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Abstract

Sequential face alignment, in essence, deals with non-

rigid deformation that changes over time. Although nu-

merous methods have been proposed to show impressive

success on still images, many of them still suffer from lim-

ited performance when it comes to sequential alignment in

wild scenarios, e.g., involving large pose/expression vari-

ations and partial occlusions. The underlying reason is

that they usually perform sequential alignment by indepen-

dently applying models trained offline in each frame in a

tracking-by-detection manner but completely ignoring tem-

poral constraints that become available in sequence. To ad-

dress this issue, we propose to exploit incremental learning

for person-specific alignment. Our approach takes advan-

tage of part-based representation and cascade regression

for robust and efficient alignment on each frame. More im-

portantly, it incrementally updates the representation sub-

space and simultaneously adapts the cascade regressors in

parallel using a unified framework. Person-specific model-

ing is eventually achieved on the fly while the drifting is-

sue is significantly alleviated by erroneous detection using

both part and holistic descriptors. Extensive experiments

on both controlled and in-the-wild datasets demonstrate the

superior performance of our approach compared with the

state of the arts in terms of fitting accuracy and efficiency.

1. Introduction

Fitting facial landmarks on sequential images plays a

fundamental role in many computer vision tasks, such as

face recognition [41, 39, 44], expression analysis [12, 13,

19], and facial unit detection [22, 40, 42]. It is a challeng-

ing task since the face undergoes drastic non-rigid deforma-

tions caused by extensive pose and expression variations, as

well as unconstrained imaging conditions like illuminations

changes and partial occlusions.

Despite the long history of research in rigid and non-

rigid face tracking [4, 21], current efforts have mostly fo-

cused on face alignment on a single image [6, 30, 32, 37,

38, 43, 45, 46, 47, 48]. Generally speaking, they usually

accomplish the task by achieving a direct mapping from

facial appearance to landmark coordinates. The mapping

could be either nonlinear regression [43] or deep neural net-

works [32]. They have shown great success with impres-

sive results in standard benchmark datasets [29]. However,

when it comes to sequential images, many of them still suf-

fer from significant performance degradation especially in

real-world scenarios under wild conditions [31]. They usu-

ally rely on models trained offline on still images and per-

form sequential alignment in a tracking-by-detection man-

ner [7, 31, 34]. They lack the capability to capture neither

the specifics of tracked subjects nor the imaging continuity

in successive frames. To this end, person-specific modeling

rather than generic detection is preferred.

One rational way to achieve personalized modeling is

to perform joint face alignment [25, 28], which takes the

advantage of the shape and appearance consistency in the

sequence to minimize fitting errors of all frames at the

same time. However, joint alignment is restricted to offline

tasks since it usually requires all images are available be-

fore image congealing. It also suffers from low-efficiency

issue which severely impedes its application on real-time or

large-scale tasks [24].

To avoid these limitations, other approaches attempt to

incrementally construct person-specific models instead of

joint alignment. They either adapt the holistic face repre-

sentation using incremental subspace learning [33], or up-

date the cascade mapping using online regression [2]. How-

ever, how to jointly update both the representation and fit-

ting strategy to achieve more faithful personalized models

still remains an open question without investigation. Be-

sides, former approaches often employ holistic face mod-

els for person-specific modeling, which has been proved

to be inferior to part-based models in challenging condi-

tions [30, 48]. Moreover, some of them attempt to achieve

personalized modeling without correction, which may in-

evitably result in model drifting [24].

In this paper, we further exploit person-specific model-

ing for sequential face alignment to address aforementioned
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issues. We first learn the part-based representation to model

the facial shape and appearance respectively, where the fit-

ting parameters are learned through a cascade of nonlinear

mappings. The representation is then incrementally updated

using very efficient subspace learning, and the cascade map-

pings are decoupled for an online update in parallel. Per-

sonalized modeling is eventually achieved on the fly while

the drifting issue is significantly alleviated by the proposed

erroneous detection. In summary, our work makes the fol-

lowing contributions:

• We propose a novel approach for sequential face align-

ment. To the best of our knowledge, this is the first

time that person-specific modeling is investigated to

jointly learn the representation subspace and the fitting

model in a unified framework.

• The proposed part-based representation together with

the cascade regression guarantees robust alignment in

wild conditions. More importantly, the framework is

critical to efficiently construct personalized models for

real-time or large-scale applications.

