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Abstract

In this paper we present an autonomous system for ac-

quiring close-range high-resolution images that maximize

the quality of a later-on 3D reconstruction with respect to

coverage, ground resolution and 3D uncertainty. In con-

trast to previous work, our system uses the already acquired

images to predict the confidence in the output of a dense

multi-view stereo approach without executing it. This con-

fidence encodes the likelihood of a successful reconstruc-

tion with respect to the observed scene and potential cam-

era constellations. Our prediction module runs in real-time

and can be trained without any externally recorded ground

truth. We use the confidence prediction for on-site qual-

ity assurance and for planning further views that are tai-

lored for a specific multi-view stereo approach with respect

to the given scene. We demonstrate the capabilities of our

approach with an autonomous Unmanned Aerial Vehicle

(UAV) in a challenging outdoor scenario.

1. Introduction

In this paper, we address the problem of UAV-based im-

age acquisition for dense monocular 3D reconstruction with

high-resolution images at close range. The aim is to acquire

images in such a way that they are suited for processing

with an offline dense multi-view stereo (MVS) algorithm,

while at the same time fulfilling a set of quality require-

ments. These requirements include coverage, ground reso-

lution and 3D accuracy and can be assessed geometrically.

However, determining how well the images are suited for a

specific MVS algorithm is much harder to model. To ex-

tract depth from 2D images, MVS approaches have to es-

tablish correspondences between the images. To solve this

challenging task every MVS approach has to make some

assumptions. These assumptions vary from approach to ap-

proach, but the most popular assumptions include saliency,
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Figure 1. Autonomous Image Acquisition. After a manual initial-

ization, our system loops between view planning and autonomous

execution. Within the view planning procedure, we leverage ma-

chine learning to predict the best camera constellation for the pre-

sented scene and a specific dense MVS algorithm. This MVS al-

gorithm will use the recorded high resolution images to produce a

highly accurate and complete 3D reconstruction off-site in the lab.

local planarity and a static environment. If some of these as-

sumptions are violated the MVS algorithm will not be able

to reconstruct the scene correctly. Up to now, this prob-

lem was widely ignored by monocular image acquisition

approaches [8, 22, 41, 31, 2, 27, 35], which often leads to

missing parts in the resulting 3D reconstructions [41, 22].

In this work, we propose a solution for this problem via

machine learning. The main idea is to predict how well the

acquired images are suited for the dense MVS algorithm di-

rectly during the acquisition. While this is already useful

for quality assurance, we take this idea one step further and

use the acquired images to plan the optimal camera constel-

lation with respect to the observed scene structure. Within

this context, we demonstrate that the likelihood of a suc-

cessful 3D reconstruction depends on the combination of

scene structure, triangulation angle and the used MVS algo-

rithm. We further refer to the prediction of this likelihood

as MVS confidence prediction.

This MVS confidence prediction is related but not equal

to the (two-view) stereo confidence prediction, which is

a topic of increasing interest in the domain of stereo vi-

sion [15, 46, 33, 29]. In stereo vision, the confidence en-

codes the likelihood that an already computed depth value

is correct, whereas in our case it encodes the likelihood
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that we will be able to compute a correct 3D measurement

later-on. Despite this difference, the training of both tasks

is closely related and requires a large amount of data. Up

to now, obtaining this training data was a tedious and time

consuming task, evolving manual interaction [24, 14, 28],

synthetic data [6, 34, 28] and/or 3D ground truth acquisi-

tion with active depth sensors [47, 14, 28, 40]. In [29], we

present a new way of obtaining this training data for stereo

vision. The main idea is to use multiple depthmaps (com-

puted with the same algorithm) from different view points

and evaluate consistencies and contradictions between them

to collect training data. In this work, we extend this com-

pletely automatic approach to multi-view stereo.

After training, our system operates completely on-site

(Fig. 1). For estimating the scene geometry, we use

the already acquired images for performing incremental

structure-from-motion (SfM) [21] and incremental updates

of an evolving mesh [20]. Both modules run concurrently in

real-time and deliver the camera poses of the acquired im-

ages and a closed surface mesh representation of the scene.

