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Abstract

Camera-based lane detection algorithms are one of
the key enablers for many semi-autonomous and fully-
autonomous systems, ranging from lane keep assist to level-
5 automated vehicles. Positioning a vehicle between lane
boundaries is the core navigational aspect of a self-driving
car. Even though this should be trivial, given the clarity
of lane markings on most standard roadway systems, the
process is typically mired with tedious pre-processing and
computational effort. We present an approach to estimate
lane positions directly using a deep neural network that op-
erates on images from laterally-mounted down-facing cam-
eras. To create a diverse training set, we present a method
to generate semi-artificial images. Besides the ability to dis-
tinguish whether there is a lane-marker present or not, the
network is able to estimate the position of a lane marker
with sub-centimeter accuracy at an average of 100 frames/s
on an embedded automotive platform, requiring no pre- or
post-processing. This system can be used not only to esti-
mate lane position for navigation, but also provide an effi-
cient way to validate the robustness of driver-assist features
which depend on lane information.

1. Introduction

Modern cars incorporate an increasing number of ad-
vanced driver assist features such as lane keeping, automatic
emergency braking, automatic lane following on highways.
Fully autonomous driving cars are the main focus of re-
search in all automotive and high-tech industries. A key
enabler for these technologies is environmental perception,
for which a wide range of sensors are employed. Camera
based lane detection is one of the key components for many
of these features. Allowing the car to determine its current
position in the lane is a foundation for any subsequent lane
departure detection and path/trajectory planning.

Many proposed methods for lane detection use tra-
ditional computer vision techniques, often incorporating
highly-specialized and hand-crafted features combined in

a model-based approach. This has two disadvantages: (i)
Position estimation is dependent on accurate segmentation
which is computationally intensive. (ii) Such a system
would not lend itself to easy scalability because of road
scene variations. Using a deep neural network to estimate
lane positions, eliminates the need for segmentation. An-
other major advantage of deep neural networks is the fact
that they do not rely on application specific or hand-crafted
features, as they are able to implicitly learn efficient feature
representation for the application at hand during training.

Virtually all approaches use a front-facing camera to per-
form lane detection. This camera configuration does not
provide an optimal view of the lane markings, as it also
captures the whole front facing scene, including all possi-
ble clutter. We propose to use a camera setup with two
laterally-mounted cameras, which provide a clear and un-
cluttered view of the lane markings for training.

Our main contribution: The proposed deep neural net-
work is able to reliably estimate the position of lane mark-
ings with centimeter-precision in an end-to-end approach
using a classification architecture. We describe the prob-
lem formulation, the network architecture and the artificial
data generation process in detail, which was employed to
normalize the data distribution across the different classes.

The remainder of this paper is structured as follows: Sec-
tion 2 provides an overview of recent vision based lane de-
tection approaches. A brief summary on deep neural net-
works is given in 3. In Section 4 we present our approach
to lane detection using laterally-mounted down-facing cam-
eras and deep neural networks. We describe the network ar-
chitecture, our labeling scheme and the artificial data gener-
ation in detail to allow reproducibility. Section 4.5 contains
an extensive evaluation of our approach. In Section 5 we
present a method to obtain the lane orientation using our
neural network. We conclude the paper with Section 6 de-
scribing a summary and road-map for future work.

2. Related Work

Lane detection systems have been studied for more than
20 years [16], with many proposed lane detection algo-
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rithms being model-driven approaches. Popular models are
splines [1], clothoids [10] or cubic polynomials [19, 24].
To reconcile the model with an input image, many existing
algorithms rely on hand-crafted visual cues, like the struc-
ture tensor as employed by Loose et al. [19] and Smuda et
al. [24], the bar-filter proposed by Zeng et al. [25], color
based features as studied by Chiu et al. [6] or ridge fea-
tures proposed by Lopez et al. [20]. Some authors combine
such hand-crafted features with a traditional hough trans-
form [26, 18]. In order to track the lane model parame-
ter, researchers have used Particle or Kalman filters, fus-
ing temporal information from the image and the vehicle’s
ego-motion [8, 15, 25]. A general overview of road or lane
detection systems is given by Hillel et al. in [3].