• We propose to leverage both local and global descrip-

tors for fitting evaluation. It significantly mitigates the

model drifting that is common in former incremental

learning based approaches.

• We provide a detailed experimental analysis of each

component of our approach, as well as thorough per-

formance comparisons with existing approaches. The

results show that our approach has an average of 13.6%
fitting accuracy improvement as well as affordable

computational cost compared with the state of the arts.

2. Relate Work

Face alignment in a single image has attracted intensive

research interest for decades. Numerous methods have been

proposed with varying degrees of success. Generally speak-

ing, most of them consist of a representation model and a

fitting model.

The representation model can be either holistic or part

based on different facial deformable models (FDMS) em-

ployed. On the one hand, the holistic model, such as ac-

tive appearance models (AAMs) [9] and morphable models

(MMs) [5], takes the entire face as a whole texture repre-

sentation. On the other hand, the part-based model, such

as active shape models (ASMs) [8], constrained local mod-

els (CLMs) [30] and tree structure deformable part models

[48], uses a set of local image patches centered at salient

landmarks to model the face appearance. These approaches

can be further categorized as generative or discriminative

based on the different fitting model used. The former uses

an analysis-by-synthesis framework to minimize the recon-

struction residual [15], the later uses either landmark classi-

fier [30, 1] or nonlinear mapping [6, 43] for optimal fitting.

It has been proved that the part-based rather than the

holistic representation is more robust to the extensive varia-

tions in unconstrained settings. For instance, Saragih et al.

[30] proposed the regularized landmark mean-shift (RLMS)

to maximize the joint probability of the reconstructed shape

based on a set of response maps extracted around each land-

mark using expectation maximization. Asthana et al. [1]

proposed the discriminative response map fitting (DRMF)

to learn boosted mappings from the joint response maps

to shape parameters. Cao et al. [6] combined a two-level

regression to achieve explicit shape regression (ESR) by

shape-indexed feature selection. Xiong et al. [43] proposed

supervised descent method (SDM) to learn a sequence of

descent directions using nonlinear least squares.

More recently, deep neural networks (DNNs) based

methods have made significant progress towards systems

that work in real-world scenarios [35, 36]. For example,

Sun et al. [32] proposed to concatenate three-level convo-

lutional neural networks to refine the fitting results from the

initial estimation. Zhang et al. [45] employed the simi-

lar idea of coarse-to-fine framework but using auto-encoder

netowrks instead of CNNs. Zhang et al. [46] showed that

learning face alignment together with other correlated tasks,

such as identity recognition and pose estimation, can im-

prove the landmark detection accuracy.

The aforementioned methods have shown impressive

results in standard benchmark datasets [3, 16, 14, 29].

However, they still suffer from the significant performance

degradation in sequential task as they completely rely on

static models trained offline. To address this limitation, ef-

forts of constructing person-specific models are made to im-

prove the performance of sequential face alignment.

Some of them achieve person-specific modeling via joint

face alignment. A representative example was proposed

in [28], which used a clean face subspace trained offline

for constrained optimization to minimize fitting errors of

all frames at the same time. However, these methods are

usually limited to offline tasks due to the image congealing

manner as well as intensive computational costs.

Others employ incremental learning to update either the

representation or the fitting strategy on the fly. For in-

stance, Sung et al. [33] proposed to update incremental

principle component analysis (IPCA) to adapt the holistic

AAMs to achieve personalized representation. Asthana et

al. [2] further explored SDM in incremental face align-

ment (IFA) by flatting the cascade regressors into decoupled

mappings, and simultaneously update each of them inde-

pendently using incremental least squares functions. How-

ever, it can hardly achieve robust and faithful personalized

models without jointly adapting the representation and fit-

ting strategy in a unified framework. Besides, blind adap-

tation without effective correction would result in modeling

drifting, and inevitable failure in the end.
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Figure 1: Overview of our approach. The part-based repre-

sentation and discriminative fitting are: (a) trained offline,

(b) applied on sequential testing images, and (c) updated

incrementally on the fly.

3. Our Approach

In this paper, we propose a novel approach for sequen-

tial face alignment in the wild. We first learn the part-

based representation to model the facial shape and appear-

ance respectively. The discriminative fitting is performed by

learning a cascade of regression that maps from the appear-

ance representation to the shape parameters. Then person-

specific modeling is achieved by incremental representa-

tion update and fitting adaptation in parallel. Finally, we

propose hybrid fitting evaluation for erroneous detection to

avoid modeling drifting. An overview of our approach is

shown in Figure 1.

