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Abstract

Neuron segmentation in two-photon microscopy images

is a critical step to investigate neural network activities in

vivo. However, it still remains as a challenging problem

due to the image qualities, which largely results from the

non-linear imaging mechanism and 3D imaging diffusion.

To address these issues, we proposed a novel framework

by incorporating the convolutional neural network (CNN)

with a semi-supervised regularization term, which reduces

the human efforts in labeling without sacrificing the perfor-

mance. Specifically, we generate a putative label for each

unlabeled sample regularized with a graph-smooth term,

which are used as if they were true labels. A CNN model is

therefore trained in a supervised fashion with labeled and

unlabeled data simultaneously, which is used to detect neu-

ron regions in 2D images. Afterwards, neuron segmenta-

tion in a 3D volume is conducted by associating the cor-

responding neuron regions in each image. Experiments on

real-world datasets demonstrate that our approach outper-

forms neuron segmentation based on the graph-based semi-

supervised learning, the supervised CNN and variants of

the semi-supervised CNN.

1. Introduction

The information coding and decoding in brain involves

a large number of neurons. Thus, imaging activities in neu-

ronal populations is essential in understanding the mecha-

nisms of nervous system, since it allows to record activi-

ties of a neuronal soma and characterize the dynamic brain

properties. Recently, two-photon microscopy emerges as a
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powerful and attractive technique to interrogate local neu-

ral circuits [22] by using nonlinear light-matter interactions

of multiple photons [8]. It enables neuroscientists to mea-

sure non-invasive neural network dynamics in live animals

with spatial resolution sufficient to discern individual neu-

rons, dendrites, and synapses [12]. Among the tasks of two-

photon microscopy image analysis, neuron segmentation is

a critical step in that it lays a foundation for the subsequen-

tial neuron activity observation. Besides, it is imperative

to develop automatic neuron segmentation algorithms with

dramatically increasing number of neurons (up to 105 to 106

everyday).

Currently, neuron segmentation in two-photon mi-

croscopy images remains as a challenging problem because

the scattering of the laser and nonlinear imaging mecha-

nism make it difficult to produce sharp images when a large

magnification is needed. Besides, neuron segmentation is

also challenged by the issue of 3D segmentation in the two-

photon microscope volumes because of the diffusion when

the lens moves up and down, as a sample image shown in

Fig. 1.

Image on x-y plane

Image on x-z plane

Figure 1: A sample of two-photon microscopy image. The images are

obtained in vivo from V1 in 4-6 month old mice’s cortex [27]. A mode-

locked titanium/sapphire laser generated two-photon excitation at 960 nm

whose power is maintained at 1.58W, and three photomultiplier collected

emitted light in the range of 380 to 480, 500 to 540, and 560 to 650 nm.

Power reaching the mouse brain ranges from 7.8-12.5 mW.
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Figure 2: The work-flow of our algorithm, which implements neuron segmentation in 3D volume by associating the neuron regions image-by-image. In

particular, we annotate a few neurons in a few images (neurons in the red block), and generate putative labels for the unlabeled ones (neurons in the yellow

block). Both the labeled and unlabeled samples in the original images are fed to the semi-supervised CNN, and detect the neuron regions in each 2D image.

Afterwards, we associate the corresponding neuron regions image-by-image with a global association method. High quality neuron segmentation is realized

by separate the adjacent neurons with a shape prior.

1.1. Related Work

There have witnessed a lot of work during the past years

in cell segmentation [19] [10]. Active contour [16] [7] and

level sets [3] [20] are the most popular algorithms in cell

segmentation, but both of them are sensitive to the initial-

ization because of the non-convex object function of the

contour energy function. Recently, cell segmentation is

implemented with a classifier trained to detect cell bound-

aries, which is applicable to different modalities and cell

types [29]. To address the particular imaging mechanism of

phase contrast microscope, Yin et al. [28] and Su et al. [24]

studied the optical properties of phase contrast microscope,

and developed an imaging models to approximate the image

formation process of microscopy image [26]. Cell segmen-

tation in phase contrast microscopy images is then imple-

mented with a semi-supervised algorithm [25], which can

be a prior of cell tracking by associating the correspond-

ing cells in time lapsing image sequences [11]. Meijering

makes a comprehensive review about evolution of cell seg-

mentation during the past 50 years in [18].

