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Abstract

Face alignment can fail in real-world conditions,
negatively impacting the performance of automatic facial
expression recognition (FER) systems. In this study, we
assume a realistic situation including non-alignable faces
dueto failuresin facial landmark detection. Our proposed
approach fusesinformation about non-aligned and aligned
facial states, in order to boost FER accuracy and efficiency.
SX experimental scenarios using discriminative deep

{rohleejh, gmkim90, sylee}@kaist.ac.kr

For Alignable Faces.

\:1[1.\Iignvcll_x"EP (lxa)
State

W AL T
TR oo roen

For Non-Alignable Faces

Aligned
State

Non-Aligned
State

P(ylxxa)

convolutional neural networks (DCNSs) are compared, and
causes for performance differences are identified. To hya
handle non-alignable faces better, we further introduce
DCNs that learn a mapping from non-aligned facial states
to aligned ones, alignment-mapping networks (AMNS). We
show that AMNSs represent geometric transformations of
face alignment, providing features beneficial for FER. Our
automatic system based on ensembl es of the discriminative
DCNs and the AMNs achieves impressive results on a
challenging database for FER in the wild.
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Figure 1: Overview of our approach. Our automatic FER
system contains several DCNs to fuse information
nonaligned and aligned facial states.

[6, 16, 18]. However, many studies have applied some
“manual” steps when this preprocessing fails. For real-life

applications, automatic FER systems in which human
intervention is not necessary are preferred, and this
demands automatic face alignment. Recently, such
alignment techniques have been extensively stubied

) o . . using holistic deformable models (DMs) [19, 20] and
Facial expression is a primary means for understandlngparts_based DMs [21, 22], by taking advantage of both of
human emotions and has been actively studied over tWGhe DMs [23, 24], and by applying regression-based
decades [see 1-3 for survey]. Rapid progress has been maggainods [25, 26]. However, when alignment errors or
on technologies for automatic facial expression recognition i1, o< occur “in the wild” and propagate to later stages of

(FER), particularly in controlled laboratory settings. pggr systems, final performance declines.
Nevertheless, FER still remains a challenge in uncontrolled | ihis pap;er we propose a framework based on an

real-life situations in which a FER system must handle gnsemple of deep convolutional neural networks (DCNs)
unpredictable variability in head poses, lighting conditions, (;\vard automatic FER in the wild. We begin with the
occlusions, and subjects. To resolve this issue, researcherfouowmg realistic assumption (validated in Section 3):

have collected large volumes of data “in the wild” [4-7],
have held many grand challenges [8-11], and have
presented excellent approaches notably with deep learning
techniques [12-18].

Face alignment commonly performed in preprocessing
modules is essential for achieving good FER performance

1. Introduction

B Face alignment under real-world conditions is
assumed to be not always successful.

B Consequently, face images are either “alignable”,
i.e., capble of being aligned or “non-alignable”, i.e.,
not capable of being aligned.

48



Our FER system is designed to separately deal withinitialization.
alignable faces and non-alignable faces, as shown in Figur
1. For alignable faces, we combine information from both of
the “nornraligned state” and the “aligned state”. For

non-alignable faces, we initially obtain class predictions

%eep learning for facial expression recognition. In recent
years, similar to other computer vision problems, applying
deep learning techniques to FER has attracted considerable
using the “non-aligned state”. In order to determine the at.tention. For disentangling latent factors iq fa(.:e.ima'lges,
method to train discriminative DCNs, we assess severaRifai € al. [12] gradually separated discriminative
experimental scenarios for a better information fusion expression information from non-dlscr|m|natlve pose and
(Section 4). Then, in order to estimate aligned stafe morphology factor:; based on convolutional .networks and
non-alignable faces, we introduce DCNs which learn a2uto-eéncoders, while Reetlal. [13] modeled higher-order

mapping from the non-aligned facial state to the aligned one Interactions of expression and pose manifolds based on a