In the recent years, several deep learning based methods
for lane segmentation have been proposed [17]. Gopalan et
al. evaluate the performance of neural networks in a boost-
ing framework, combining a number of weak classifiers to
detect lane markers in a sliding window approach [12]. Kim
et al. propose a similar method, in which a convolution
neural network is combined with the RANSAC algorithm
to detect the position of lane markings [14]. Here the con-
volutional neural network is used merely as an image en-
hancement function. Huval et al. study the employment of
a convolutional neural network that performs detection and
classification in a single-forward pass [13]. In contrast to
our approach this method only operates at 10 Hz and re-
quires extensive post-processing to obtain the position of
the lane markers. A number of deep learning based meth-
ods for road surface segmentation have been proposed by
Chen et al. [5], Badrinarayanan et al.[2], Brust [4] et al.
and Li et al. [17]. Although these methods seem to produce
satisfactory results for pixel-wise scene segmentation, they
require additional post-processing to determine the position
of lane marker images.

3. Background

Deep Neural Networks have gained tremendous at-
tention in recent years, especially since the ascent of
Imagenet[9], as they have outperformed traditional machine
learning approaches in challenging tasks like image classi-
fication and speech recognition. In some cases, deep neural
networks have even outperformed humans at classification
tasks [7]. More specifically, neural networks are compu-
tational graphs with input nodes, hidden layers and output
nodes. While much of the work using deep learning has
been focused on classification, there has been recent interest
in extending the capability of neural networks to localizing
objects in the image. Some prominent works of research
include [23],[1 1], and [22]. However, much of this work re-
quires image pre-processing, post-processing or is compu-
tationally intensive. We present a neural network technique
that directly estimates the lane position in the image as the

Figure 1: Our setup uses laterally-mounted camera looking
downward onto the lane markers

output, bypassing any additional processing.

4. Lane Position Estimation

DeepLanes is a deep neural network that is designed to
perform end-to-end lane detection in a simple and unified
framework. In the following, we describe the camera setup,
define the lane detection problem and requirements in more
detail. Subsequently, we describe our network architecture
and the process of generating semi-artificial data to help im-
prove the network’s performance.

4.1. Camera Setup & Pre-processing

Although virtually all proposed lane-detection systems
use front-facing cameras, this camera setup might not al-
ways allow for the best possible view of the lane markings.
We proposed a different location for the camera placement,
to allow for a close-up and uncluttered view of the lane
by using two laterally-mounted down-facing cameras as de-
picted in Figure 1. This setup allows us to exclude most of
the scene clutter that is typically captured with front-facing
cameras, thus enabling us to focus on the lane-markings
only. We capture RGB images at a resolution of 240 by
360. The only pre-processing we perform is to correct the
radial distortion caused by the wide-angle lens.

4.2. Problem Definition

Computer vision based solutions are used in many
Advanced Driver Assistance Systems (ADAS) and Au-
tonomous Vehicle (AV) features which involve detection of
lane positions. This is often challenging based on road con-
ditions, shadows, spurious reflections, differences in illumi-
nation, perspective distortions based on angle of view, vari-
ations in height of the camera above the ground and many
others. Additionally, there are significant differences in the
appearance of lane markers based on type: double, single,
broken or solid markers with a number of possible colors.
While primitive computer vision techniques like adaptive
thresholding of image pixels yield insufficient results, de-
signing robust hand crafted features requires tedious mining
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Figure 2: This Image shows our labeling scheme. The label
t; €10,...,316] for image X; corresponds to the row with
the pixel of the lane marking that is closest to the bottom
border of the image. Images which contain no lane marking
are assigned to class 0. The arrows point to the image row
containing the border of the marking facing the car.

and time consuming fine-tuning.

As lane markings can have variable width, specifying the
exact location of a lane marking in a camera image may be
ambiguous. For our camera setup, we establish a consistent
definition of the lane markings position in the camera im-
age as follows: the row of the input image that contains the
pixel of the lane marking closest to the bottom border of the
image, which in turn, corresponds to the car’s shoulder in
our camera setup. This idea is illustrated in Figure 2. Note
that we also take images with multiple parallel lane mark-
ings and varying color into consideration. Consistent with
this convention, in cases where parallel lane markings are
visible in the image, we want to predict the position of the
lane marking that is closet to the car’s shoulder. Addition-
ally, we explicitly capture and determine situations where
no lane marking is visible in the image, by reserving a com-
ponent in the network’s output vector to handle this case.