With the rapid development of two-photon microscope,

a lots of work has been made in neural cell segmentation,

but it is still challenging in allocating the center of neural

cells in 3D volume. In [9], cell boundaries are detected by

incorporating the prior knowledge within a 2D image, and

cell segmentation in a 3D volume is realized by inferring

the posterior probabilities of the cell regions. To the best of

the authors’ knowledge, neuron segmentation in 3D volume

is still challenging due to the properties of the images, e.g.,

neurons under the microscopy often lack distinctive textures

and are with low signal-to-noise ratio.

Most of the aforementioned algorithms fall into the area

of segmentation with hand-crafted features, which trans-

forms the raw data into a suitable internal representation

or feature vector. Recently, deep learning has dramatically

improved the state-of-the-art in image recognition, speech

recognition and other problems [5], since it allows compu-

tational models that learn representations of data automat-

ically with multiple levels of abstraction [15]. In this case,

it does not require the considerable amount of engineering

skills and domain expertise as the conventional options, and

yields high quality results. Ever since the ImageNet com-

petition in 2012 [21], the deep convolutional neural net-

work(CNN) trained with millions of labeled natural images

using supervised learning algorithms have achieved spec-

tacular results in the detection, segmentation and recogni-

tion of objects and regions in images [13]. The success

largely came from the abundant amount of data and efficient

use of GPUs.

With the large volumes of data captured from modern bi-

ological experiments, it provides good probabilities to im-

prove the performance of neuron segmentation with a deep

architecture. However, learning a deep CNN is usually as-

sociated with the estimation of large number of parameters,

which requires a large number of labeled image samples.

This bottleneck currently prevents the application of CNNs

to many biological problems due to the limited amount of

labeled training data.

1.2. Our Proposal

In this paper, we address the problem of neuron segmen-

tation in a 3D volume, which is obtained by stacking im-

ages corresponding to the vivo scan along the z-axis. In this

paper, the neuron segmentation in a 3D volume is imple-

mented by associating the corresponding neuron regions of

the same neurons in successive 2D images. The work-flow

is shown in Fig. 2.

Specifically, to address the complexity in nonlinear

imaging mechanism of two-photon microscopy images,

we apply the convolutional neural network (CNN) to ex-

tract the features with multiple level abstraction. With the

convolutional layer, the CNN extracts features in the vi-

sual field with convolutional kernels optimized by back-

propagation [13].

To reduce the human efforts in annotation, we propose

to incorporate a semi-supervised regularization with the

CNN models, such that both the labeled and unlabeled data
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are used to train the network simultaneously. Specifically,

we generate a putative label for each unlabeled sample,

which are used as if they were true. In this case, the semi-

supervised CNN can be trained as a general CNN. Human

efforts in image annotation are reduced by not sacrificing

the performance.

Besides, to address neuron segmentation in 3D volume,

we propose to associate the neuron regions image-by-image

with a global association method [30]. Neuron regions as-

sociation is formulated in terms of finding the global maxi-

mum of a convex objective function, then solved efficiently

through a linear programming method[2]. Compared with

the greedy method which simply associates the closest neu-

rons in contiguous images together [11], it avoids the erro-

neous associations by connecting one neuron region to more

than one neuron regions in neighboring images.

In summary, our proposed algorithm is capable to learn a

good representation of the microscopy images with the deep

CNN, and reduces human efforts in annotation by using the

abundant unlabeled samples in a semi-supervised paradigm.

High quality neuron segmentation in a 3D volume is real-

ized by associating the neuron regions in 2D images.

2. Neuron Region Detection based on SSL-

CNN

In this section, we present how to detect neuron regions

in two-photon microscope images with a CNN embedded a

semi-supervised regularization term.

In order to reduce the spatial redundancy, we first par-

tition a two-photon microscopy image into numerous over-

segmented superpixels [1], which are fed to a deep CNN

to learn a compact and meaningful representation for each

superpixel. Neuron region detection is implemented by rec-

ognizing the identity of each superpixel based on the repre-

sentation.