(Section 5), called alignment-mapping networks (AMNS). restricted Boltzmann machine. In addition, Reedl. [14] o
Experimental results demonstrate that these AMNsuseOI a bootstrapping-based approach regarding prediction

represent similarity transformations performed in face ConS'SFenCy’ resplvmg a problem of noisy- and subjective
alignment and yield hidden features beneficial for FER. To labels n FER,‘ Liet ‘?‘l' [15], used convolutlongl kernels fF’f
summarize, our empirical findings in developing the capturing facial gctlon units relevant to facial expressions
automatic FER system show that 223,\/ S;ﬁ;acted higher-level features based on deep belief
B In the learning phase of individual discriminative  Tq improve affect recognition in the wild, there are
DCNs, it is beneficial to use the merged training datasetseyeral ensemble-based deep learning approaches, which
of alignable and non-alignable faces for efficiency in jnspire our work. Kahoet al. [16] proposed a multimodal
evaluation time as well as for effectiveness in FER framework including a DCN and a deep belief network for
performance. extracting visual and audio features, respectively, and
B In the testing phase for alignable faces, combining gpplied a random-search-based weighted decision fusion.
information of both non-aligned and aligned states from pjgreover, in order to combine multiple DCNs using late
discriminative DCNs improves FER accuracy. fusion schemes, Yet al. [17] applied a hinge-loss-based

B In the testing phase for non-alignable and alignable yejghted fusion in a single-level committee, while Kinal.
faces, it is better to add decision-level information from [18] used an exponentially weighted fusion in a hierarchical
classifying the hidden features of AMNs. committee. These three studies used the FER-2013 database

We evaluate the proposed framework on the facia|d€SCfibEd in Sect. 3 to pre-train their DCNs for transfer
expression recognition 2013 (FER-2013) database [7], dearning or feature extraction. However, they did not cope
challenging benchmark collected from the Web. Our final With the failure in face alignment nor consider its influence
ensemble-based FER system achieves great performance é FER performance.

this in-the-wild database. Converting pose states of faceimages. Many deep models

for face recognition aim to learn a mapping from
non-frontal faces to frontal ones, which share the similar
2. Related Work goal with our AMNs. Kanet al. [35] used a stacked
autoercoder network to model gradual change in poses,
Diversity and ensembles of neural networks. Combining while Zhuet al. [36] designed a deep convolutional network
decisions of multiple artificial neural networks is a method including locally-connected layers to extract pose- and
with a long history [27-29] in the field of classifier ensemble. illumination-robust features. In order to model the
Here, employing “diversity” of individual networks has continuous pose space, Zfeti al. [37] used stochastic
been shown to improve ensemble performance, byneurons in their multi-view perceptron which disentangled
providing uncorrelated, different, and thus informative pose and identity factors. In addition, Yiet al. [38]
decisions [30, 31]. For high diversity, individual networks employed a multi-task learning scheme to convert head
are built using several diversification strategies [28, 29], Poses while concurrently maintaining identity information.
e.g., by altering network architectures and random weight ~One limitation of the aforementioned deep models is that
initializations as well as by using variously normalized and they focused on changes only in yaw rotation. In addition,
differently divided datasets. Such strategies are now appliedhey dealt with data only captured under controlled lab
to ensembles ofdeep neural networks, resulting in settings, and 2-D aligned faces were used as inputs and
remarkable successes in image classification [32-34]. In thioutputs of their models. In contrast, our work attempts to
work, our DCNs are also built towards high diversity, handle all rotations of yaw, pitch, and roll as well as
specifically by changing input normalization and weight cropping and resizing operations. We deal with faces in the
wild, and the faces before and after 2-D alignment are used
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Figure 2: Statistics of head pose and examples of 2-D aligned result on the FER-2013 DB. The graph (a) shows the number
alignable faces as a function of the pose angle of yaw, gitchroll on a log scale, and the (b) shows the percent ratio ahblé
faces for each pose angle on a linear scale. The ranges.@f 3317) degree for yaw rotation, (-17.5, 29.1) for pitch, @20.5, 20.3)
for roll contain 95% of the alignable faces, indicating in-the-wildditions of the FER-2013 DB.