We formulate the task of estimating the lane position
as a classification problem. In the following, image 7 is
denoted as X;. For a given image X;, the deep neu-
ral network computes a softmax probability output vector
Y; = (yo,- - -, ys316)- Entry yy in Y; corresponds to the prob-
ability that row k in image X; contains the position of the
lane marking. We ignore a small part of the image at the top
and bottom where the lane marker would only be partially
visible, hence Y; has 316 elements although the input image
has a height of 360. Component ¥ in the probability vector
Y, is reserved for situations where there is no lane marking
visible in the image. We denote the ground truth for image

X ; ast;.

For inferring the position of the lane marking, the input
image is fed through the network and the estimated position
of the lane marking e; for image X; is assumed to be in the
image row corresponding to the entry in Y; with the highest
probability:

e; = argmaxy; D

0<;<316

This is an end-to-end solution because of the lack of inter-
mediate steps. Given raw input image, the network directly
yields an estimate of the lane position with respect to the
vehicle. Although by this setup the network is only able to
estimate the lateral displacement of the lane marker, Section
5 will present a technique to also obtain the orientation of
the lane marker.

4.3. Network architecture

In the following we describe the DeepLanes network ar-
chitecture, which is depicted in Figure 3. We paid atten-
tion to designing a network with minimal memory footprint
and fast execution time, in order to allow for execution on
embedded automotive compute platforms with scarce re-
sources. Our neural network takes color images with a di-
mension of 240 x 360 and has the following layers.

The input is first fed through a convolutional layer, con-
sisting of 32 filters with size of 18 x 18 and stride 6. Al-
though it usually is difficult to argue or justify choices of
hyperparameter in deep learning applications, for this appli-
cation we chose a large filter size that roughly corresponds
to half the width of a lane marking in the input image. The
second convolution layer has a filter size of roughly half the
previous convolution layer. Both convolution layers are fol-
lowed by normalization and 3 x 3 pooling layer. The output
of the convolution layers are fed into two fully connected
layers with 2048 parameters. The dropout technique with a
rate of 0.5 is applied in between the fully connected layers
as a regularization measure. To obtain a probability distri-
bution, the softmax function is applied to the output of the
last fully connected layer with 317 outputs: 316 possible
classes for lane positions and one class for the absence of
lane marker. Rectified linear units are used as activation
functions.

4.4. Artificial Data Generation

For training the network, we obtained a real world data
set with over 80000 images. A view at the class histogram
for the initial training set, which is depicted in Figure 4 re-
veals a problem with the data set: many border cases have
only little representatives while the lane markings in the
middle of the image dominate the histogram. We believe
this is due to the natural habit of the driver trying to stay in
the center of the lane while the training data was captured.
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Figure 3: The DeepLanes network architecture
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Figure 4: This plot shows the distribution of the initial train-
ing set. As only a small number of images with the lane
markings at the extremeties of the image have been ob-
served, a semi-artificial data set was needed to fill these

gaps.

In order to fill these gaps in the histogram and thereby pro-
viding more diverse examples to the neural network during
training, we synthesized an additional 40000 images. Mu-

(© (@

Figure 5: This Figure shows examples of the artificially
generated data. Using a real world background, various
types of lane markings have been artificially placed to syn-
thesize regular lane markings (a,b) as well as varying light
conditions (c, d).