We first present the general framework of semi-

supervised CNN in section 2.1, and then elaborate on the

details of the semi-supervised graph-smooth regularization

in section 2.2; finally, the problem is solved in a two-step

optimization algorithm in section 2.3.

2.1. SSLCNN

The convolutional neural network is a particular type of

feed-forward artificial neural network with convolutional

layers, which is inspired by the biological process [17].

Units in a convolutional layer are organized in feature maps,

which only receives message from the neighborhood of the

nodes in the previous layers rather than all of the nodes.

The structure enables CNN to extract local features from the

images. Besides, the parameters of each node in the same

convolutional layer are shared to reduce the number of pa-

rameters in the convolutional neural network, since the local

statistics of images are often highly correlated. Parameters

in the deep convolutional neural network can be trained with

the back propagation algorithm [13].

Mathematically, we define the set of annotated superpix-

els as L , {(xl,yl)}
Nl

l=1
with Nl being the number of an-

notated superpixels; xl is the image of the lth sample which

is fed to the CNN; the indicator yl ∈ {C1, · · · , CL} cor-

responds to the identity of the lth sample. The set of un-

labeled superpixels is defined as U , {xu}
Nu

u=1 with Nu

being the number of unlabeled superpixels; and xu is the

corresponding image of an unlabeled superpixel. Thereby,

the detection of neuron regions can be conducted by statis-

tically inferring the identities of the unlabeled superpixels.

Softmax loss is one of the most commonly used loss

function for CNN as

L(Xl,Yl) = −
1

Nl

Nl
∑

l=1

(

L
∑

c=1

I(yl = Cj) log(fc(xl))), (1)

where Xl = {xl}
Nl

l=1
denotes the set of the labeled su-

perpixels and Yl denotes labels of them. I(·) is an indica-

tor function and fc(xl) is the output of the softmax layer

in CNN which denotes the probability of xl belongs to the

c-th category. In order to take the unlabeled samples into

consideration, we introduce a regularization term to use the

information of unlabeled data as

L̃(Xl,Yl,Xu) = L(Xl,Yl) + γR(Xl,Yl,Xu). (2)

The R(Xl,Yl,Xu) is the regularization term, in which

Xu denotes the set of unlabeled samples U and γ is the bal-

anced parameter. The structure of SSL-CNN is illustrated in

Fig. 3, which takes both the labeled data and the unlabeled

data as the input. We collect the positive samples (neuron

regions) with the image patches where the corresponding

superpixel lies in the center of it; the negative samples are

acquired by simply drawing patches from the background

or introducing center offset for the positive samples. Note

that we ignore the pooling layer in our CNN because of the

low-resolution of a specific neuron (usually no more than

150 pixels).

2.2. Semisupervised Graphsmooth Regularization

In general, the regularization term encourages the in-

stances with similar features to share the same label. In

this paper, we use the graph smoothness [4] as the semi-

supervised regularization on both the labeled and unlabeled

samples, which is appealing due to its close form optimal

solution. In this case, information carried by the unlabeled

samples is incorporated and offers advantages to identify

the corresponding labels.
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Figure 3: The structure of CNN for neuron region detection. The samples

in red and green blocks are corresponding to the positive (neuron regions)

and negative (background regions) samples, respectively. The blue arrows

stand for the convolution operation, the pink arrow stands for the inner

product and the yellow arrow stands for the softmax operation. We train the

CNN network with both the labeled (with markers) and unlabeled (without

markers) samples simultaneously.

In this paper, we construct an ǫ− nearest neighboring

graph to characterize the pairwise similarity between sam-

ples, with its edge being the RBF kernel function as

wij =

{

exp(−‖xi − xj‖
2), ‖xi − xj‖

2 < ǫ

0, otherwise
. (3)

By collecting all wij together, the adjacency matrix of

the weight graph is denoted as W = [wij ], which is an N×
N nonnegative and symmetric matrix with N = Nl + Nu

being the number of total superpixels. Afterwards, we can

calculate the Laplacian matrix L that corresponds to W,

i.e., L = D−W with D being the diagonal degree matrix.