3.1. PartBased Representation

We aim to achieve a part-based representation that is

compact and easy to update for efficient person-specific

modeling. A feasible solution is to learn subspace to model

the shape and appearance, respectively.

The shape representation is learned using point dis-

tributed models [8]. Given a set of training images {Ii}
M
i=1

annotated with L landmarks, we can first perform Pro-

crustes analysis for shape normalization and then apply

principle component analysis [20] to obtain the mean shape

and eigenvectors {Ms,Vs}. A shape can be represented as:

s(p) =Ms + Vsp, (1)

{Ma
1 ,V

a
1 }

{Ma
l ,V

a
l }

{Ma
L,V

a
L}

Response
Tensor TL

Response
Tensor Tl

Response
Tensor T1

Figure 2: Top: perturbations (yellow dash) are sampled

around the ground-truth shape (green dash). Bottom: re-

sponse maps (yellow box) of the same landmark are ar-

ranged as tensor to learn the appearance representation.

where p is the shape parameters.

The appearance representation is learned from local re-

sponse maps around landmarks. More specifically, the local

response map of the lth landmark in image Ii is:

Al(p; Ii) =
1

1 + exp(alΦ(s(p); Ii) + bl)
, (2)

where {al, bl}
L
l=1 are patch experts [30] learned using SVM

by cross-validation. Φ(·) is the feature vector with a possi-

ble choice of SIFT, HOG, LBP, etc.

As illustrated in Figure 2, to simulate the appearance

variation and obtain more robust fittings, we sample pertur-

bations {∆pij} around the ground truth p∗
i and arrange re-

sponse maps as a tensor {Al(p
∗
i +∆pij ; Ii)}

M,N
i=1,j=1, where

i and j count images and perturbations, respectively.

It have been proved that the response maps extracted

from different images lie in a low-dimensional manifold

embedded in the high-dimensional feature space [2]. There-

fore, similar to the shape representation, we can apply prin-

ciple component analysis on the tensor to obtain a set of

mean appearance and eigenvectors {Ma
l ,V

a
l }

L
l=1 for facial

parts representation. The whole face is then modeled as
[

cT1 ; · · · ; c
T
L

]T
, where the appearance parameters cl is cal-

culated by fast projection:

cl = (Va
l )

−1(Al(p; Ii)−M
a
l ). (3)

Now we can model an instance face using shape parame-

ters p and appearance parameters
[

cT1 ; · · · ; c
T
L

]T
. Different

from former approaches [43, 47] that directly concatenate

feature vectors for the high-dimensional representation, our

part-based representation is highly compact and efficient.

Besides, it is robust to variations even for unseen images

considering the generative nature of parametric models. All

these merits facilitate the incremental representation adap-

tation which will be explained soon in Section 3.3.
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3.2. Discriminative Fitting

The goal is to learn a cascade of non-linear mappings

from the part-based appearance representation x(p; I) to

the shape parameter update ∆p. We refine the shape pa-

rameter p from an initial guess p0 to the ground-truth p∗

step by step:

pk+1 = pk + x(pk, I)rk + bk, (4)

where {rk,bk} are regressors at step k. Let ∆pk
ij = p⋆

i −

pk
ij , the regressors can be obtained by solving least square:

argmin
rk,bk

M
∑

i=1

N
∑

j=1

||∆pk
ij − x(pk

ij ; Ii)r
k − bk||2, (5)

with very efficient closed-form solution:

r̃k =
[

x̃T x̃+ λI
]−1

x̃T∆pk, (6)

where r̃k =
[

rk
T
bkT

]T

, x̃ =
[

x(pk; Ii)
T
1

]T

, and λI is

used for Ridge Regression.

Note that former approaches [1, 6] also employ boosted

regression for discriminative fitting. However, it is difficult

to extend the boosting framework for personalized model-

ing as updating a large number of week regressors would

be extremely time-consuming. In contrast, our approach is

easy to train, fast in test, and can be effectively online up-

dated in parallel. We leave the details in Section 3.4.

3.3. Incremental Representation Update

Given the offline trained shape representation {Ms,Vs}
and part-based appearance representation {Ma

l ,V
a
l }

L
l=1,

we propose to incrementally update both the shape and ap-

pearance subspace for personalized representation in a uni-

fied framework.