rali et al. reported a deep neural network classifier for traffic
signs that has been trained on purely artificial data and gen-
eralizes well enough to classify signs from real-world im-
ages. [21]. Generating artificial data has a number of advan-
tages. First of all, establishing a real world dataset is time
consuming, cumbersome and expensive. While it is fairly
easy to collect raw data recordings, it is very time consum-
ing for humans to label the data for ground truth generation.
With artificial data, the labels can be generated automati-
cally. Besides the ability to generate arbitrary amounts of
data, artificial data generation also allows us to control the
class distribution. Generating artificial data for the task of
lane detection with a front facing camera may be very dif-
ficult, as all types of scene clutter have to be incorporated.
A major advantage of our camera setup is the fact that it
allows easy generation of artificial data for augmentation.
Our data generation mechanism relies on images from
the human labeled data set that contain no lane markings, on
which we synthesize the lane markings We draw two num-
bers m,n from a uniform distribution spanning the whole
range of possible lane marking positions. The randomly
picked numbers are each associated with a position on the
left and right borders of the image. Using the OpenCV com-
puter vision library, we draw lines connecting the points and
the line pixel values are averaged with the background pix-
els in order to mimic the road texture. We varied the color
as well as the width of the lane markings to capture a broad
variety of possible situations. Using this simple scheme,
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we generate a variety of scenarios including partially in-
terrupted, parallel and scattered lane markers. Some vari-
ance in the data is induced by changing lighting conditions
and shadows. This was achieved by basic image processing
transformations to simulate different lighting conditions, as
shown in Figure 5c. Finally, in order to mimic shadows cast
on the lane markings, we reduced pixel intensities by a con-
stant value in parts of the image, as illustrated in Figure 5d.

The final set used for training the neural network consists
of |T| = 120,000 images, with 80000 human labeled and
40000 semi-artificial images.

4.5. Experimental Evaluation

We trained the network using the open source deep learn-
ing framework Caffe on a Nvidia Digits DevBox. The initial
learning rate of aig = 0.5 is decreased every four epochs by
a;+1 = 0.8c;. As common in deep learning applications,
we used batch processing with a batch size of 128 for the
gradient calculation. We trained the network for 60 epochs,
which takes an average of 2.5 hours on the Digits DevBox.

Figure 6 shows grayscale versions of convolution filters
that the network learned in its first layer. During training,
the network learned filters that seem to respond to the typi-
cal dark-bright-dark, dark-bright and bright-dark transitions
of lane markings.

For evaluating the network’s performance, we used a val-
idation data set V' with |V'| = 39,000 hand labeled images.
Figure 7 shows a plot of the loss function and the accu-
racy over the training epochs. The softmax loss function
reaches a value of 0.016 after 60 epochs. A simple way to
measure the network’s performance is the top-k accuracy.
The top-k accuracy counts a classifier output as correct if
the ground truth is among the top k predicted classes, i.e.
the &k components of Y; with the highest probability. Our
network reaches a final top-1 accuracy of 89.28% and a
top-5 accuracy of 98.55%. For our application, the top-k
accuracy measure can be deceiving, as it does not address
the variance of top-5 predicted lane positions. We there-
fore setup an additional performance measure in Figure 8.
The histogram in Figure 8a analyses in how many cases
the predicted lane marking position e; deviates less than
k € {0,...,9} pixel from the ground truth ¢;. Using the
Iversion bracket [P], which evaluates to 1 if P is true and to
0 if P is false, we define this measure as:

1
Bo= i le—tllle—t] <4 ke {0.....9) @

The evaluation shows that By = 97.85% of the estimated
lane positions deviate 2 or less rows from the ground truth
and E5 = 99.04% deviate 5 or less image rows. Histogram
8b shows the total error distribution e; — t; for all images in
the training set.

Figure 6: Filters in the first convolutional layer
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Figure 7: This plot shows the loss as well as the top-1 and
the top-5 accuracy during the training of LanesNet. Note
that top-1 accuracy only reaches 90% because every devi-
ation from ground truth is penalized for misclassification,
although the predicted position is of centimeter precision.

Given that for the camera setup we used for obtaining
the evaluation data, the real-world distance between each
image pixel only corresponds to a few millimeters, the abil-
ity to estimate the lane position can therefore be regarded
as highly precise. To illustrate this, we plot a selection of
images with |e; — t;| > 5 in Figure 9. Although the pre-
dicted lane position is not on the inside of the marker facing
the car’s shoulder, the estimated position is still very close
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(b) Histogram of deviation between ground truth and network output

Figure 8: Figure (a) shows the fraction of the data set that
was classified within certain error bounds |e; —t;| < k with
k € {0,...,9}. Our network is able to predict the image
row containing the lane marking in 97.85% of the images
within a precision of 2 pixel, in 99.04% of the cases with 5
pixel precision. Figure (b) shows the histogram e; — ¢; for
all 39000 images in the evaluation set.

to the actual lane.

