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Abstract

This study focuses on the problem of extracting con-

sistent and accurate face bounding box annotations from

crowdsourced workers. Aiming to provide benchmark

datasets for facial recognition training and testing, we cre-

ate a ‘gold standard’ set against which consolidated face

bounding box annotations can be evaluated. An evalua-

tion methodology based on scores for several features of

bounding box annotations is presented and is shown to pre-

dict consolidation performance using information gathered

from crowdsourced annotations. Based on this foundation,

we present “Grouper,” a method leveraging density-based

clustering to consolidate annotations by crowd workers. We

demonstrate that the proposed consolidation scheme, which

should be extensible to any number of region annotation

consolidations, improves upon metadata released with the

IARPA Janus Benchmark-A. Finally, we compare FR perfor-

mance using the originally provided IJB-A annotations and

Grouper and determine that similarity to the gold standard

as measured by our evaluation metric does predict recogni-

tion performance.

1. Introduction

Advances in computer vision and facial recognition have

led to dramatic performance improvements, boosted by

availability of large-scale data sets from social media and

other web scraping, along with the widespread implemen-
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tation of deep learning methods that make best use of such

imagery. In an increasingly saturated market, an algo-

rithm’s success has become more dependent on access to

large-scale annotated databases. Crowdsourced work is

frequently leveraged as a means to annotate large quanti-

ties of imagery scraped from the web [3][12][13][15][17].

This study is one of few to objectively verify consolidated

face annotations from crowdsourcing against an expert-

annotated dataset, which for the remainder of this paper we

call the gold standard. The ultimate aim of this work is to

facilitate consistently annotated datasets for facial recogni-

tion (FR) algorithm development.

Because crowdsourced workers have a potential for ma-

licious or careless behavior, lack of understanding of in-

structions, and general inconsistency, crowdsourced anno-

tations require redundancy and adjudication. Historically,

consolidations of facial bounding box annotations have

been verified by manual inspection and observations about

worker annotation patterns; the original source for this data

also estimated consolidation accuracy by the variance be-

tween different annotations [13]. Here, we define consis-

tency by evaluating instead against an independent gold

standard and develop an algorithm that creates consolida-

tions most similar to that standard. By creating the gold

standard, our methodology enables the objective evaluation

of consolidation methods and a more consistent way to eval-

uate annotations and annotators. From the resulting find-

ings, we lay out several criteria for crowdsourcing face an-

notations to maximize accuracy at a reasonable cost. The

consolidation process and evaluation metric presented here

can easily be extended to novel face datasets and image an-

notation applications.

2. Prior work

Numerous previous studies have analyzed the accuracy,

cost, and efficiency of crowdsourced annotations. This

study leverages knowledge gained from several prior works,
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(a) Raw bounding box annotations. (b) Clustered bounding box groups. (c) Bounding boxes after consolidation.

Figure 1: The Grouper consolidation process. The raw bounding boxes in (a) are clustered by overlap into the three groups

shown in (b). Dashed red lines indicate outliers. Those groups are then averaged to produce the final consolidation in (c).

described below, while pursuing the gold standard method

proposed in [13].

Yuen et al. survey several tactics for improving qual-

ity and lowering costs, including specialized algorithms

to compile crowdsourced results, questions to screen only

qualified workers to complete a certain type of human in-

telligence task (HIT), pay incentives to workers who per-

formed well in HITs, and filtering out workers who are be-

lieved to be cheaters or spammers [17]. Although the meth-

ods are not compared against each other, the study’s results

indicate that each of these techniques can improve the qual-

ity of HIT responses. Ipeirotis et al. [5] build on the work of

Dawid and Skene [1] in identifying error-prone and biased

workers and demonstrate that, on average, accuracy for a

crowdsourced task begins to saturate at five labels per ob-

ject. In addition, Snow et al. found that it took less than 10,

and in some cases only 4, non-expert annotations to achieve

the same quality as an annotation created by an expert [11].