Suppose the offline model is trained on m offline data

TA =
[

O1, · · · ,Om

]

with meanMA and eigenvectors VA.

Given n new online observations TB =
[

O1, · · · ,On

]

with

meanMB , our task is equivalent to efficiently compute the

SVD of the concatenation
[

TA TB

]

= U ′Σ′V ′T .

It is infeasible to directly calculate the SVD, since the

entire offline training data need to be stored and computed

online, which inevitably results in extensive computational

cost. Instead, we follow the motivation of the sequential

Karhumem-Loeve (SKL) algorithm [17, 27] to rewrite the

concatenation as:

[

U E
]

[

Σ UT T̂B

0 E(T̂B − UUT T̂B)

] [

V T 0

0 I

]

, (7)

where T̂B =
[

TB

√

mn
m+n

(VB − VA)
]

, E = orth(T̂B −

UUT T̂B). Then we only need to perform SVD on the mid-

dle term instead of the entire concatenation

TC = Ũ Σ̃Ṽ T , TC =

[

Σ UT T̂B

0 E(T̂B − UUT T̂B)

]

. (8)

By inserting TC back to Equation 7, we have

[

TA TB

]

=
([

U E
]

Ũ
)

Σ̃

(

Ṽ T

[

V T 0

0 I

])

, (9)

and we can update mean and eigenvectors instantly

MAB =
m

m+ n
MA +

n

m+ n
MB ,

U ′ =
[

U E
]

Ũ , Σ′ = Σ̃.
(10)

Let d denotes the length of observation and give the

fact that m ≫ n, compared with the naive approach, the

proposed subspace learning can significantly reduce space

complexity from O(d(m + n)) to O(dn) and cut down the

computational complexity from O(d(m + n)2) to O(dn2).
This approach fits the proposed part-based representation

very well, which is critical to incrementally construct the

personalized models.

3.4. Fitting Adaptation in Parallel

Once the representation model is updated, the fitting

model needs to be adapted instantly to catch up the online

changes. In cascade regression, computing r̃k depends on

r̃k−1. Directly adapting the cascade of regressors in a se-

quential order would lead to very low efficient performance.

To address this issue, we follow [2] to decouple the depen-

dence between successive regressors by directly sample pk

from a norm distribution:

pk ∼ N (p⋆, Λk), (11)

where Λk is the variation which can be learned offline. Once

we flat the cascade of regressors, all mappings can be simul-

taneously updated in parallel.

We first compute x̃A, r̃A and RA =
[

(x̃A)
T r̃A + λI

]−1

offline by Equation 6. After the representation model is

updated, we sample ∆pB based on Equation 11 and re-

calculate the new representation x̃B . Then, we adapt r̃A
to r̃AB using incremental Least Square proposed in [2]

PAB =
[

x̃BRAx̃
T
B + I

]−1
,

QAB = RAx̃
T
ABPABx̃B ,

RAB = RA −QABRA,

r̃AB = r̃A − PAB r̃A +RAB(x̃B)
T∆pB .

(12)

By decoupling the dependence of cascade regression,

given the fact that d ≫ n, the cost of matrix inversion in

Equation 12 is significantly reduced from O(d3) to O(n3)
compared with Equation 6. Besides, instead of storing the

entire X̃A, it only needs to maintain a small X̃B , which is

very efficient for online application.
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3.5. Hybrid Fitting Evaluation

Blind person-specific adaption using erroneous fittings

will inevitably lead to model drifting. To overcome this is-

sue, we leverage both part and holistic constraints for mis-

alignment detection.

The part fitting evaluation is designed based on the

Bayesian inference framework. Since every landmark is

supported by pixels in its neighborhood, we can evaluate the

fitting quality using a Mixture of Gaussian (MoG) model:

t =
∑

z∈w(ŝ;I)

p(tl = 1|z; I)p(z|ŝ), (13)

where ŝ is the estimation of the landmark location, w(s; I)
is the local window centered at the landmark s. The first

term is the element-wise value of local response maps de-

fined in Equation 2, where tl = 1 denotes the l-th landmark

is correctly aligned and tl = 0 denotes misalignment. The

second term depicts the Euclidean distance between ŝ and

z, which is modeled using a Gaussian distribution:

p(z|ŝ) ∼ N (0, ||z − ŝ||2), (14)

where ||z − ŝ||2 is the Euclidean distance. Let φl = p(tl =
1|z; I), we have:

yl =
∑

z∈w(ŝl,I)

φlN (0, ||z − ŝl||2). (15)

The landmark is correctly aligned when yl < τl, where τl is

a threshold tuned offline by performing cross-validation.