Based on this information, we plan future camera posi-

tions that maximize the quality of a later-on dense 3D re-

construction. This task falls in the domain of view plan-

ning, which has been shown to be NP-hard [48]. Conse-

quently, a wide range of very task specific problem sim-

plifications and solutions were developed in the communi-

ties of robotics [39, 36, 32, 18, 13, 12, 10, 7, 5, 4, 30, 50,

44, 19, 9, 41], photogrammetry [27, 26, 3, 1] and computer

vision [35, 43, 49, 22, 8, 31, 16]. What kind of simplifi-

cation is chosen strongly depends on the used sensor, the

application scenario and the time constraints. In this work,

we propose a set of simplifications that allows us to com-

pute a view plan in a fixed time-frame. In contrast to ac-

tive depth sensors, a single 3D measurement in monocu-

lar 3D reconstruction requires multiple images to observe

the same physical scene part. Thus our first simplifica-

tion is to remove this inter-camera-dependency by planning

triplets of cameras as independent measurement units. Sec-

ond, we introduce the concept of surrogate cameras (cam-

eras without orientation) to reduce the dimensionality of

the search space. Finally, we lower the visibility estima-

tion time through inverse scene rendering. In contrast to the

works above, our formulation allows us to evaluate a large

number of potential camera poses at low cost, while the run-

time can be adjusted to the acquisition requirements.

In the following, we first describe the training and setup

of our MVS confidence predictor. Then we describe our

fixed-time view planning strategy. In our experiments, we

evaluate the performance and stored information of the con-

fidence predictor on a challenging outdoor UAV dataset. In

the same domain, we finally evaluate our autonomous im-

age acquisition system with respect to quality and complete-

ness of the resulting 3D reconstructions.

2. Multi-View Stereo Confidence Prediction

Given a specific scene structure (e.g. vegetation) and a

camera constellation, the MVS confidence encodes the like-

lihood that a dense reconstruction algorithm will work as

intended. With ”work as intended” we mean that if a scene

part is observed by a sufficient number of cameras then

the algorithm should be able to produce a 3D measurement

within the theoretical uncertainty bounds for each pixel that

observes this scene part [29]. The first matter we address in

this section is how we can generate training data to predict

the MVS confidence without any hard ground truth. There-

fore we extend our approach for stereo vision [29] to multi-

view stereo. Then we outline our machine learning setup

and explain how we can use this setup to predict the MVS

confidence in real-time during the image acquisition.

2.1. MVS Training Data Generation

As it is extremely tedious to come by 3D ground truth,

the basic idea of [29] is to use self-consistency and self-

contradiction from different view points for generating la-

beled training data. This approach is related to depthmap

fusion, but outputs 2D label images instead of depthmaps.

Pixels that are associated with consistent depth values be-

come positive training data, while inconsistent depth values

lead to negative training data. This data is then used for

training a pixel-wise binary classification task. The main

challenge during the training data generation is to keep the

false positive rate (consistent but incorrect) and the false

negative rate (correct but inconsistent) as low as possible,

while labeling as many pixels as possible.

In [29], we start by computing a depthmap for each

stereo pair in the dataset. A single depthmap can be in-

terpreted as the 3D reconstruction of a camera cluster with

two cameras and a fixed baseline. In the case of multi-view

stereo, we can choose an arbitrary number of cameras per

cluster in any constellation. As this general case has too

many degrees of freedom to be estimated efficiently, we

limit ourselves to three cameras per cluster, which is also

the standard minimum number of cameras for most MVS

approaches (e.g. [11, 37]). Within this triplet of cameras,

the most important factor is the baseline between the cam-

eras or more precisely the triangulation angle between the

cameras and the scene. This triangulation angle can be

freely chosen. We want to use this property to learn the

relationship between MVS confidence and the triangulation

angle so that we can choose the right camera constellation

for the presented scene in our view planning approach. In

theory, a large triangulation angle between cameras is ben-

eficial as it reduces the 3D uncertainty. However, in prac-

tice a large triangulation makes it more difficult to find cor-

respondences between the images, especially when the 3D

structure is highly complex. To learn this relationship, we

first generate a large variety of triangulation angles in the
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Figure 2. Consistency voting. A positive vote (center) is only cast

if the reference measurement is within the uncertainty boundary of

the query measurement. A negative vote is either cast if a reference

measurement blocks the line of sight of the query camera (left) or

the other way around (right).

training data. We randomly sample image triplets from a

fixed number (t) of triangulation angle bins, while ensuring

that the images have sufficient overlap. For each of these

camera triplets, we execute the chosen dense MVS algo-

rithm and project the resulting 3D reconstruction back into

the images to obtain one depthmap per image. Using these

depthmaps, we can proceed with the training data genera-

tion in three stages [29].

