We em-

pirically show that the 3D CNN features with either a sim-

ple linear SVM classifier or the softmax layer widely used

in CNN can obtain significantly better performances against

the hand-crafted visual features [2]. Although 3D CNN has

been designed several years ago [7][22], to the best of our

knowledge, this paper is the first work to explore its appli-

cation for mitosis event detection. Furthermore, we prepare

a new mitosis dataset in hopes that this will inspire other

researchers to tackle this challenging task. The comparison

experiments demonstrated its superiority for this challeng-

ing task.

The rest of this paper is structured as follows. The pro-

posed method is detailed in Section 2. The dataset, the ex-

perimental method and results will be shown in Section 3.

At last, we conclude the paper in Section 4.

2. Methodology

In this section, we will explain in detail the basic opera-

tions of 3D CNN, including the architecture of the network

and the parameters setting. The extracted features will be

feeded into the off-the-shelf classifier for modeling and pre-

diction.

2.1. Feature Learning via 3D CNN

3D CNN is leveraged to extract a hierarchy of increas-

ingly complex features for the volumetric regions where

mitotic events occur. Compared to 2D CNN, 3D CNN has

the ability to model temporal information better owing to

3D convolution and 3D pooling operations. The convolu-

tion and pooling layers of 3D CNN fully consider spatial

and temporal information of image sequence while 2D C-

NN can not do it. Figure 1 shows the architecture of 3D

CNN.

We first introduce the definitions of several variables.

One image sequence, which corresponds to individual mi-

56



Conv1

64
Pool1

Conv2

128
Pool2

Conv3

256
Pool3

Conv4

256
Pool4

Conv5

256

Fc6

2048
Pool5

Fc7

2048

Figure 1. The architecture of 3D CNN. The designed 3D CNN has 5 convolution, 5 max-pooling, and 2 fully connected layers. All 3D

convolution kernels are 3 × 3 × 3 with stride 1 in both spatial and temporal dimensions. The pooling layers are denoted from pool1 to

pool5. All pooling kernels are 2× 2× 2. Each fully connected layer has 2048 output units.
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Figure 2. Mitosis samples from the C2C12 dataset.

totic event, is represented as l×h×w, where l is the number

of frames, h and w are the height and width of each frame,

respectively. The 3D convolution and pooling kernel sizes

are represented by d× k× k, where d is the temporal depth

of one kernel and k is the spatial size of one kernel. When

k = 1, it means that 3D CNN is identical to 2D CNN.

The networks are set up to take the image sequence of

individual mitotic candidate as inputs and predict the label

(mitosis or non-mitosis). The networks have 5 convolution

layers and 5 pooling layers (each convolution layer is im-

mediately followed by a pooling layer), 2 fully-connected

layers. The output of the final fully-connected layer is ex-

tracted as the final feature representation to represent each

mitosis candidate. The number of filters for 5 convolution

layers from 1 to 5 are 64, 128, 256, 256, 256, respective-

ly. All convolution kernels have a size of d, which is the

kernel temporal depth1. All of these convolution layers are

applied with appropriate padding (both spatial and tempo-

ral) and stride 1, thus there is no change in term of size from

the input to the output of these convolution layers. All pool-

ing layers are Max pooling2 with kernel size 2× 2× 2 and

stride 1 which means the size of output signal is reduced

by a factor of 8 compared with the input signal. Finally, t-

wo fully connected layers have 2048 outputs. We train the

networks from scratch using mini-batches of 30 clips, with

initial learning rate of 0.003. The learning rate is divided

by 10 after every 4 epochs. The training is stopped after 16

epochs.

1In Section 3.2, we will tune d to search the best parameter to represent

the temporal dynamics within one mitosis event
2The strategy of pooling will be discussed in Section 3.4

2.2. Mitosis Modeling

One important goal of this work is that the extracted

deep features for mitosis events can be directly feeded into

the off-the-shelf and practical classifiers for event model-

ing without specific graph structure designing as did for the

temporal modeling methods [6][5]. In our work, we ap-

plied the classic SVM classifier with the linear kernel and

the softmax layer widely used in CNN for mitosis modeling

and prediction. We will directly compare the performances

of the proposed method against the SVM classifiers trained

with other popular visual features.