Number of Faces (Ratio)
Non-Alignable Alignable Total

as inputs and target outputs of our AMNS, respectively. FER-2013 DB
Very recently, interesting approaches have been

X . . ; Train 3764(15.0%)  21346(85.0 %) 25110
proposed to yield _frt_)ntal fz_‘;\mal poses in unconstrained Data Valid 537(150%)  3051(@.0% 3588
settings. After localizing facial landmarks, Hasseesl. Test 543(151%)  3046(849%) 3589
[39] used a 3-D reference model common to all faces and Non-Aligned Xnn Xa X
efficiently estimated visible facial parts, improving — Sate Aligned . Za i

performance. On the other hand, Sagoetsal. [40]
employed an effective statistical model to localize Table 1. Alignment performance and summary of
landmarks and convert facial poses at the same time, €Perimental datasetsaccording to aligned facial states.
notably using only frontal faces. Although these studies did

not use deep learning techniques, excellent results o - .
in-the-wild datasets were obtained particularly due tor&&?of‘9 faces for training, 3,589 for public test, and_3,589
rigorous mathematical derivation. for private te_st. In the_ pr_esent study, after removing 11
non-number-filled training images, we randomly divide the
training data into two parts: 25,110 faces (about seven
. eighths) for training our models and 3,588 faces for
3. Data and Face Alignment validation. For fair comparison with previous studies on this
database, we only use the private test data for evaluation,
This section describes the FER-2013 database used inownd do not use any public test data for validation or
work. To investigate the validity of assumption in Sect. 1, evaluation.
we present face alignment results on this database. Finally,
experimental datasets which we construct are introduced. 3.2, Face alignment

3.1. The FER-2013 database For face registration, we conduct a conventiond 2-
alignment using IntraFace [25, 43], a publicly-available
The FER-2013 database was collected from the Web, andandmark detector. After localizing the 49 predefined facial
most images were captured under real-world imaginglandmarks, face images are automatically rotated and
conditions. This database has been reported to include someropped based on the eye coordinates, and finally resized
noisy or confusing annotation and show a low human FERinto 48by-48 pixels. Notice that manual preprocessing
accuracy of approximately 65% [11, 41, 42]. Tlés steps are not employed,e., erroneously-aligned and
possibly due to the method of its construction [11]. non-alignable faces are not removed, and so are usedrin late
Specifically, more than 100 fine-grained emotion keywords processing stages.
searching out images were clustered into seven target Alignment performance on the FER-2013 is reported in
classes: anger, disgust, fear, happiness, sadness, surpriSeable 1. Here, 85¢pcent of faces are “alignable”, meaning
and neutral expression. Here, clustering errors could resulthat IntraFace can provide the set of landmarks with the
in noisy and subjective labels. corresponding confidence score and pose angle of pitch,
The original FER-2013 was introduced for the yaw and roll. Figure 2 shows histograof the number of
sub<hallenge of ICMLW’13 [11], and consists of 35,887 alignable faces as a function of the pose angle, some aligned
detected faces in grayscale at a size oby#d8 pixels: examples, andheir localized landmarks. Due to failed
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landmark detection, 15 percent of faces are “non-alignable”.
Most of such failures are under extreme pose, occlusion,
and/or bad illumination conditions. Examples of
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non-alignable faces are depicted in Figure 7. Clearly, face
alignment in real-world situations is not always successful,
posing a specific challenge for FER research.
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3.3. Formation of experimental datasets 8,
We form experimental datasets based on the alignment ¥ ox

o S IR O
results in Sect 3.2. More specifically, after the data division |yF PO/l wiiE xa A DENETP PPy
described in Sect 3.1, face alignment with IntraFace is

performed on each of training, validation, and testing data. Figure3: Scenariosto combine information of aligned and
Here, depending on whether IntraFace can localize the no?-?hgnedffgc;al sttates.dSctjee Sea'jf and Se‘i.t' 4|'2 for t
facial landmarks or not, face images are able to be aligned notations ot datasets and deep Modets, respectively.
(alignable) or not to be aligned (non-alignable).

Non-aligned and aligned facial states thus constitute 3 Ly _T omeet__ conv 55
distinct_ classes, and we form our experimental datasets L= ; ] Il : WWL)I_F;I
accordingly. LeX = {x} be a set oWhole faces before the LAnd@l  2L2l@s2 sxS@ed 1024 "7

2-D alignment, which are in theon-aligned state. We
further divide this seX into two disjoint subset3na = {Xna

is a non-alignable}, a set ofnon-alignable faces in the
non-aligned state, anKa = {Xa is an alignable}, a set of
alignable faces in th@on-aligned state. Furthermore, &

= {za is obtained fronxa by face alignment} be a set of
alignable faces in thealigned state. Hence, a orte-one
correspondence exists betweénandZa. See Table 1 for
summary of the notations.
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Figure 4: Architecture of the discriminative DCN and
evaluation procedure with data augmentation.

respectively, in Figure 3. The dataseXet is constructed
by merging X andZa into one set. The expectation is that
models trained using+Za could extract some features
representing thdused knowledge about non-aligned and
aligned states, since these models simultaneously handle
faces in both states during learning.