In the following, we also investigate the network’s per-
formance with respect to the Mean Absolute Error (MAE),
which is defined in Equation 3.

MAE = ﬁ2|ei—ti| 3)

3

For our network, the naive Mean Absolute Error was 1.182.
The standard definition given above does not consider that
output y is designed to classify images that contain no lane
marking. In cases where ¢; = 0 and e; # 0 or vice versa, no
sensible distance between estimated position e; and true po-
sition t; can be defined. In order to take these circumstances
into consideration, we also report the Mean Absolute Error
only for the cases where ¢; # 0 A e; # O:

! Z lei—t3|[t; # OAe; # O]

MAE: = S~ o n e, 20]
4)
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Figure 9: This figure shows examples images with a devia-
tion from the ground truth larger than 5, i.e. |e; — t;| > 5.

The evaluation shows that the DeepLanes network has an
MAE; of 1.59, i.e. the error is on average less than two
pixel. The reason for M AEy > M AF is due to the fact that
M AFE5 does not count correctly classified images that con-
tain no lane markings, therefore the denominator is smaller
in MAEs.

As g in the network output vector Y; is reserved for
cases where the input image contains no lane marking, we
also investigated the ability of the network to distinguish
between images with and without a marker. To quantify
the performance, we calculated the network’s precision and
calculated Recall values on these scenarios. We define true
positive as t, = > .[e; = 0 At; = 0], false negative
tobe f, = > .le; # 0At; = 0] and false positive as
> ;lei = 0 Aty # 0]. Recall is then defined in equation 5
and precision in equation 6.

t
Ple=0Jt =0) = —"— :f ®)
54 n
t
P(t =0l =0) = —— ff (6)
P p

The evaluation shows that LanesNet has a precision of
98.96% and a recall of 99.9% in detecting the presence of
lane markings in the input image.

4.6. Execution Time

We evaluate the runtime of a forward pass of DeepLanes
for the Nvidia DIGITS DevBox as well as on the Nvidia
DrivePX. As we propose using two cameras, we evaluate
the average forward pass duration for a single image as well
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(a) (b)

Figure 10: This figure shows the slicing technique for ob-
taining the lane’s orientation. Figure 10a shows the sliced
image and Figure 10b the network’s output for each indi-
vidual slice. Figure 10c shows the result for an image with
a partial lane marking.

as for two images. As Table 1 shows, DeepLanes can run
at an average of 100 frames/s on the DrivePX and at 500
frames/s on the DevBox, establishing real-time capability
running in concurrence with other potential heavy duty al-
gorithms.

Platform 1 Image | 2 Images
Nvidia Digits DexBox 1.7 ms 1.75 ms
Nvidia DrivePX 9.4 ms 10.5 ms

Table 1: Average Forward-pass duration the DeepLanes
network

5. Estimating Lane Orientation

The presented network is able to robustly estimate the
row in the input image containing the lane marker nearest
to the car. This information translates to the lateral distance
of the car with respect to the current lane. Additionally we
extract the lane orientation information as well. The lane
marker can be approximated as a straight line if the region
of interest in the image is small enough. As illustrated in
Figure 10, we divide an input image into five slices that are
resized to meet the network’s input size. Estimating the po-
sition of the lane marking for each slice individually yields
a set of points that can be used to calculate the lane orien-
tation. Figure 10a and 10b show the resulting points on the
individual slices. The approach can be scaled to achieve ar-
bitrary precision by reducing or increasing the number of
slices.

6. Conclusion and Future Work

We present a classification approach using a convolu-
tional neural network that allows estimating the position of

lane marker for input image with respect to the baseline
of the image, when the image is taken from a laterally-
mounted down-facing camera on a vehicle. Our unified
framework approach is a simple, end-to-end solution that
does not depend on tedious pre-processing, post-processing
or hand-crafted features. As the evaluation shows, we are
able to estimate the lane position in 99% of the cases with
less than five pixel error in real-time on an embedded auto-
motive platform. Our speedy and scalable technique can be
applied for realtime navigation as well as robustness test-
ing of driver-assist or automated driving features. In our
future work, an application to the front-facing camera using
projective geometry and exploitation of temporal and ego-
motion information is contemplated.
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