The holistic evaluation is performed by applying a linear

SVM classifier on the holistic facial texture. More specif-

ically, we warp training images to the mean face accord-

ing to ground-truth annotations to get shape-free textures

[9]. These textures are labeled as positive samples while

the negative samples are generated in the same way but with

shape perturbations introduced. The fitting results need to

be qualified by both part and holistic evaluation to become

candidates used for incremental model adaptation.

To summarize, we illustrate the testing flow of our ap-

proach in Algorithm 1. We use two parallel thread to pro-

cess face alignment and model adaptation, respectively. We

also use parfor-loops to further accelerate the speed. More

specifically, the update thread maintains a candidate queue

Q. The fitted shape of each frame is pushed into Q if it

passed the hybrid evaluation. Once Q is full, the represen-

tation subspace and cascade mappings are updated simulta-

neously using all candidates in the queue. We then empty

Q to prepare for next batch update.

4. Experiments

In this section, we first introduce datasets and settings,

and then conduct experiments in two aspects: (1) Compar-

ison with previous work. (2) Algorithm validation and dis-

cussion.

Algorithm 1 Sequential Face Alignment

Alignment Thread:

1: Given I, {Ms,Vs}, {Ma
l ,V

a
l }

L
l=1, {rk,bk}Kk=1

2: for k ← 1→ K do

3: Compute s using {Ms,Vs}
4: parfor l← 1→ L do

5: Compute cl using {Ma
l ,V

a
l } by Eqn 3

6: end parfor

7: Compute pk+1 using {rk,bk} by Eqn 4

8: end for

9: Evaluate {I,pK} using hybrid fitting evaluation

10: if Success then

11: Push {I,pK} into Q
12: end if

Update Thread:

1: Initialize Q to empty

2: while 1 do

3: if Q is full then

4: Update {Ms,Vs} using Q by Eqn 10

5: parfor l← 1→ L do

6: Update {Ma
l ,V

a
l }

L
l=1 using Q by Eqn 10

7: end parfor

8: parfor k ← 1→ K do

9: Update {rk,bk} using Q by Eqn 12

10: end parfor

11: Empty Q
12: end if

13: end while

4.1. Datasets and Settings

The public benchmark image datasets are utilized to train

the offline model, and the tracking performance is evaluated

in both experimental sequences and in-the-wild videos from

YouTube.

MultiPIE [11] contains images of 337 subjects with dif-

ferent poses, expressions and illumination. We collected

1300 images with landmark annotations, which include 13

different poses from different subjects.

LFPW [3], Helen [16] and AFLW [14] are image

datasets collected in wild conditions, which present chal-

lenges in different aspects. We downloaded 1035 im-

ages from LFPW, 2330 images from Helen and 4050 im-

ages from AFLW. These images together with images from

MultiPIE are used to compose an all-in-one static image

datasets which contains 8715 images in total.

FGNET [10] and ASLV [18] are experimentally

recorded videos with head movements and expression vari-

ations. FGNET contains 5 sequences of a male subject with

totally 5000 frames. while we select 10 sequences of a fe-

male subject with totally 2178 frames from ASLV.

YtbVW contains 6 videos downloaded from YouTube.
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Table 1: Frome left to right: average Norm RMSE on (a) FGNET and ASLV, (b) YtbVW. The proposed method has the best

performance except on Ytb06, where the serious image blurring impeded the online adaptation of our approach.

(10−2) FGNET ASLV

RLMS [30] 5.27 7.53
SDM [43] 4.41 5.77
ESR [6] 4.11 5.36
IFA [2] 4.77 6.13

RLB [26] 3.94 5.25
OURS 3.81 4.21

(10−2) Ytb01 Ytb02 Ytb03 Ytb04 Ytb05 Ytb06

RLMS [30] 9.22 10.9 7.85 13.7 11.9 10.2
SDM [43] 8.54 7.62 6.22 8.60 8.11 7.69
ESR [6] 7.17 6.03 5.56 9.21 6.85 6.93
IFA [2] 7.70 7.91 6.05 9.72 8.46 8.15

RLB [26] 6.79 6.22 5.41 8.27 6.36 6.74

OURS 5.03 5.15 3.68 6.58 6.11 7.53
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Figure 3: Frome left to right: cumulative norm RMSE distribution curves on (a) FGNET, (b) ASLV and (c) YtbVW in batch.