The first stage has the purpose of reducing the influence

of all consistent but incorrect measurements. In practice,

we can observe that the likelihood that two measurements

of independent 3D reconstructions1 are consistent but in-

correct at the same time decreases as the relative view point

difference increases. Thus, we analyze how well each mea-

surement is supported by reference reconstructions from a

sufficiently different view point. We treat a reference mea-

surement as sufficiently different if the view angle differ-

ence αdiff > αmin or the scale difference sres,query > smin

is sufficiently large. We compute these values as αdiff =
∡(−−−−−→pquerycref,

−−−−−−−→
pquerycquery) and sres,query = resref/resquery with

resx = fx/‖cx − pquery‖, where cx is the mean camera cen-

ter and fx the mean focal length of a camera triplet. If a

reference measurement fulfills one of the two conditions,

we increment the support of the query measurement by one.

Note that as in [29], reference measurements from a similar

view point are only allowed to increment the support once.

In the second stage, we let the parts of the depthmaps

with at least one support vote on the consistency of all

depthmap values. The voting process proceeds analog

to [29]. For each query measurement, we collect posi-

tive and negative votes as shown in Fig. 2. The votes are

weighted with their support and their inverse 3D uncer-

tainty [29]. Based on the voting outcome, all pixels with

at least one vote are then either assigned a positive or a neg-

ative label.

The third stage requires more changes to generalize to

multi-view stereo. While in [29] this stage only has the pur-

pose of detecting outliers, in our case we also have to detect

missing measurements. More precisely, we have to detect if

the MVS algorithm failed to produce any output in a region

13D reconstructions that were produced with the same MVS algorithm

from independent image sets.

where it should have been geometrically possible and use

this case as a negative training sample. For detecting these

missing parts we use a combination of a depthmap augmen-

tation [29] and two surface meshes. We use two meshes

with slightly different object boundaries to account for er-

rors in the meshes. To construct these meshes, we first use

all available images in the dataset to compute a sparse point

cloud [38]. From this point cloud we robustly extract a sur-

face mesh [23, 51], and then shrink and expand this mesh

for our purpose. The shrunken mesh is obtained by per-

forming three iterations of neighbor-based smoothing. In

each iteration a vertex moves half the distance to the av-

erage position of the vertices that share an edge with this

vertex. For the second mesh, we expand the shrunken mesh

again. For this purpose, we compute a vector by averag-

ing the motion vectors of a vertex and its neighbors from

the shrinking procedure. Each vertex is then moved twice

the vector length in the opposite direction of this vector. If

the depthmap augmentations and the two meshes agree that

some part of the scene is missing, the corresponding pixels

are used as negative training samples.

2.2. Machine Learning Setup

For view planning, we want to know which camera con-

stellation will give us a good chance of getting a complete

and accurate 3D reconstruction. To help with this task, we

want to use the already acquired images during the acquisi-

tion. For training, we pose the problem as a pixel-wise clas-

sification task. During run-time, we compute the MVS con-

fidence depending on the triangulation angle and the scene

around the pixel of interest. For this task, we chose Seman-

tic Texton Forests (STFs) [45]. We selected this approach

for three main reasons. First, this approach is very fast in the

execution phase as it operates directly on the input image

(without any feature extractions or filtering). Second, STFs

have shown a reasonable performance in semantic image

segmentation. Third, it is possible to store meta informa-

tion in the leaves of the forest. We use this property to store

the triangulation angle under which a sample was obtain (or

failed to obtain). This does not influence the learning proce-

dure, but allows us to predict the reconstruction confidence

in dependence of the triangulation angle at evaluation time.

During the image acquisition, we want to compute the

MVS confidence in real-time on a specific computer for a

specific high-resolution camera. Thus we provide two ways

to reduce the prediction time to the operator’s needs. First,

we restructure the STF leaf nodes to contain a fixed number

(b) of angular bins with one confidence value for each bin.

Second, we can make use of the property that the confidence

prediction is in general a smooth function for a specific type

of object (see Sec. 4.1.2). Thus, we evaluate the MVS con-

fidence on a regular grid and compute a confidence image

with b channels for each input image.
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Figure 3. View planning. Our algorithm tries to find the k next best

camera triplets for improving the acquisition quality. Next to the

arrows, we show the data communication between our submodules

(M1-M4) in red and in black we show how often this data is com-

puted. S is the set of surrogate cameras, T the set of considered

unfulfilled triangles and C3 the set of camera triplets generated

from the surrogate cameras.