Hereby, the regularization term in Eq. (2) can be formu-

lated as

R(Xl,Yl,Xu) =

N
∑

i,j=1

wij ||(yi − yj)||
2
2

= tr(fTLf), (4)

where f = [yi]
N with yi being the labels of samples; and

yi = [f1(xi), · · · , fL(xi)] if xi is corresponding to the un-

labeled sample.

By substituting the regularization term in Eq. (4) as the

regularization term to Eq. (2), the softmax loss of SSL-CNN

is

L̃(Xl,Yl,Xu) = L(Xl,Yl) + γtr(fTLf), (5)

where f maps the input to the label space, which is related

to the CNN parameters; L(Xl,Yl) is the standard loss func-

tion in Eq. (1).

2.3. Optimization Algorithm

Obviously, the loss function of SSL-CNN in Eq. (5)

achieves its minimum when both of its terms, i.e., the stan-

dard loss of CNN and the regularization term, are the min-

imized simultaneously. The minimum of the first term is

achieved when the CNN completely fits the labeled data

where f(xi) = yi for each xi ∈ Xl. The second term

is minimized when the labeling is consistent with the ge-

ometry of the data induced by the graph structure, i.e., if

two samples are close in the feature space, then the corre-

sponding labels should also be consistent.

In this case, we propose a two-step optimization algo-

rithm to solve the problem, i.e., we obtain putative labels

for the samples in U by minimizing the graph-smooth reg-

ularization, and then solve the SSL-CNN problem in a su-

pervised fashion as if the putative labels are true labels.

In order to minimize the regularization term, we propose

to propagate the human annotation to the unlabeled samples

via label propagation. To this end, we rearrange the Lapla-

cian matrix in (4) by splitting it into labeled and unlabeled

sub-matrices as

L←

[

Lll Llu

Lul Luu

]

, (6)

where Lll is the Laplacian sub-matrix that characterizes the

relationship between labeled superpixels; Luu denotes the

sub-matrix corresponding to the unlabeled superpixels; Llu

is a sub-matrix which interrelates the labeled and unlabeled

superpixels; and Lul = LT
lu.

Hence, the minimum of the graph-smooth regularization

is achieved by

min tr([YT
l ,Y

T
u ]

[

Lll Llu

Lul Luu

] [

Yl

Yu

]

), (7)

where Yl and Yu are indicator matrices corresponding to

the labeled and unlabeled atoms, respectively. Specifically,

the indicator matrices Yl and Yu are constructed by stack-

ing up the binary indicators {yn}
N
n=1 in rows correspond-

ingly. The problem can be simplified to

Y∗

u = argmin
Yu

tr(YT
uLuuYu) + 2tr(YT

uLulYl). (8)

Based on the work in [31], label propagation can be

solved by Gaussian fields harmonic Functions (GFHF) as

Y∗

u = −L−1
uuLulYl, (9)

where −L−1
uuLul is regarded as a label propagation matrix

on the graph; and the regularization term is minimized when

the labels of the samples in U are equal to Y∗

u, which serves

as putative labels in this paper.

Ideally, the regularization term would be minimized if

the output of CNN fits the putative labels Y∗

u, and therefore

we reformulate the regularization minimization problem as

min ||f(Xu)−Y∗

u||, with Y∗

u = −L−1
uuLulYl. (10)
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Hence, the optimization problem of then loss function in

Eq. (5) can be reformulated as

minf −
1

Nl

∑Nl

l=1

∑L

j=1
I(yl = Cj) log(fj(xl))

+λ||f(Xu)−Y∗

u||. (11)

In this paper, we treat the putative labels as if they were

true labels. A CNN model is therefore trained in a super-

vised fashion with labeled and unlabeled data simultane-

ously by rewritten the objective loss in Eq. (5) with a soft-

max objective as

minf −
1

Nl

∑Nl

l=1

∑L

j=1
I(yl = Cj) log(fj(xl))

− λ
Nu

∑Nu

l=1

∑L

j=1
I(y∗

u = Cj) log(fj(xu)). (12)

In this case, the problem can be solved with the back prop-

agation method in a supervised fashion. The two-step opti-

mization algorithm is described in Algorithm. 1.