Moreover, they are categorized according to whether the

This section discusses four scenarios with information AF are evalu_ated witheecisiortlevel fusion. The scenarios
with the fusion compute an average of posterior class

fusion of non-aligned and aligned states and for comparison g .
two scenarios without information fusion. Next, we present probabilities estimated from deep modelsyp) and

individual deep models and their ensembles used in thep(yle)’ for combining information of non-aligned and

considered scenarios. We then move onto the experimenta?l.'gned facial states. O_n the other hand, the scenarios
result and analysis. without the fusion use either WXa) or P{/jza). Now, we

introduce the details of each scenario.

4. Information Fusion of Non-Aligned and
Aligned Facial States

4.1. Scenarios of information fusion

As shown in Sect. 3.2, face alignment during
reprocessing is not always successful in uncontrolled . . ) S
prep g Y are trained and evaluated usixg without considering

environments. Therefore, both alignable faces (AF) and

non-alignable faces (N-AF) exist in real-world situations, Whgtlhzgdgé? ZE)T)CFf;creNé\ﬁgﬁrI:eﬁtthiir p\;\g;;jr?)’c';lszgnsgyssttzgs

and FER researchers are faced with the question of usin '
q nd they have beecommonly used for the FERQ13

either aligned or non-aligned state information, or using database. In contrast, the models in S2 are trained only
both kinds of information during system development. To ~". . ' ) :
g sy P rLljs,lngZA. Then, the AF are tested in the aligned stat®

answer this question, we consider six scenarios depicted irnn = . ¥~ . i o .
Figure 3. Firstly, the scenarios are categorized according tJnamtaln a CODS'Ster.]Cy with tra|r)|ng, while the N-AF are
three types ofraining dataset for deep models,e., X (in evaluated inevitably in the non-aligned stexe.

non-aligned facial statesfa (in aligned facial states), and  Scenarios with information fusion 1. The next two
X+Zx. We mark them with red, blue, and yellow color, scenarios, S3 and S4, fuse information of non-aligned and

Scenarios without information fusion. The first two
scenarios, S1 and S2 in Figure 3, do not use any information
fusion and are designed for comparison. The models in S1
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Scenario Individual DCN models Ensemble

No Train  Test Set n= Raw n = iNor n= cEnh Mean Maj.  Ave.
’ Set (AF,N-AF) r=1 r=2 r=3 r=1 r=2 r=3 r=1 r=2 r=3 Vote Rule

ST X (Xa, Xna) 70.38 69.24 69.55| 69.63 70.08 69.30 | 69.18 69.49 69.16 | 69.56 | 72.39 72.47

S2  Za (Za, Xna) 65.48 64.84 63.95| 64.17 64.86 65.09 | 65.84 64.78 65.00 | 64.89 | 66.76 67.46

S3  Za (ZatXa, Xna) | 63.92 63.97 63.39 | 63.14 63.81 63.97| 64.45 64.20 63.69 | 63.84 | 65.98 66.93
S4 X, Za  (ZatXa,Xna) | 70.88 70.74 7099 | 70.80 70.88 70.38| 71.08 71.22 7125 | 7091 | 72.97 72381
S5  X+Za  (Za, Xna) 70.66 70.41 69.80| 69.07 69.16 69.49| 69.30 70.66 69.99]| 69.84 | 72.33 72.42
S6  X+Za  (ZatXa, Xna) | 71.86* 70.88 70.83 | 70.02 70.33 70.69 | 70.63 7175 71.22| 7091 | 73.31 7331

Table 2: Classification accuracy (%) of individual deep models and their ensemble for each experimental scenario on the
FER-2013 DB. For a given model or an ensemble (each coluthe)highest accuracy indicating the best scenario is written in b
The asterisk* denotes the best single DCN. Note that test sets of all scenat@s eractly the same face images, indicating a fi
comparison. e evaluation strategies for testsdiffer in how to deal with alignable faces (AF) and non-alignablesgi-AF).