3. View Planning

The aim of our view planning approach is to plan a set

of useful camera poses in a fixed time frame. As the view

planning problem is NP-hard, we have to make several sim-

plifications to constrain the computation time. One of our

most prominent simplifications is that we plan equilateral

camera triplets instead of single cameras. On the one hand,

this lets us directly integrate our MVS confidence predic-

tion and, on the other hand, we can treat each camera triplet

as an independent measurement unit. In Fig. 3 we show an

overview of our approach, which we use to guide the reader

through our algorithm and its submodules. As input our ap-

proach requires a snapshot of the estimated geometry (mesh

and camera poses), as well as the pre-computed MVS confi-

dence images. Further, the operator has to label a region of

interest in one of the images (Fig. 6), and define the desired

quality constraints (ground resolution and 3D accuracy).

Estimation of quality fulfillment (M1). The aim of this

submodule is to estimate how well our desired quality con-

straints are currently fulfilled by the already captured im-

ages. For this estimation, we need the already acquired

images and their camera poses Ct as well as the surface

mesh. First, we bring all mesh triangles within the region of

interest to approximately the same size through iteratively

splitting them until the maximum edge length equals the

average edge length before splitting. Within the region of

interest we then randomly select a fixed number Nt of trian-

gles. Next we determine the visibility information between

these triangles and Ct through rendering the mesh. Based

on the information which cameras see which triangles, we

evaluate how well the desired quality constraints are cur-

rently fulfilled. We compute the fulfillment separately for

each triangle using four fulfillment functions.

(1) The coverage is modeled as a Boolean with fcov = 1
if a triangle is visible in a minimum of c cameras and fcov =
0 otherwise. (2) The resolution requirement (px/m2) is de-

fined as fres = r
rd

(truncated above 1) for a desired reso-

lution rd. (3) The fulfillment of the 3D uncertainty require-

ment is defined as func =
ad√
u

(truncated above 1) for a de-

sired accuracy ad. Here, u stands for the maximum Eigen

value of the covariance matrix related to a triangle’s cen-

troid [17]. (4) The last fulfillment function is the output of

our MVS confidence prediction algorithm fconf (Sec. 2).

For evaluating these functions, we generate all possible

combinations of camera triplets from the cameras that ob-

serve a triangle t (c3 ∈ C3

t ). We then evaluate the combined

fulfillment function as:

f(t, c3) = (αfres + (1− α)func) · fcov · fconf (1)

This formulation allows the operator to define the rela-

tive weight α between desired ground resolution and 3D

accuracy, while the coverage and MVS confidence en-

code the chances of a successful reconstruction. The

overall fulfillment of a triangle t is computed as f(t) =
maxc3∈C3

t
f(t, c3) (2).

Based on the fulfillment information, we now further re-

duce the number of considered triangles to a triangle set

T . We guide this reduction such that we end up with tri-

angles that have a low fulfillment but are well distributed

over the scene of interest. Thus, we randomly select a fixed

number Nv of triangles from a piece-wise constant distribu-

tion, where the chance of selecting a triangle t is weighted

with w(t) = 1 − f(t)/fconf (t). We remove fconf from

the weight to avoid bias towards structures that might not

be reconstructible at all.

Surrogate cameras (M2). In this submodule, we use

the concept of surrogate cameras to estimate the visibility

of mesh triangles from a large number of possible camera

positions. Thus, we first randomly sample a fixed number

Np of 3D positions in the free space of the scene. These 3D

positions represent the camera centers of surrogate cameras.

A surrogate camera has an unlimited field of view and thus

also no orientation at this point (later we will transform this

surrogate camera into an equilateral camera triplet). The us-

age of surrogate cameras allows us to reformulate the vis-

ibility estimation problem and to estimate which surrogate

cameras are visible from a given triangle instead of the other

way around. The benefit of this formulation is that we are

able to control execution time of the visibility estimation

with the number of considered triangles instead of the num-

ber of considered camera poses. This enables us to evaluate

a high number of camera positions at low cost. For each

triangle t ∈ T , we place a virtual camera in the scene. The

camera center of a virtual camera is set to the triangle’s cen-

troid and the optical axis to the triangle’s normal. We set the
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focal length of this camera such that we get a fixed field of

view φ. Now we use the virtual cameras for rendering the

scene, i.e. the mesh and the 3D points that define the cen-

ters of the surrogate cameras. The resulting visibility links

are stored in the surrogate cameras.