As an alternative to redundancy, Dawid and Skene pro-

pose a system of estimating worker quality based on com-

bining worker annotations. Other algorithmic quality con-

trol methods which verify the worker, instead of verifying

the work, are shown by [15], [14], and [9] to be effective

at increasing accuracy. Raykar and Yu use an empirical

Bayesian algorithm to assign scores to annotators by deter-

mining the probability that their annotation was made ran-

domly [9]. Their algorithm simultaneously removes spam

annotations and consolidates the rest. In Vondrick et al.’s

approach, AMT workers are handpicked based on perfor-

mance and reliability metrics gathered about each worker

[15]. Snow et al. have evaluated the use of gold standard

annotations to assist in consolidation of categorical annota-

tions on images [11]. All of these studies focus on simple

tasks such as binary labeling which are less complicated to

compare and consolidate than bounding box annotations.

For more granular tasks, another way to reduce anno-

tation spam that has been explored in the literature is to

require training or a qualification test for workers [12][8].

Both of these studies attempt steps to modify unsatisfac-

tory annotations, with varying results. In [8], a freeform

language generation task does not see any improvements

from worker edits to annotations. Su et al. claim 98% accu-

racy in a task where a single worker draws a box and others

verify its accuracy, as well as cost savings from consensus

approaches [12].

The PASCAL Visual Object Classes (VOC) Challenge

[3] sets the current precedent for evaluating bounding box

annotations. Workers provided bounding boxes for partic-

ular objects in images. Then the authors used the overlap

between these bounding boxes and ground truth boxes to

determine true/false positives in the workers’ annotations.

While our paper presents a similar paradigm of comparing

worker annotations to a ground truth, here termed the “gold

standard,” our work uses a more granular and comprehen-

sive evaluation metric than does [3].

3. Methodology

We acquired the original Amazon Mechanical Turk an-

notations that were consolidated into inferred truth on a

477-image subset of IJB-A, along with the consolidations

themselves [13]. Additionally, we created a new set of an-

notations termed the ‘gold standard’ by manually boxing

all faces found in each of the images along a tightly-defined

set of guidelines. Building from the consistency in this gold

standard set, we define a new evaluation metric to describe

the attributes of successful and unsuccessful annotations;

this metric considers box size, shape, and location as well as

false positives and false negatives. Comparing against this

gold standard with our evaluation metric, we investigate the

best methods to consolidate disparate user annotations into

a single, accurate bounding box for each face in the image.

3.1. Annotation collection

Images in the IJB-A dataset were selected manually from

Google Image search results on a predetermined set of

500 subjects, then annotated by Amazon Mechanical Turk

(AMT) workers [6]. A number of annotations were col-

lected on each image in order to create a set with all faces
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Figure 2: One of the image annotations included in our gold

standard.

boxed; boxes containing the 500 subjects were labeled as

such, and three facial landmarks (eyes, nose base) were la-

beled in those boxes. Around five annotations of each type

were performed per subject sighting. For the purposes of

this paper we do not consider the facial landmark annota-

tions, only the face bounding box. In addition to the pub-

licly available consolidated bounding box annotations in the

IJB-A dataset, we obtained the original annotations in order

to evaluate various consolidation strategies.

3.2. Annotating a gold standard

In order to compare against representative “ground

truth,” we first randomly selected 500 images from the

dataset. Then one of the authors annotated each image with

bounding boxes according to pre-defined guidelines listed

below. The annotations were reviewed by another of the

authors and 23 image annotations were removed due to the

potential for inconsistency with the guidelines, leaving a set

of 477 images. The original instructions given to the AMT

annotators were outlined in [13], and were based on the un-

derstanding that facial recognition (FR) algorithms perform

best when boxes are consistent. One factor leading to incon-

sistency in annotations is varying sizes of boxes around the

same face; Taborsky et al. found the most efficient way to

keep box size consistent was to advise workers to annotate

with boxes that align with the edges of the subject’s head as

closely as possible [13].

During the gold standard annotation, we followed the

same instructions as provided to AMT workers and devised

a handful of internal guidelines to deal with situations that

the original instructions did not cover (for example, if only

a single facial feature is clearly visible because the rest is

covered, do not box that face). Figure 2 shows an example

of an image annotation included in the gold standard.

3.3. Consolidating bounding boxes

The consolidation process in the proposed Grouper

method consists of two main steps: (i) associating bound-

ing boxes into groups that likely refer to the same face, and

(ii) averaging the bounding boxes within each group. See

Figure 1. After the initial consolidation, we filter out anno-

tations by aberrant annotators and reconsolidate the results.