Algorithm 1 Two-Step Optimization Algorithm

Require: Data points {xi}
N
i=1, Label Yl, Mini-batch size

n

Calculate the Laplacian matrix L as

L = D−W,

with W and D being the adjacency matrix and the diag-

onal degree matrix, respectively.

Calculate the putative labels Y∗

u using Eq. (9) as

Y∗

u = −L−1
uuLulYl.

Reformulate the loss function as

minf −
1

Nl

∑Nl

l=1

∑L

j=1
I(yl = Cj) log(fj(xl))

− λ
Nu

∑Nu

l=1

∑L

j=1
I(y∗

u = Cj) log(fj(xu)).

repeat

Sample a mini-batch from X̃ = {xi}
n

Feed forward the CNN and calculate the loss based on

Ỹl for labeled data and Ỹ∗

u for unlabeled data in the

mini-batch

Back propagate the loss and update the weights of the

CNN

until The weights of CNN converge

3. Neuron Segmentation in 3D Volume

In this section, we implement neuron segmentation in 3D

volume by associating the neuron region image-by-image.

To address this problem, we propose a global association

method, inspired by Zhang et al. [30], by modeling it as an

assignment problem.

Specifically, the global association can be modeled as

min
ai,j

nz
∑

i=1

nz+1
∑

j=1

ai,jd(i, j)

s.t.

nz
∑

i=1

ai,j ≤ 1,

nz+1
∑

j=1

ai,j ≤ 1

nz
∑

i=1

nz+1
∑

j=1

ai,j = min(nz, nz+1),

ai,j ∈ {0, 1}, ∀ i, j

(13)

where nz and nz+1 denote the number of neurons in the

z-th image and (z+1)-th image, respectively; and ai,j is a

binary variable of which 1 stands for the i-th neuron on z-th

image are associated with the j-th neuron on (z+1)-th image

and vice versa. The d(i, j) denotes the distance between i-th

neuron in z-th image and the j-th neuron in (z+1)-th image,

which is defined as

d(i, j) =

{

||Ci,z − Cj,z+1||
2
2 Cell i,j are overlapped

∞ no overlap

where Ci,z stands for the centroid of the i-th neuron in

the z-th image. In this paper, we assume that there must be

overlaps if two neuron regions in successive images belong

to the same neuron when projecting them on the x-y plane,

which is reasonable in inspecting the brain images. Neuron

segmentation is conducted by solving problem in Eq. (13).

In Eq. (13), the first two constraints ensure that each re-

gion cannot associate to more than one regions in the next

image to make the result consistent. The third constrains

prevent the problem from degradation where ai,j = 0 for

all i and j. The Kuhn-Munkres algorithm [14] is applied

to solve the optimization which swaps the association to

minimize the sum of distance in each iteration. The algo-

rithm converges within n iterations with time complexity

O(min(nz, nz+1)
4). Thus, the neuron i and neuron j are

associated if ai,j = 1 and d(i, j) 6=∞ by solving the prob-

lem in Eq. (13).

We show a sample result of association between a few

neuron regions in two successive images in Fig. 4. It

demonstrates that the corresponding neuron regions that be-

long to the same neurons are associated correctly, which

provides a good prior for neuron segmentation.

However, it is a common case that two neurons are ad-

jacent in z-axis, which leads to the fact that two neurons

are associated together as one. In this paper, we separate

the adjacent neurons by exploring the morphology of neu-

rons. According to the visual inspection, neurons always

exhibit as an ellipsoid in 3D volume, i.e., the sectional ar-

eas are larger in the middle of the neurons while small on
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Figure 4: The result of image-by-image association.
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Figure 5: Separate adjacent neurons in 3D volume.

both ends. It inspires us to separate neurons by examining

the sectional areas of neuron regions along the z-axis. In

Fig. 5, We demonstrate the adjacent neuron separation, in

which two adjacent neurons are separated at the minimum

of the sectional areas. Specifically, we assign the neuron at

the local-minimum to the side with a smaller gradient, as is

shown in Fig. 5.

4. Experiment

In this section, we report the performance of neuron

region detection in 2D images and neuron segmentation

in 3D volume in section 4.2 and section 4.3, respectively.