Finding the best camera triplet (M3). To find the best

camera triplet at a low computational cost, we guide the

transformation from surrogate cameras to camera triplets

such that we only need to evaluate potentially useful and

feasible camera constellations. Thus, we first compute

the potential fulfillment gain gpot(t) of a surrogate cam-

era with respect to a linked triangle t. Formally, we de-

fine gpot(t) = maxα{f(t, c
3

α)−f(t), 0}, for a hypothetical

equilateral camera triplet c3α, that has the surrogate camera

in its center and where each camera directly faces towards

the triangle. The triangulation angle α defines the distance

between the cameras in the b steps of the predicted MVS

confidence, which we evaluate with the confidence image

of the closest already captured image (with respect to the

surrogate camera) that observes the triangle.

Using this potential gain information, we determine in

which direction the surrogate cameras should face. There-

fore, we perform a weighted mean shift clustering on the

rays towards the linked triangles. As a weight we use the

fulfillment gain and the bandwidth is set to the minimum

camera opening angle. The winning cluster (i.e. the cluster

with the highest potential fulfillment gain) is chosen to de-

fine the general viewing direction of the surrogate camera.

Then we update the visibility information and the potential

gains of the now oriented surrogate cameras.

Given the orientation, we generate b camera triplets for

each surrogate camera, one for each confidence bin. For

each camera triplet c3 we efficiently check the distance to

obstacles [25] and compute the fulfillment gain of c3 as

g(c3) =
∑

t∈T
c3

max{f(t, c3)− f(t), 0}, (3)

where Tc3 are the triangles that are visible from c3. Over all

triplets, we find the best camera triplet as

c3best = arg max
c3∈C3

g(c3), (4)

where C3 is the set of all generated camera triplets2. If

g(c3best) is greater than zero and we have not yet planned k
camera triplets, we add c3best to the set of already acquired

images (Ct) and plan a new camera triplet. Otherwise, we

pass all planned camera triplets with positive gain on to the

flight path optimization.

2 For the implementation, we can drastically reduce the number of eval-

uations by using the potential gain. If we start with the surrogate camera

with the highest potential gain, we can stop if
∑

t
gpot(t) of the evaluated

surrogate camera is zero or smaller than the current best gain.

Flight path optimization (M4). This module minimizes

the travel distance between the camera poses and ensures

that the resulting images can be registered by the geome-

try estimation module. First, we reorder the camera poses

with a greedy distance minimization using the last captured

image as a starting point. Then we check if the taken im-

ages can be connected to the given set of images respecting

the capture sequence. We assume that this is the case if

an image has a minimum overlap omin with at least one of

the previously captured images. If this is not the case we

sample camera poses which fulfill this property along the

trajectory from the closest previously captured camera pose

to the target camera pose. This results in a view plan that

ensures a successful sequential registration of the planned

image set.

4. Experiments

We split our evaluation in two main parts. The first

part evaluates the performance and the information which

is stored by our confidence prediction approach. The sec-

ond part focuses on our autonomous acquisition system and

how it performs in a real world experiment.

4.1. Confidence Prediction

In the first part of this section we benchmark the per-

formance of our training data generation and the prediction

performance of the Semantic Texton Forest (STF) [45] on

the KITTI dataset [14]. In the second part, we use a chal-

lenging multi-view dataset to evaluate what the system can

learn about two different multi-view stereo approaches in

relation to scene structure and camera constellation.

In all our experiments, we used the same STF setup. We

implemented the STF in the random forest framework of

Schulter et al. [42]. We only use STF in its basic form (with-

out image-level prior [45]). This means that the split deci-

sion is made directly on the image data (Lab color space)

within a patch of the size 27× 27. We trained 20 trees with

a maximum depth of 20. For the split evaluation, we used

the Shannon Entropy, minimum leaf size for further split-

ting of 50, 5000 node tests, 100 thresholds and 1000 random

training samples at each node. For all our experiments, we

extracted approximately 4 million training patches for each

class in training.

4.1.1 KITTI2012 Dataset

In this experiment, we apply our approach to the scenario

of street-view dense stereo reconstruction using the KITTI

dataset [14], which provides a semi-dense depth ground

truth recorded with a Lidar.

For learning, we follow the same procedure as in [29]

and use the 195 sequences of 21 stereo pairs of the test-

ing dataset for automatically generating our label images.
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We treat each stereo pair as a distinct cluster and use

a semi-global matcher with left-right consistency check

(SURE [37]) as the query algorithm. As in [29], we evaluate

the label accuracy and the average Area Under the Sparsi-

fication Curve (AUSC), although with a slightly different

setup. While stereo confidence prediction [29] tries to de-

cide which depth values cannot be trusted from an already

computed depthmap, our aim is to predict which kind of

structures cause more problems than others. Thus, we re-

move all regions from the Lidar ground truth, which are not

visible in both color images (including object occlusions).