Associating bounding boxes. The simplest method for

associating bounding boxes into groups, each representing a

face, is to aggregate the bounding boxes into groups based

on overlap. At each step, a new box is compared to al-

ready inferred groups of boxes. If no groups exist yet or the

box does not overlap sufficiently with any of the groups, it

forms a new group. A threshold parameter θ defines the

minimum average pixel overlap that the box in question

must have with a group of boxes in order to be added to

that group. Once all boxes have been considered, any group

with fewer users than some specified threshold is removed

and the boxes in that group are considered outliers. The rest

of the groups are passed along to the next stage of consoli-

dation. A similar aggregative method was used to create the

consolidated bounding box annotations included with IJB-

A dataset [6]; see Taborsky et al. [13].

The aggregative method is simple but greedy. Consider-

ing pairs of bounding boxes individually ignores informa-

tion about annotation density that can be useful for associ-

ating bounding boxes. For example, if a relatively tight box

and a relatively loose bounding box around the same face

are compared early in the process, they may be put into dif-

ferent groups even if many bounding boxes exist that bridge

the gap between the original two boxes being compared.

One solution to this problem is to use a density-based clus-

tering approach to associate boxes on the same face.

The DBSCAN algorithm, first introduced in [2], was de-

veloped to cluster spatial databases and is thus designed to

perform well on location data. In particular, unlike cluster-

ing methods such as k-means, DBSCAN does not explicitly

require knowledge of the number of clusters. Instead, the

number of clusters is determined by an algorithmic parame-

ter (threshold) while outliers are identified based on relative

density. Grouper runs a Python-based implementation of

DBSCAN [7] on a similarity matrix representing the per-

centage of pixel overlap between each pair of boxes.

Averaging bounding box groups. Once the bounding

boxes have been sorted into groups, each group must be

condensed into a single box, creating what is essentially an

average bounding box. Consider that each bounding box is

defined by the points of its top right and bottom left corner,

(x1, y1) and (x2, y2). By definition, x1 < x2 and y1 < y2.

The simplest method for averaging a set of bounding boxes

is to average each of these four coordinates and use the re-

sults as coordinates for a new bounding box. This is the

method that was used to produce the consolidated bounding

box annotations included with IJB-A [6].

In an attempt to mitigate the effect of imprecise anno-

tators drawing bounding boxes too loosely, Grouper imple-
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(a)

(b)

Figure 3: An example of unweighted average bounding box

and weighted average bounding box as compared to the

gold standard. Original annotations can be seen in (a).

ments a weighted average method which gives preference

to tighter bounding boxes. Let bbs be a group of bounding

boxes to be averaged. Let ba be the number of pixels in box

b in bbs. Let bx1 be the x1 coordinate of box b in bbs, and

so on. The average x1 coordinate is calculated using the

weighted average defined in Equation 1. Each coordinate’s

value is divided by ba
2, so that the larger the box’s area, the

less influence the coordinate has on the average. This equa-

tion may be generalized for the other three coordinates.

P
bbs

bx1

ba
2

P
bbs

1

ba
2

(1)

See Figure 3 for an illustration of the effect of using

a weighted average. Note that the weighted average box

is tighter and closer to the gold standard box. While the

weighted average implemented in Grouper is effective in

producing tighter and thus more precise bounding boxes,

it would not be appropriate for all use cases. We present

our weighted averaging strategy as an example of how our

specific evaluation metrics allowed us to identify and ame-

liorate a problematic pattern in this set of bounding box an-

notations.

Reconsolidation. In this step, the averaged bounding

boxes are considered a de facto ground truth in the absence

of a gold standard. Each worker’s complete annotation

for an image is evaluated against the consolidation and the

worker receives a similarity score based on bounding box

overlap. If a worker strays from the norm on the image as a

whole, we exclude that worker’s annotations from consider-

ation for the image. Once the aberrant workers’ annotations

have been removed, the consolidation process is repeated

on the remaining bounding boxes. Both Grouper and the

consolidation strategy used to create the metadata included

with IJB-A employ a reconsolidation step [6].