As a comparison, we also implement neuron region detec-

tion based on the graph-smooth SSL and supervised CNN

and conduct the neuron segmentation by associating the

corresponding regions with the greedy association algo-

rithm [11].

4.1. Data set

We valid our approach with the dataset of neural mor-

phology images generated by two-photon microscope, as is

shown Fig. 1. For evaluation, we manually annotated 2000

neuron regions in the images, with half of them used for

training and the remaining used for testing. We further col-

lect the the negative samples, i.e., the non-neuron regions,

by randomly sampling from the original images, since most

of the microscopy image regions are non-neuron. To keep

balance, the number of negative samples is approximately

triple to the positive ones. Moreover, we use the unlabeled

data as auxiliary samples when training the SSL-CNN net-

work, which includes 70,000 samples with approximately

4000 positive ones.

4.2. Result of Neuron Region Detection

In this section, we implement neuron region detection

with the SSL-CNN and then evaluate it qualitatively. In

particular, we design a SSL-CNN network, which has two

convolutional layers with the first and second layer being

6 kernels and 50 kernels, respectively. The output of the

second convolutional layer is connected to fully connected

layers to identify the superpixels, as is shown Fig. 3. As

comparisons, we also implement neuron region detection

based on the graph-based semi-supervised learning [24] and

the supervised CNN [13], respectively. The sample results

of neuron region detection are demonstrated in Fig. 6.

As the results demonstrated in column (d) and column

(e) of Fig. 6, neuron regions are detected with high quali-

ties based on our semi-supervised CNN, since the inherent

structures are well explored with our network and facili-

tate the subsequent neuron region detection. However, there

missed some neuron regions for the graph-supervised learn-

ing algorithm, as is shown in column (b) of Fig. 6. The main

reason is because neuron detection is implemented with the

microscopy image intensities, which degenerates the per-

formance especially with poor image qualities or low con-

trast between neuron regions and background. Our algo-

rithm also outperforms the supervised CNN when there are

not enough labeled samples for network training, which is

illustrated in column (c) of Fig. 6. The main reason is that

our SSL-CNN can leverage the information from the unla-

beled samples.

In Table 1, we report the qualitative evaluation of our

proposed algorithm and the alternative graph-based semi-

supervised learning and supervised CNN. We evaluate the

performance with different label size in terms of precision,

recall and F1-score, i.e.,

F1 = 2 ·
Precision · Recall

Precision + Recall
,

which is a widely used measurement for classifiers. Each

number is averaged over 5 trails. We control the experimen-

tal condition to preserve a high precision to preserve a high

accuracy of the putative labels and reduce the probability of

error propagation over the network.

From Table 1, the performance of SSL-CNN converges

to the optimal solution much faster than the supervised

CNN. Especially for the recall, the SSL-CNN converges

to its optimal with 200 labeled samples whereas the super-

vised CNN needs 600 labeled samples. Moreover, the F-

score of SSL-CNN also coverages earlier compared to the
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Z = 125 (c)supervised 

CNN

(d)SSL-CNN with 

random initialized

(b)Graph-smooth 

SSL

(a) Original Image
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Figure 6: Sample result of neuron region detection of the 75-th image(Up) and 125-th image(Bottom) of the image set based on different algorithms. The

error detections are marked in yellow circles. (a)Origin image. (b) graph-smooth SSL (c) supervised CNN (d) randomly initialized SSL-CNN (e) Manually

initialized SSL-CNN.

Data Size 40 80 120 160 200 300 400 500 600 700 800 900 1000

Recall

SSL 0.70 0.79 0.80 0.86 0.86 0.87 0.88 0.91 0.90 0.91 0.91 0.92 0.92

CNN 0.88 0.91 0.89 0.94 0.92 0.93 0.93 0.94 0.94 0.95 0.95 0.95 0.95

SSL-CNN 0.92 0.94 0.94 0.95 0.95 0.95 0.96 0.96 0.96 0.97 0.97 0.95 0.96

Precision

SSL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99

CNN 0.99 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99

SSL-CNN 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.99 0.99

F1-score

SSL 0.82 0.88 0.89 0.93 0.92 0.93 0.93 0.95 0.95 0.95 0.95 0.95 0.96

CNN 0.93 0.94 0.94 0.96 0.95 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97

SSL-CNN 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.98 0.97 0.98 0.97 0.97 0.97

Table 1: The performance of each classifier with different size of data.

graph-based SSL and supervised CNN. It means that human

efforts in annotation is reduced significantly, namely to no

more than 30% compared to the supervised CNN.