aligned states in evaluating the AF. S3 is similar to S2,resulting maps becomes halved. The fully-connected hidden
except that it combind®(y|xa) and Py|za) for the AF. In S4,  and output layers contain 1024 and 7 neurons, respectively,
we consider two types of models, which are trained using where each output neuron corresponds to each expression
and Z, respectively. Then, the N-AF are tested with the class of FER. For nonlinearity, Rectified linear unit (ReLU)
models trained using in the same way as S1. The AF are activation is used in all convolutional and penultimate
tested with information fusion ofa andza. Here,P(y|xa) layers, while softmax activation is used in the output layer.
and Py|za) in S4 are obtained from the two types of models Following the notation rule in [32], our model can be
respectively, whereas these two class probabilities in S3 arelenoted as 1x42x42 - 32C5 - MP3 - 32C4 - MP3 - 64C5 -
obtained from only the one type of models. MP3 - 1024N - 7N and we shall use this rule in the rest of

) o i } this paper for brevity. The DCN model is learned using the
Scenarios with information fusion 2. In the last tWo 5, ymented training data obtained from label-preserving
scenarios, S5 and S6, the models are trained using thg,nqiation and reflection. At the evaluation phase, to
merged set 0X+Zx, and we expect them to learn fused ainiain 4 consistency with the training phase, ten patches
knowledge of non-aligned and aligned facial states. Thegyi 4cted from each face image are fed to the model, and the
evaluation procedure in S5 is identical to that in S2, W'thOUtcorresponding ten predictions are averaged. For other
information fusion for the AF. In contrast, S6 applies training details, refer to Appendix A.
information fusion of combining both facial states to the Depending on the training dataset as described in Sect.
testing phase for the AF as well as to the training phase 0f 3 \ye organize our nine DCNs into a unit of ensemble:

the models.
DCN* = {DCN¥, |n € N,r € R} )

4.2. Deep models and their ensemble wherek € K = {X, Za, X + Za} denotes the type of training

To achieve “diverse” FER decisions, which are necessary dataseth & N = {Raw, iNor, cEnh} denotes the input
for a good ensemble, we design nine discriminative DCNs.normalization method, and< R = {1, 2, 3} denotes the
These deep models are trained using three different methodsindom seed number for weight initialization. To combine
for input normalization as well as using three different the nine decisions in the ensemble, we apply two widely
weight initialization by changing the random seed numbers. used fusion rules, the majority vote rule and the average rule
For input normalization, the pixel values are rescaled byIn order to select a final class, the majority vote directly uses
applying the min-max normalization (denotedRasv), the the predicted labels to compute the largest number of votes,
illumination variation among faces is reduced by applying while the average rule uses the posterior class probabilities
the illumination normalizationilor) based on the isotropic  to compute the highest mean class score.
diffusion [44], or the global contrast of faces is increased by

applying the contrast enhancementErf) based on 4.3 Experimental result

histogram equalization. Examples of input normalization .
are shown in Figure 7. Overall performance. The 7-class FER test accuracies of

As illustrated in Figure 4, each DCN consists of three PCNS and their ensembles under the six experimental
stages of convolutional and max-pooling layers, followed Scenarios are reported in Table 2. We first observe that both
by two fully-connected layers. The convolutional layers use Of the best single model and the best ensemble are achieved

32, 32, and 64 filters of size 5x5, 4x4, and 5x5, respectively.under the S6 scenario. Second, the scenarios S4 and S6
In the max-pooling layers, overlapping-pooling is applied Show better ensemble performance than other scenarios.
with the kernels of size 3x3 and stride 2, and the size offurthermore, the ensemble accuracies of S2 and S3 are
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sl s S,Ss‘“sifi SS',;WB;;'-. W =t Notably, S; in which face alignment is not applied is a

Scenario Scenario common setting for the FER-2013 database. Compared to
Figure 5: Classification accuracy (%) of the ensemble in S1, S4 and S6 show better ensemble accuracies for AF. This
each scenario for alignable faces, non-alignable faces, and suggests that even if some faces are non-alignable, it is
total faces. The horizontal lines show performance of tl better to apply face alignment to other alignable faces and
single best DCN model in S6. then to conduct the improved information fusion.