These videos are extremely challenging due to the unpre-

dictable variations in pose, expression, illumination, and

occlusion. We manually labeled totally 2150 frames with

49-landmarks for the purpose of qualitative analysis.

We train multi-view models for our approach based on

yaw intervals: left [−90◦,−30◦), frontal [−30◦, 30◦] and

right (30◦, 90◦]. The image registration [30] is performed

by warping all images to a reference 2D shape with an inte-

rocular distance of 50 pixels to remove any 2D rigid move-

ment [23]. HoG feature is used to best balance the perfor-

mance and efficiency. We empirically set the size of the

patch expert and the local support window as 11 × 11 and

21 × 21 respectively. We sample 10 perturbations for each

training image with the standard deviations of±0.1 for scal-

ing,±10◦ for rotation,±10 pixels for translation and 1.5 for

non-rigid deformations. The length of Q is set to 5 for the

batch update. Normalized Root Mean Square Error (Norm

RMSE) is used to measure the tracking accuracy.

4.2. Comparison with Previous Work

Five approaches that report achieving state-of-arts per-

formance are employed for quantitative comparisons:

• Regularized Landmark Mean-Shift (RLMS) [30].

• Supervised Descent face alignment (SDM) [43].

• Explicit Shape Regression face alignment (ESR) [6].

• Incremental Face Alignment (IFA) [2].

• Regressing Local Binary Features (RLB) [26].

For our method, we use the all-in-one dataset to train

the representation and fitting models. For RLMS, ESR and

RLB, we implement them in a multi-view tracking scenario

and perform the training on the same dataset. For IFA and

SDM, we use the pre-trained models provided by the au-

thors to achieve the best performance.

Comparison on FGNET and ASLV we first compare

different methods on constrained videos. The comparisons

in Table 1a show that our approach has the average fitting

errors of 0.035 and 0.042 on the two datasets, which are

lowest among all the methods. The cumulative error distri-

butions in Figure 3a and 3b prove again that the proposed

method outperforms others by a substantial margin. We also

notice that RLB and SDM have better performance than

RLMS and IFA. A possible reason is the explicit 2D shape

used in RLB and SDM is more flexible than the constrained

3D shape used in RLMS and IFA, which enables more ac-

curate fittings when large pose and violent expression exist.

However, they still cannot provide results as robust and ac-

curate as ours, for they totally rely on offline models and

lack the capability to follow the intensive online changes.

Comparison on YtbVW we then test all the methods

on the extremely challenging unconstrained videos. From
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Figure 4: Examples of the person-specific tracking results of the proposed method on Ytb01,02,03,04,05,06 from left to right

top to down. The results are very robust under extreme violent variations in pose, expression and illumination condition.

Figure 5: Examples of the tracking results on FGNET (left) and ASLV (right). The first row shows person-specific tracking

with the online adaptation of both the representation and fitting models while the second row shows tracking without any

model update. Notice the substantial improvement of the fitting accuracy especially around eyebrows, mouth and face

contour.
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Figure 6: Frame-wise Norm RMSE with and without the model update on FGNET (left) and ASLV (right).

the experiments, we can observe: First, Table 1b shows

that our approach achieves the best performance in all se-

quences except Ytb06 where serious image blurring occurs.

The reason is the proposed hybrid evaluation could not get

enough credit from the blurring frames for selective model

update, which impedes the process to construct the person-

specific model and deteriorates the accuracy. Second, com-

pared with the performance on FGNET and ASLV (Figure

3a and 3b), the advantage of our approach is more signif-

icant on YtbVW shown by Figure 3c, where exists highly

dynamic head movements, expression variations, illumina-

tion changes and partial occlusions. This result proves that

our approach can better handle wild data than others due to

person-specific modeling. Figure 4 shows some examples.

4.3. Algorithm Validation and Discussion

We verify the effectiveness of different components of

the proposed approach by the following set of experiments.
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Table 2: Percentages of frames with Norm RMSE less than

given levels on FGNET and ASLV under four settings: (1)

turn off model update; (2) update only the rep. model; (3)

update only the fit. model; and (4) update both models.