4.2.1 Disscussion

After inspecting the visual pattern of the two two-photon

images, the neurons in the image plane exhibit point-spread

patterns due to its particular imaging mechanism [6]. It in-

spires us to design a convolution kernel by taking the partic-

ular properties into consideration, rather than simply initial-

izing the kernels randomly. Specifically, the convolutional

kernels are initialized as a point-spread function [23] as

psf(vx, vy) =





2J1(
√

v2x + v2y)
√

v2x + v2y





6

,

where psf(vx, vy) denotes the point spread function at

(vx, vy) and J1(·) denotes the first-order Bessel function of

the first kind. A sample result of kernels generated by the

point spread function is illustrated in Fig. 7.

With the kernels generated by point spread function to

initialize the CNN, the loss value averaged over 100 trails

is illustrated in Fig. 8. The loss value of the manually ini-

tialized CNN converges faster than the randomly initialized

CNN, where manually initialized CNN converges at after

about 30 iterations whereas randomly initialized CNN con-
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Figure 7: The result of Kernel initialization. The left image is the origin

microscopy image. The first row and the second row is corresponding

to the manually designed kernel and its convolution on the origin image,

respectively. The third row is the kernel generated by randomly initialized

CNN and the forth row is corresponding to its convolution on the original

image.

verges after 50 iterations. Meanwhile, the loss value of

manually initialized CNN is almost the same as the ran-

domly initialized CNN when they both converge and from

the column (e) in Fig. 6, the accuracy is also comparable.

It demonstrates that the manually designed kernels can ac-

celerate the convergence speed by taking into the imaging

mechanism of the two-photon microscope.
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Figure 8: Average loss. Red line for manually initialized CNN and blue

for randomly initialized CNN

4.3. 3D Association

Finally, the quantitative evaluation of neuron region de-

tection will be illustrated and an example of neuron region

detection is demonstrated in Fig. 9. We only sample a sub-

set from the whole set to make the figure uncluttered.

The performance of neuron segmentation is illustrated

in Tab. 2. We use 200 positive samples to train the CNN

and generate putative labels. From Tab. 2, SSL-CNN out-

performs CNN, since it is benefit from the vast amount of

unlabeled samples. It is noted that the performance of neu-

ron segmentation in volume is inferior to the neuron region

detection due to the 3D diffusion in the region association

where false associating two neuron into one neuron will

miss detect two neurons.

Besides, the result of neuron segmentation based on the
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Figure 9: Final Result of neuron segmentation in 3D Visualization

Precision Recall F-score

SSL 0.99 0.62 0.76

CNN 0.75 0.82 0.81

SSL-CNN 0.90 0.83 0.86

Table 2: Performance of neuron segmentation with 200 positive samples

greedy association is also reported in Tab. 3. The recall rate

is significantly inferior to the algorithm based on global as-

sociation because of the inconsistent association. The as-

sociation result of greedy association is the subset of the

global association because if two neuron regions both asso-

ciate to one neuron region, the association with a larger dis-

tance will be dropped to make the result consistent, which

leads to the low recall rates.

Precision Recall F-score

CNN 0.75 0.72 0.73

SSL-CNN 0.88 0.72 0.79

Table 3: Neuron segmentation on greedy association.

5. Conclusion

In this paper we propose a CNN with a semi-supervised

regularization to address the neuron segmentation in 3D

volume. With unlimited unlabeled data, we introduce a

regularization term to the loss function of the CNN, such

that the performance is improved by incorporating the in-

formation embedded in the unlabeled data. Human efforts

in annotation are therefore reduced significantly by not sac-

rificing the performance. With neuron region properly har-

nessed in 2D image, neuron segmentation in 3D volume is

achieved by optimizing a global association problem. Ex-

perimental results demonstrate that the high quality neuron

segmentation is realized with our algorithm.
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