lower than those of other scenarios. The aforementioned
observations will be examined deeply in the followed 5. Mapping from Non-Aligned Stateto
analysis with Figure 5. Notice that there is no much Aligned State

difference or clear trend in the ensemble accuracies
depending on the majority vote and the average rule. It

indicates that what to combine for ensemble has moreno-lrI]‘,:i r?ggn:tnatedsestg”Zﬁsngéjrstz[ggpl\?\?hggngg%n a];reodmto
influence on the final performance rather than how to 9 9 ‘ P

It is worth noting that S6 not only yields higher ensemble ppIng. ' P P 9

accuracy than S4 but also uses the less number of modelgualltatlve analysis and FER accuracy using the individual

Specifically, the ensemble in S6 includes 9 DCNs (trained Mmappings as well as the final ensemble performance.
usingX + Za), whereas that in S4 does 18 DCNs (9 trained . .
using X and 9 usingZa). It shows the strengths of the 5.1. Deep modelsto learn our desired mapping
scenario S6i.e., theefficiency in the evaluation time with The basic idea driving this secti@that a mapping from
less models as well as the superiority in FER performancenon-aligned facial states to aligned ones can represent
For a later usage in Sect. 5.3, the best ensemble using thgimilarity transformations of face alignment. First, we
average rule in S6 is denotedESs. examine whether this mapping can lbarned using deep
neural networks (known as universal approximators).
Accuracies for alignable and non-alignable faces. The  Specifically, given an alignable face in its non-aligned state
six different scenarios perform differently given AF and x,, a deep model is trained to generate the corresponding
N-AF. Here, we identify the causes for performance aligned states by minimizing the L2 Euclidean objective
differences. Figure 5 shows the ensemble accuracies usinflinction. ThereforeXa (as inputs) ania (as target outputs)
the average rule in each scenario, separately computed fagontaining only AF are used for training the models, as
AF and N-AF. We also plot overall test accuracies for total depicted in Figure 6.
faces (TF) as reported in the last column in Table 2. Ppreliminary experiments compardeep architectures in
Accuracy for AF is computed as the proportion of correctly |earning mappinge.g., multi-layer perceptrons (MLPs) and
estimated AF over the whole AF, and the same for N-AF. DCNs (see Appendix B for more details). The final DCN
For both AF and N-AF, the ensemble performances of S4consists of two stages of convolutional and max-pooling
and S6 are improved over the single best DCN. Also, thejayers followed by two fully-connected layers: 1x42x42 -
ensemble of S6 achieves the highest accuracies for bothgacs - MP3 - 64C5 - MP3 - 1000N - 1764N. This
These results suggest the following. alignment-mapping network (AMN) is denoted AB N,

B Using the merged training dataset ¥#Z, is  Where n € N = {Raw, iNor, cEnh} is the input
beneficial in that théused knowledge about non-aligned ~ normalization. For training details, see Appendix C.

and aligned facial states can be learned. It is verified by Notice that there are no ground-truth outputsdaey, i.e.,

the improved accuracies for both AF and N-AF in S6. the aligned states of N-AF. We expect that the mapping
B For AF, applying the late information fusion to output for Xya (usually with extreme pose angles and
combineP(yjxa) estimated from non-aligned states and occlusions) can be in the closely-aligned stat&M N,
P(y|za) from aligned states is beneficial. It is supported sdisfies the following two requirements. FirétM N, can

by the improved accuracies for AF in S4 and S6. rotate, crop, and resize faces in the non-aligned states by

In addition, as shown in the right graph of Figure 5, much learning important features for face alignment. Second,