3. Experiment

3.1. Dataset

Eight phase contrast image sequences of C2C12 my-

oblastic stem cells populations were acquired, each con-

taining 1013 images. C2C12 myoblastic stem cells (ATTC,

Manassas, VA) have the capacity to differentiate into os-

teoblasts and myocytes and were grown in DMEM, 10%

bovine serum (Invitrogen, Carlsbad, CA) and 1% penicillin-

streptomycin (PS; Invitrogen, Carlsbad, CA). All cells were

kept at 37 C, 5% CO in a humidified incubator. Phase con-

trast images of growing stem cells were acquired every 5

min using a Zeiss Axiovert T135V microscope (Carl Zeis-

s Microimaging, Thornwood, NY). The microscope is e-

quipped with a phase contrast objective (5X, NA 0.15), a

custom-stage incubator, and the InVitro software (Medi-

a Cybernetics Inc., Bethesda, MD). Every image contains

1392× 1040 pixels with a resolution of 1.3 µm/pixel.

This dataset was prepared by the CMU cell image anal-

ysis group for cell tracking [8]. Since there is lack of large-

scale dataset to evaluate the algorithms for mitotic event de-

57



# Sequence F0002 F0005 F0006 F0007

# Mitosis 501 304 225 320

# Sequence F0008 F0014 F0015 F0016

# Mitosis 329 398 222 166

Table 1. Statistic of mitotic events in each sequences

tection, we manually annotated the mitotic events on these

C2C12 image sequences. For each mitotic event, the cen-

ter of the boundary between two daughter cells was marked

when the boundary is clearly observed. The numbers of

annotated mitotic events in individual sequences are shown

in Table 1. Some mitosis events are shown in Figure 2.

This dataset is much more challenging than the previous

C3H10T1/2 dataset [15][17] since: 1) C2C12 myoblasts

were cultured to a much higher level of confluence as shown

in Figure 7; 2) there exist much more mitosis events in this

dataset comparing against the C3H10T1/2 dataset only con-

tains 41-128 mitotic events in the five sequences [17].

In our experiment, we utilized the F0002 sequence,

which contains the most mitotic events, as the training data

and treated all the others as the test data. We extracted the

mitotic samples (positive samples) by centering on the an-

notated locations and extracting a 23× 50× 50 volumetric

regions. Consequently, the dimension of individual input

candidate is 23× 50× 50. 1024 negative samples are gen-

erated randomly with the same spatial and temporal scales

in the F0002 sequence.

3.2. Varying kernel temporal depth

The main contribution of this work is that 3D CNN is

applied to explicitly extract temporal features of each mi-

tosis in the data-driven manner. Thus, the goal of this sec-

tion is to explore how to aggregate temporal information

through the deep networks. In order to handle this problem,

we vary kernel temporal depth d of the convolution layers

while keeping all other common settings fixed. Here, we fix

the kernel spatial size with k = 3 and fix the kernel size of

pooling with 2× 2× 2.

In the experiment, we evaluated two types of network-

s: 1) homogeneous temporal depth: all convolution layers

have the same kernel temporal depth; 2) varying temporal

depth: kernel temporal depth is changing across the layers

as did in [22]. For the first setting, we experiment with 4

networks and the kernel temporal depth, d, equal to 1, 2,

3, 4. These networks are terms as depth-d, where d is their

temporal depth. Note that depth-1 has the same architecture

with 2D CNN. For the varying temporal depth setting, we

evaluated two networks with temporal depth, increasing: 2-

2-3-3-5 and decreasing: 5-3-3-2-2 from the first to the fifth

convolution layer, respectively. The classic SVM is utilized

model learning and inference. In this study, we randomly

selected the positive and negative samples from F0002 for
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Figure 3. Tuning kernel temporal depth with 3 × 3 spatial kernel

size.

model learning and the mitotic samples from F0008 for test.