With this setup we reach a labeling accuracy of 98.7%

while labeling 35% of the ground truth pixels (which is very

similar to the results in [29]). For the sparsification we ob-

tain a relative AUSC of 3.15 (obtained AUSC divided by

optimal AUSC). This means that the AUSC is 39% lower

than random sparsification with 5.15. This is a strong indi-

cation that the system learned to predict regions which are

difficult to reconstruct for the semi-global matcher.

For the matter of completeness, we also analyze the spar-

sification performance of the STF [45] with the exact same

setup as in [29] (including the training data generation).

With this setup STF reaches a relative AUSC of 6.63. It is

not surprising that STF cannot reach the sparsification per-

formance of stereo specific sparsification approaches (e.g.

left-right difference with 2.81), as the STF only uses color

information of a single image and thus has no chance to

reason about occlusions. Nevertheless, the STF was able

to extract some high level knowledge in which regions the

chances of failure are higher and thus still obtains a 31.4%

lower AUSC value than random sparsification (9.65).

4.1.2 Val Camonica Dataset

For the second dataset, we have chosen a reconstruction sce-

nario in a closed real-world domain, where the task is the

3D reconstruction of prehistoric rock art sites in the Ital-

ian valley of Val Camonica. The recorded dataset consists

of over 5000 images of 8 different sites (see supplement),

which contain a well-defined set of 3D structures (mainly

rock, grass, trees, bridges, signs and markers). These struc-

tures dominate nearly all sites in the region (hundreds),

which makes this a perfect example for learning and pre-

dicting domain specific properties of a query algorithm.

For generating camera triplets we used t = 5 triangula-

tion bins. The lowest triangulation angle bin starts at a min-

imum angle of 4◦ and ranges to double that value, where the

next bin starts. On each resulting triplet we execute a query

algorithm three times at different image resolutions (levels

1, 2 and 3 of an image pyramid). We evaluate two query al-

gorithms for the dense 3D reconstruction. The first query

algorithm is based on semi-global matching SURE [37],

but can use more than two views for improving the recon-
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Figure 5. Error histogram on the rock surface. We show the nor-

malized histograms of the error distribution and the 1 σ bound in

which 68.3% of all measurements lie. Grid and F1x20 share the

same error bound.

struction accuracy. In contrast, our second query algorithm

PMVS [11] tries to densify an initial sparse 3D reconstruc-

tion through iterative expansion.

For the quantitative evaluation of this experiment, we

performed leave-one-out cross validation across the 8 sites,

i.e. we train on 7 sites and test on the remaining. This led

to the following classification accuracies: PMVS: 81.1%

(STD: 4.2%) and SURE: 65.3% (STD: 6.1%). Within this

context, we also analyzed the influence of regular grid sam-

pling on the prediction performance. For small grid sizes

the classification error stays nearly the same (relative error

increase is below 1% for 4 pixels), while for larger grid sizes

it declines gradually (below 3% for 16 pixels and below 7%

for 64 pixels). This means that regular sampling can dras-

tically reduce the computational load of the prediction with

only a small decrease of the prediction performance.

Now let us analyze what the system learned about the

two algorithms in relation to scene structures and triangula-

tion angle. In Fig. 4 we show the confidence prediction for

six different structures. From this experiment we can draw

several conclusions. First, the 3D structure of the scene has

a significant influence on how well something can be recon-

structed under a given triangulation angle. The more non-

planar a structure is, the harder it is to reconstruct at large

triangulation angles. Second, the two analyzed approaches

react very differently to a change in triangulation angle.

While for SURE the confidence is always highest for very

small angles, PMVS’ confidence stays constant for smooth

surfaces. In the case of non-planarity, SURE is clearly more

robust than PMVS.