Dataset Update < 0.04 < 0.06 < 0.08

FGNET

Off 69.3% 88.7% 95.2%
Rep. 78.2% 93.1% 95.6%
Fit. 84.0% 96.4% 98.5%

Rep. & Fit. 91.8% 97.0% 99.4%

ASLV

Off 36.7% 57.9% 78.1%
Rep. 62.9% 78.0% 89.4%
Fit. 58.2% 73.3% 91.2%

Rep. & Fit. 68.7% 84.6% 93.5%

With and without model update The goal of this exper-

iment is to investigate the relation between the model adap-

tation and the tracking accuracy. We use 100 images from

MultiPIE to train the offline model. The reason is that the

less well-trained model with limited representation and fit-

ting power, can reveal the performance variations in a better

way than a well-trained one. Two clips of 300 frames with

most intense changes from both FGNET and ASLV are used

for the experiments. We test the trained models with two

settings: (1) with both the representation and fitting mod-

els adapted, and (2) without any model adaptation. The

frame-wise Norm RMSE in Figure 6 shows that, both meth-

ods have comparable accuracy at the beginning. The online

method begins to outperform the offline method as model

adaptation is effective. The superiority becomes more sig-

nificant when intensive variations and partial occlusions ex-

ist (around frame 200 of FGNET and frame 150 of ASLV).

Examples of the comparison are shown in Figure 5. The re-

sult demonstrates that our approach can achieve robust and

accurate tracking even with less well-trained offline models.

Update either representation or fitting model Then we

carried out experiments on the full datasets of FGNET and

ASLV with four online settings: (1) turn off model update;

(2) update only the representation model; (3) update only

the fitting model; and (4) update both models. The aver-

age tracking errors are recorded in Table 2. It confirms the

validity of the proposed method from two aspects. First,

updating both models has the best accuracy compared with

the rest settings, which reclaims the effectiveness of the pro-

posed model adaptation in person-specific tracking. Sec-

ond, there is a substantial performance gain in accuracy be-

tween updating both models and updating either one while

keep the other one fixed, which proves the necessity to si-

multaneously update both models in a uniform framework.

Local and global fitting evaluation We validate the pro-

posed hybrid fitting evaluation on MultiPIE, LFPW, He-

len and the all-in-one dataset. As illustrated in Figure 2,

we label images with gound-truth shapes as positive and

images with perturbed shaped as negative. 10-fold cross-

validations are performed on each dataset for quantitative

analysis. The percentage of images that are correctly classi-

fied as correct (ground-truths) or erroneous (perturbations)

by local and hybrid evaluators are reported in Table 3. It

shows that the local fitting evaluator performed well on

the experimental dataset (MultiPIE), but deteriorated dras-

tically (> 10%) on wild datasets (LFPW and Helen). How-

ever, the hybrid evaluation can significantly boost the ac-

curacy especially in unconstrained conditions, which high-

lights its capability to distinguish well fittings from outliers

to alleviate drifting.

Table 3: Average fitting evaluation accuracy.

Evaluator MultiPIE LFPW Helen All-in-One

Local 87.9% 76.3% 71.6% 75.3%
Hybrid 93.7% 85.5% 79.0% 84.7%

Comparison of running time We compare the speed of

different methods on YtbVW in Table 4. RLMS [30] and

IFA [2] are used for the comparison since they are imple-

mented in Matlab, the same as ours. It shows that when

turning the model adaptation off, the proposed method and

IFA, both of which use regression-based fitting models, are

3 to 4 times faster than RLMS which uses optimization

based fitting model. Besides, our method is faster than

IFA because the cascade of linear regression framework is

more efficient than the boosted regressors. Moreover, even

equipped with the online model adaptation and the hybrid

fitting evaluation, our approach still has a comparable speed

with the very efficient RLMS (142 ms to 116 ms). It is

reasonable to expect our method to achieve real-time per-

formance with better implementation other than Matlab.

Table 4: Average running time per frame in ms on YtbVW.

RLMS [30] IFA [2] OURS (off) OURS (on)

116± 22 43.9± 14 32.4± 11 142± 27

5. Conclusion

In this paper, we exploit incremental learning for se-

quential face alignment in wild conditions. Our approach

achieves person-specific modeling by incrementally updat-

ing the representation subspace and simultaneously adapt-

ing the cascade mappings in parallel. Both part and holis-

tic descriptors are used for erroneous detection, which sig-

nificantly alleviate the drifting issue. Experimental results

on multiple datasets have validated our approach in differ-

ent aspects and demonstrated its superior performance com-

pared with the state of the arts.
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