The corresponding experimental results are shown in Figure

3. Figure 3(a) shows the results of 3D CNN with homoge-

neous temporal depth and Figure 3(b) shows the results of

3D CNN with varying kernel temporal depth.

From these experimental results, we can find that depth-

3 has the best performance among other networks. As ex-

pected, depth-1 (2D CNN) has the worst results since it

is lack of temporal information for feature learning. Com-

pared to the varying temporal depth nets, depth-3 in the ho-

mogenous manner can consistently outperform the others.

In order to further demonstrate this conclusion, we change

the spatial size (4×4) to repeat the previous work. The cor-

responding experimental results are shown in Figure 4. Fig-

ure 4(a) shows the results of networks with homogeneous

temporal depth and Figure 4(b) shows the results of net-

works with varying kernel temporal depth. The same trends

can be observed. These comparison suggests 3 × 3 × 3 is
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Figure 4. Tuning kernel temporal depth with 4 × 4 spatial kernel

size.

the best kernel for 3D CNN-based mitotic event detection

on this dataset.

3.3. Varying kernel spatial size

Based on the aforementioned experiments, we have

found that 3D CNN with the kernel temporal depth d = 3

has the best performance. In this section, we vary the s-

patial size of network to find the best kernel spatial size k.

Specifically, we tuned the kernel spatial size of k with 2 and

3. SVM is utilized for classification. We utilized the same

training and test datasets in Section 3.2. From Figure 5, it

is obvious that the kernel with the spatial size k = 3 can

achieve the best performance.

3.4. Varying pooling strategy

The previous experiments discovered that the homoge-

neous setting with the 3D convolution kernels, 3 × 3 × 3,

is the best configuration of 3D CNN for mitotic event de-
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Figure 5. Tuning kernel spatial size with the temporal kernel size

d = 3.

tection on this dataset. On the other hand, the pooling s-

trategy is also one important element for spatio-temporal

feature learning. In this experiment, we empirically com-

pared two widely used pooling kernel sizes, 2 × 2 × 2 and

3 × 3 × 3. Meanwhile, we applied two common pooling

styles, including Max and Average, to find the best pooling

strategy. SVM was selected as the classifier and the same

training and test datasets were utilized as Section 3.2. The

experimental results are shown in Figure 6. From Figure 6,

it is obvious that the pooling kernel, 2 × 2 × 2, with Max

style can outperform the others.

3.5. Quantitative comparison with different visual
features

Based on the previous experiments, we discovered that

the homogeneous setting with the 3D convolution kernel

of 3 × 3 × 3 and the pooling kernel size with 2 × 2 × 2

together with the pooling style of Max is the best configu-

ration for spatio-temporal feature learning for this task. In

order to demonstrate the superiority of the extracted 3D C-

NN features, we compared its performances with the SVM

classifier and the softmax layer against several representa-

tive visual features, including Sift, Gist, and HoG. Since

Sift, Gist, and HoG are designed for the description of the

2D region and can not directly represent temporal informa-

tion, we leveraged the popular bag-of-visual-word strate-

gy to convey the spatio-temporal information. Specifically,

each mitotic candidate sequence is considered as a bag of

N images, each of which corresponds to one frame in the

sequence. We trained a dictionary with 500-D codewords.

Then each sequence can be represented by a 500-D visu-

al features which implicitly convey both spatial and tem-

poral characteristics. We also utilized the SVM classifier

for model learning. In our experiment, F0002 was utilized

for model learning and all the others were implemented
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Figure 6. 3D CNN with different kernels size and types of pooling.

for test. The accuracy (#Turepositive/#Groundtruth)

was computed for evaluation. The experimental results are

shown in Table.2.