4.2. Autonomous Image Acquisition

To evaluate our image-acquisition approach in this sce-

nario, we first run different view planning algorithms on-

site and then analyze the effective reconstruction output,

which is computed off-site. As we also desire a reconstruc-

tion of the surrounding environment (which is dominated by

vegetation), we use SURE [37] as an MVS algorithm. For

this experiment, we run three versions of the proposed ap-

proach. The first version is our full approach (F5x4), where
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Figure 4. Dependence of the confidence prediction on the triangulation angle and the 3D structure. On the right, we display the patches

(50× 50px) which we used to produce the curves. These curves show the confidence prediction within angular bins (20 bins between min

and max). The curves stop if less than 1% of the collected triangulation angles fall within a bin. For both approaches (SURE and PMVS),

there is a significant difference between smooth surfaces (marker, bridge, stone) and high frequency structures (tree, grass). The predicted

confidence is to some extent correlated with the degree of non-planarity of a structure. While grass viewed from far away is quite easy to

reconstruct, the same grass viewed close up becomes very hard to reconstruct. For both approaches, the chance for reconstructing highly

non-planar structures above 30
◦ is virtually zero.

Init Grid F5x4 F1x20 NP5x4 G+F5x4 G+F1x20 G+NP5x4

cov 53.5± 1.2 56.0± 1.2 65.6± 1.6 66.6± 1.4 56.7± 1.4 69.5± 1.5 67.0± 1.5 57.2± 1.2
fres 17.9± 1.3 43.9± 2.6 42.2± 2.6 47.5± 2.7 29.3± 2.3 52.8± 2.7 55.3± 2.7 46.8± 2.6
func 15.5± 0.3 22.8± 0.4 21.2± 0.5 20.7± 0.5 19.9± 0.5 27.7± 0.5 26.2± 0.4 25.6± 0.4
f 16.7± 0.8 33.4± 1.5 31.7± 1.5 34.1± 1.6 24.6± 1.4 40.2± 1.6 40.7± 1.6 36.2± 1.5

Table 1. Fulfillment statistics in percent. We show the coverage of the region of interest cov, the resolution fulfillment fres and the

uncertainty fulfillment func, as well as the overall fulfillment f as defined in Sec. 2. We display the mean value and the standard deviation

over the three surface meshes. We mark all results within the standard deviation of the best method with a bold fond. In the first column

we show the results with only the 19 initialization images, then we show the four standalone approaches. The last three columns show a

combination of the standard grid approach (Grid) with the other approaches.

Figure 6. Resulting 3D reconstructions. On the top left, we show one of the images acquired by the UAV with the region of interest in

red. The other four columns show all view plans. The blue cameras are regular or triplet cameras, while the pink cameras ensure sufficient

overlap for sequential registration. In the bottom row we show all four reconstructions (the field of view is marked blue in the top left

image). Note that our approach has the best coverage underneath the trees. The point colors vary due to changing illumination conditions.

we let the algorithm plan 4 camera triplets per iteration for

a total of 5 iterations. In the second version (F1x20), we

let our approach plan the same number of total triplets (20)

but in a single iteration, i.e. we disable the incremental ge-

ometry updates. The third version (NP5x4) is exactly the

same as F5x4 but without the prediction to constrain the tri-

angulation angle. As a baseline method, we use grid plan-

ning with 80 percent overlap. All approaches share the same

set of parameters. The fulfillment requirements were set to

c = 3, rd = 8mm and ad = 8mm with α = 0.5. The safety

distance was set to 5 m at a maximum octree [25] resolution

of 2 m and the minimum camera overlap for registration to

omin = 50%. The triangulation angle was binned in b = 9
steps of 5◦ from 0◦ to γmax = 45◦. For the inverse visi-

bility estimation we set the parameters such that the plan-

ning approximately takes 5 seconds per planned triplet, i.e.

Nt = 2000, Np = 5000 and Nv = 200 with φ = 120◦.

This parameters resulted in an effective execution time per

triplet of 5.98 seconds (STD: 2.19) over all experiments on

a HP EliteBook 8570w. The confidence was evaluate on a

regular grid with a step size of 8 pixels, which resulted in

a confidence prediction time of ∼2 sec/image. We acquire
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the images with a Sony Nex-5 16Mpx camera mounted on

an Asctec Falcon8 octocopter.

For this experiment, we focus on one site in Val Ca-

monica, namely Seradina Rock 12C. The rock surface

(17×13 m) is covered with prehistoric rock carvings and is

partly occluded by the surrounding vegetation (Fig. 6). We

placed 7 fiducial markers in circle around the rock of in-

terest and measured them with a Leica total station. These

markers can be automatically detected in the images and are

used for geo-referencing the offline reconstructions [38].