53



X in Non-Aligned State Z in Aligned State

M, /20 AMN |2, vs w. -~ T—K =< M odel L2 Euclidean Loss  Accuracy (%)
‘W! " E ] - 5] AEx 6.77 55.45
X in Non-Aligned State e X in Non-Aligned State
- AEy (T AEz 4.57 5952
AM NRgaw 18.09 62.94
Z A n Aligned State ]
| ¢ AE7 —’2A Vs A*’ 2 0; AM Ninor 16.74 59.99
SRS : L B AM Neenn 30.08 63.36
Figure6: Training proceduresfor AMNsand AEstolearn Ensemble Type Accuracy (%)
the examined mappings. ES 73.31
Unseen Test Data ES+AEX 73.29
Alignable Faces (AF) Non-Alignable Faces (N-AF) ESs+AEz 73.31
Raw (min-max 'XA Ag a'é’f' g @L * gb' XNA E&+AM NRaW 73.47
normalization) Zs mgmg s’(' ' Unknown 7 E&+AM NRaW+AM NiN0r+AM NcEnh 73.73
SO ATEESSSEIT T B Existing Method Acc. (%)
Ally FIF *Hz Zhanget al. [45] A DCN using multi-task loss 75.10
AE, 2,559 % B get al. with usingexter nal databases )
= An ensemble of 36 DCNs
Hlumination A £ 72.72

Kim et al. [18] in a hierarchical committee

A DCN using cross-entropy los  70.58
Devrieset al. [46] A DCN using multi task loss 67.21
A DCN using L2-SVM loss 71.16
A DCN using cross-entropy los  70.1

Multiple kernel learning
based on SIFT descriptors 67.48
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Figure 7. Examples of inputs, target outputs, and ] .
estimated outputs yielded from AMNsand AEs. Table 3: Performance comparison of AMNs and AEs

(upper), ensemble accur acies obtained by adding AMNs
or AEs to discriminative DCNs in ESs (middle), and

) ) existing results on the FER-2013 database (bottom).
AMN, can be generalized successfully, thus working well

not only on AF but also on unobserved N-AF. Sect. 5.4
provides qualitative analysis to confirm these propertiesfor each ofAMN,, AEx, andAEz, for comparison.
using the mapping output fofa and forXya.

5.3. Improving the ensemble for FER

5.2. Comparison with auto-encoding functions To improve the best ensemble from the scenario S6 in

A popular method for feature extraction is using neural Sect. 4.3,i.e., ESs, we additionally use decision-level
networks that learn auto-encoding functions. Theseinformation obtained usingAMN,. Specifically, the
networks are conventionally trained to produce outputsfeatures extracted fro®M Nraw, AM Ninor, aNd AM Ncenn
which are identical to inputs, and the activations of hiddenare fed to the 3-layer MLP classifiers in Sect. 5.2, yielding
neurons are used as features. Here, whéthENX, provides estimated posterior class probabilities. After that, we
better features than auto-encoding networks (AEs) in termscompute the average of these class probabilities and the
of classification is examined. As shown in Figure 6, we output probability fromESs. This improved ensemble is
compare ouAM Ny, which learns the mapping froK to denoted a& Ss+AM NgawtAM NinortAM Neenn, Used for our
Zn, with two AEs. One network learns an auto-encoding final FER system.
function fromXa to Xa using raw face images, denoted as The same procedure is conducted wkBx and AEz,
AEx. The other network similarly learns an auto-encoding resulting in ESs+AEx and ESs+AEz, respectively. To
function from Zx to Za, denoted asAEz. For a fair ensure that the performance improvement is not just coming
comparison, we use the same architectures and trainingrom adding other informationESs+AM Nraw is also
schemes foAM N, AEx, andAEz. compared with the aforementioned ensembles.

For qualitative analysis, outputs of the examined
networks are observed. Then, in terms of FER performances 4. Experimental result

we investigate the effectivenessMiM N, as follows. The . _ .
1000D hidden activations of penultimate layer AM Ny Figure 7 shows examples of the inputs, the corresponding

are extracted. Then, we use these features to train a 3-layd@r9et outputs, and the estimated outputs of examined
MLP classifier of 1000N - 1000N - 1000N - 7N. For networks. Outputs oAEx and AE; are identical to their

training details, see Appendix C. This procedure is repeated"Put images. Notice that outputs AEz for unseen N-AF
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are in non-aligned states. In contraSM Ngaw, AM Ninor, face alignment Using these networks as well as the
and AM Ncenn provideclosely-aligned outputs for both the  discriminative deep models, the final ensemble achieves
AF and the N-AF. These results support that our mappingexcellent performance on the examined database collected
represents geometric transformations of face alignmentin the wild. We believe that the proposed approach can be
Interestingly, outputs oAMNgmn are less blurred and applied not only to FER but also to other face analysis
clearly show facial expressions while preserving identity research using face alignment under unconstrained
information. It could be linked to higher accuracy using conditions.
AM Neenn in Table 3, by giving better features for FER.