From Table 2, it is obvious that the performances with

3D CNN features can consistently outperform HoG, Gist,

and Sift in terms of Accuracy. Even with the simple soft-

max classifier, 3D CNN features can still work better than

the others. A students paired t-test on the Accuracies

shows that the improvements of P-value are statistically sig-

nificant at the significance level 0.01 except the case of

”3D CNN+Softmax versus HoG+SVM” (3D CNN+SVM

versus HoG+SVM, Gist+SVM, Sift+SVM: 0.0105 0.0033

0.0017; 3D CNN+Softmax versus HoG+SVM, Gist+SVM,

Sift+SVM: 0.066 0.0055 0.0032). It denotes that 3D CNN

can automatically mine the spatial and temporal character-

istics with the preset architecture in the data-driven man-

ner. This advantage can especially fit the task of mitosis

detection since it is difficult to design a reasonable features

for the mitotic cell, which is non-rigid object with random

shape variance but without obvious contour, texture and in-

tensity information.

3.6. Qualitative comparison and discussion

To further show that 3D CNN feature is discrimina-

tive for spatio-temporal representation, we design a more

straightforward comparison for qualitative analysis. We

selected an image segment from F0005 with 23 frames

(#frame : 905−927, image resolution: 1392×1040) and

high cell crowd density as shown in Figure 7. To test the

generalization ability of individual classifiers trained with

different features and also bypass the difficulty in mitot-

ic candidate extraction [17], we implemented the sliding

window strategy (step = 10 pixels) to generate all possi-

ble 23 × 50 × 50 volumes for classification. If the output

score of the classifier is above 0.5, the candidate is classi-

fied as mitosis. The detection results by 3D CNN+SVM,

HoG+SVM, and Gist+SVM are shown in Figure. 7.

From Figure 7(a,c,d), it is obvious to see that 3D CN-

N features are more robust and discriminative to distinguish

each candidate region as mitosis or not by leveraging both s-

patial and temporal context. Therefore, the classifier trained

with 3D CNN features only generated 4 false positive sam-

ples and 4 false negative samples. Comparatively, the clas-

sifiers trained with HoG and Gist respectively generated 9

and 5 false negative samples and too many false positive

samples. Figure 7(b) shows the TP/FP/FN samples. The TP

sample contains the spatio-temporal characteristics of mi-

tosis and can be correctly classified. The FP sample shows

a quite similar spatio-temporal appearance due to the irreg-

ular variation and consequently was falsely considered as

a mitotic event. Due to the high confluence, two mitotic

events occur near to each other. Consequently, both can-

didate sequences (the FN samples) contain the visual inter-

ference from each other and were falsely regarded as non-

mitosis.

4. Conclusion and Future Work

In this work, we aim to address the problem of mitosis

event detection based on the spatiotemporal features learned

by 3D CNN. We conducted a systematic study to find the

optimal temporal kernel length, the optimal spatial kernel

size and the optimal pooling strategy for 3D CNN. We ex-

perimentally demonstrated that 3D CNN can outperform

the 2D CNN features and the popular hand-crafted features

for visual representation.

Our future work will focus on the direct comparison

between the 3D CNN-based method and the temporal

modeling methods to test whether the proposed method

can explicitly outperform the state-of-the-art performances.

Moreover, we plan to integrate both 3D CNN for spatio-

temporal feature learning and LSTM for temporal context

learning together to tackle this task.
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Sequence# HoG+SVM Gist+SVM Sift+SVM 3D CNN+Softmax 3D CNN+SVM

F0005 75.5 68.5 65.7 76.4 79.4

F0006 73.1 70.6 71.1 73.6 75.5

F0007 72.0 70.7 66.9 74.8 77.7

F0008 72.6 69.8 50.2 74.6 75.7

F0014 73.7 71.6 61.8 72.9 73.8

F0015 74.7 68.7 62.2 78.7 84.7

F0016 74.3 71.0 69.3 82.6 82.6

Average 73.7 70.1 63.9 76.3 78.5

Table 2. Performance comparison with different features (%).

3D CNN

(a)

4 TP

1 FN

2 FN

3 FP

(b)

Gist

(c)

HoG

(d)

Figure 7. Detection results by different methods (Green: detected region; Red: groundtruth; TP: true positive; FP: false positive; TN: true

negative; FN: false negative).
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