Additionally, a ground truth mesh of the rock (not the sur-

roundings) was obtained through terrestrial laser scanning

(TLS) in the same coordinate system two years before. The

mesh has a resolution of 8 mm edge length and the accu-

racy of the laser scanner (Riegl VZ-400) is 5 mm. We use

this mesh to evaluate the resulting 3D uncertainty.

To evaluate the coverage and the requirement fulfillment,

we first obtain a geo-referenced sparse reconstruction from

all flights on the day of the experiment (∼500 images).

Then we obtain three meshes, one based on [23, 51] and

the two others as described in Sec. 2. As we know that

these meshes will contain errors, we only use these meshes

as a guideline for the evaluation. Within the region of in-

terest, we split all triangles to have a maximum edge length

of 8 cm. For each taken image, we first compute the trian-

gle visibility. Then we produce a depthmap from all SURE

3D points linked to the image. If the measured depth is ei-

ther larger than or within 24 cm of the triangle depth, we

accept the 3D point as a valid measurement of the triangle.

Based on the links of the 3D measurement, we then com-

pute the fulfillment of the triangle analog to Sec. 2. Finally,

this results in a set of fulfillment and coverage scores over

all triangles in the region of interest.

In field, all approaches were initialized with 19 images

taken in grid at a height of 50 m above the lowest point of

the site. The region of interest was marked in one of the ini-

tialization images, such that it is centered on the rock and

includes a few meters of the surrounding vegetation (Fig. 6).

Landing and take-off are performed manually, while the

view plans are executed autonomously by the UAV.

Results. For each of our approach variants, we executed

SURE only on the three images of the triplets. Like this

we can evaluate the general success rate of view planning

variants in analyzing on which triplets SURE succeeded to

produce any 3D output. Without the confidence prediction

the success rate is very low (18% for NP5x4). This shows

the gap between theory and practice. While in theory a large

triangulation leads to a small 3D uncertainty, the matching

becomes much more difficult and only flat surfaces survive.

However, with the proposed confidence prediction we were

able to reach a prefect success rate for our full approach

(100% for F5x4), and still reached an acceptable success

rate without the reconstruction updates (80% for F1x20).

In Table 1 we display the effective fulfillment statistics of

all approaches in the region of interest. Of the standalone

approaches, F1x20 and Grid take the lead, but are closely

followed by F5x4. The worst performance was reached by

NP5x4. While the dense grid performs well on the over-

all fulfillment, we can see a 10% gap in the scene cover-

age, where F5x4 and F1x20 lead with nearly equal results.

F1x20 performs slightly better than F5x4, because F1x20

found a sweet spot in the center above the rock for a sin-

gle triplet where it was able to drop below the tree line and

acquire a close up of the rock.

If we combine the results of the dense grid (Grid) with

the proposed approach, we achieve the overall best results.

All evaluated measures improve significantly, which is an

indication of a symbiosis between the approaches. This

suggests that for the given scene (which is quite flat for

many scene parts) an initial grid reconstruction with a sub-

sequent refinement with the proposed approach is recom-

mended. Note that if the scene complexity increases and a

grid plan can no longer be executed safely (e.g. underneath

a forest canopy or indoors), our planning approach is still

applicable.

If we take a look at the error distribution in relation to

the ground truth of the rock surface (Fig. 5), we can see that

our approach and grid planning achieve very similar results.

Note the Grid only covered 87.4% of the rock surface, while

all others covered significantly more: F5x4 covered 97.9%,

F1x20 94.7% and NP5x4 94.0%. This is a very promising

result, as we only allowed our approach to use the planned

triplets and no combination between them, while we put no

such restrictions on the Grid approach. Furthermore, many

of the triplets focused on the surrounding vegetation and

the overall number of acquired images by our approach is

lower than for the Grid approach (60 vs. 108 images). Thus,

our approach achieved a high accuracy at a higher coverage

with fewer images, which can also be observed visually in

Fig. 6 and the supplementary material.

5. Conclusion

In this paper we presented a novel autonomous system

for acquiring close-range high-resolution images that maxi-

mize the quality of a later-on 3D reconstruction. We demon-

strated that this quality strongly depends on the planarity

of the scene structure (complex structures vs. smooth sur-

faces), the camera constellation and the chosen dense MVS

algorithm. We learn these properties from unordered im-

age sets without any hard ground truth and use the acquired

knowledge to constrain the set of possible camera constel-

lations in the planning phase. In using these constraints, we

can drastically improve the success of the image acquisi-

tion, which finally results in a high-accuracy 3D reconstruc-

tion with a significantly higher scene coverage compared to

traditional acquisition techniques.
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