In the upper part of Table 3, we report the L2 Euclidean
loss and the classification accuracy of extracted hiddenAcknowledgement

fee:]'[yresd ft())r each dnetwo_rkd. quethZ rlloss value; 3re We would like to thank Jeffrey White, Kyeongho Lee, and Jisu
achieved byAEx andAEz, indicating that they are trained  cgi for their discussions and suggestions. This work was

well for their purpose of auto-encoding functions. However, sypported by the Industrial Strategic Technology Development
the classification accuracies usiAdMNn are higher than  program (10044009, Development of a self-improving
those of the AEs. It demonstrates that our AMNSs provide bidirectional sustainable HRI technology for 95% of successful
informative features for FER and correct unsuitable responses with understanding user’s complex emotion and
knowledge particularly by transforming N-AF to be transactional intent through continuous interactions) funded by
closely-aligned. the Ministry of Knowledge Economy (MKE, Korea).

In the middle part of Table 3, ensemble performances )
using the examined networks are shown. Combirkifg Appendix
and AE decreasesE§+AEx) or does not improve A Training details for discriminative DCNs in Sect. 4.2. We
(ESs+AEz) the accuracy oESs. In contrastESs+AM Nraw use the MatConvNet toolbox [48] on NVIDIA GeForce GTX 690
and ESs+AM NgawtAM Ninoe+AM Neenn  achieve higher  GPUs. To train the DCNs, stochastic gradient descent is used to
accuracies than only usirSs. It indicates that decision ~ minimize the cross-entropy objective function with a mini-batch
information from our AMNs can be complementary to that size qf 200 samples. The_dropout probability of the penultimate
of discriminative DCNSs ifESs, thus improving FER. layer is set to 0.5, and weight decay of 0.0001 and momerftum o

- 0.9 are also applied. The initial learning rate is set to 0.01 and
In the bottom part of Table 3, the existing results on thereduced by a factor of 2 at every 25 epoch where the muofibe

FE_R'2013 Qatabase are shown for performgnce COmparisOgyyy| epochs is 100. Moreover, the training data were augmented
Without using external databases, our final system ofpy 10 times, through using 5 crops of size 42x42 (1 from resizing
ESs+AM NrawtAM Ninor tAM Neenn Yields the best FER  an original 48x48 face and 4 from extracting its 4 corners) and
accuracy. Note that the deep model in [45] has used muchheir horizontal flopping.

bigger architecture than ours as well as huge external data o ) ) ]

for its multi-task loss. Compared to the ensemble in [18], B Preliminary experiments for architecture selection of

our ensemble includes fewer models having the simiIarANINn In Sect. 5.1. To leam the mapping from the non-aligned
9 state to the aligned state, we have explored several candidates:

arch|tec_ture, but we a_chleve bettgr results. Compared tq pg having 2 or 3 fully-connected layers (FC), DCNs having 1
other single DCNs trained only using the FE&E3, our or 2 convolutional layar(CONV) “without” max-pooling layers
single best DCN in S6 yields a higher accuracy of 71.86 %.(MP) followed by 2 or 3 FC, and DCNs having 1 or 2 CONV
“with” MP followed by 2 or 3 FC. After comparing the L2
Euclidean validation loss, we have finally selected the best DCN
; described in the main text. We also erpilly find that “using
6. Conclusion CONYV and MP” and “increasing the number of hidden neurons in
FC (500—1000)” are beneficial for learning the desired mapping,
Towards automatic facial expression recognition (FER), while increasing the number of FC (2—3) is not.
we present a framework based on an ensemble of dee
convolutional neural networks. We aim at overcoming & Jassifiers in Sect. 5.2. We apply the similar training schemes

SpeCIfIF: challenge _to FER research?rs: there A'€htroduced in Appendix A. For AMNs, a mini-batch size of 500
non-alignable faces in real-world conditionso Btart, samples and a constant learning rate of 0.0001 during a total 1000
alignment results on a challenging FER database arepochs are used. For MLP classifiers, a mini-batch size of 200 is
analyzed. Then, we evaluate possible scenarios ofused, while the initial learning rate is set to 0.01 and halved at
information fusion with discriminative deep models. Here, every 100 epoch where the number of total epochs is 400.
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