3.4. Evaluating annotations and consolidations

The evaluation metric compares two sets of bounding

boxes for a given image: the ground truth, most often

the gold standard annotation, and the candidate, most of-

ten a consolidation. In some cases, the consolidation is

the ground truth and/or an individual worker’s annotation

is the candidate. To evaluate a candidate box for an indi-

vidual image, the overlap scores between each possible pair

of boxes from the ground truth annotation and the candi-

date annotation are collected in a score matrix. The optimal

pairing of bounding boxes that maximizes total overlap be-

tween the two sets is extracted from this matrix. Any ground

truth boxes that are not paired off are considered false neg-

atives and any unpaired candidate bounding boxes are like-

wise considered false positives. Once boxes are matched

between the two sets of annotations for comparison, five

different metrics are extracted and an overall score is cre-

ated by averaging the five scores; see Figure 4 for examples

of the first three.

Percent overlap is a prerequisite for several of these

scores; the method here differs from typical approaches [3]

in that it computes the percentage only with respect to the

larger box’s area. If overlap is less than θ, the boxes are

deemed too dissimilar, and the size, shape, and location

scores are 0. In our system, θ = 0.5.

Overlap: Let Aij be the total pixel area of overlap between

boxes bi and bj . Let ai be the pixel area of whichever box

is smaller, and aj be the pixel area of the other box. The

overlap score for boxes bi and bj is Aij divided by aj .

Size: Assuming overlap is greater than or equal to θ, the

boxes are deemed too dissimilar, and letting ai be the pixel

area of whichever box is smaller, and aj be the pixel area of

the other box. Then the size score for these boxes is

1−
(1− ai

aj
)

(1− θ)
. (2)

Shape: Let ri be the ratio of width to height of whichever

box is narrower, and rj be the ratio of width to height of the

other box. Necessarily, ri ≤ rj . Because the overlap score

of bi and bj exceeds θ, ri
rj

≥ θ2, the shape score for boxes
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(a) size: 0.65, shape: 1.0, position: 1.0 (b) size: 1.0, shape: 0.7, position: 1.0 (c) size: 1.0, shape: 1.0, position: 0.7

Figure 4: Yellow rectangles indicate the gold standard annotation and blue rectangles illustrate an example candidate anno-

tation which would be scored as marked.

bi and bj is

1−
(1− ri

rj
)

(1− θ2)
. (3)

Position: Let Xij be the horizontal distance between the

centers of bounding boxes bi and bj . Let Yij be the vertical

distance between the centers of bounding boxes bi and bj .

Let W be equal to the greater of the widths of bi and bj
and H be equal to the greater of their heights. Because the

overlap score of bi and bj exceeds θ,
Xij

W
≥ θ and

Yij

H
≥ θ.

The position or location score for boxes bi and bj is

1− avg(
Xij

W

1− θ
,

Yij

H

1− θ
). (4)

False negatives: Defined as 1 minus the ratio of (number

of ground truth boxes missed by candidate annotation) over

(total number of boxes in the ground truth).

False positives: Defined as 1 minus the ratio of (number of

boxes in candidate annotation that are not in ground truth)

over (total number of boxes in candidate annotation).

Overall score: The size, shape, vertical position, and hori-

zontal position sub-scores fall between 0 and 1. The overall

score for the image is the average of its false negative score,

false positive score, mean size score, mean shape score, and

mean position score. Candidate annotations that are less

similar to the ground truth receive lower scores, while an-

notations identical to the ground truth receive a score of 1.

4. Results and discussion

We will demonstrate the advantages of Grouper using

a number of different experiments. First, we will employ

the evaluation metric described in Section 3.4 to compare

Grouper and other consolidation methods to the gold stan-

dard. This will measure the Grouper consolidation’s adher-

ence to the initial face annotation guidelines. Correlations

between various factors and consolidation performance will

be explored as well, providing evidence of the evaluation

metric’s potential to reduce the need for annotation redun-

dancy. Finally, in order to evaluate the quality of the meta-

data produced by Grouper with respect to its ultimate use

case, we will describe a methodology for comparing fa-

cial recognition performance on different metadata sets and

present results for these comparisons.

4.1. Consolidation evaluations

Table 1 shows the breakdown in scores for four different

consolidation attempts as evaluated against our gold stan-

dard. In addition to the IJB-A consolidation and Grouper,

we tested a variation of Grouper which did not weight

bounding boxes by size during the box averaging step and

a variation that used aggregative bounding box association

as opposed to clustering. Of all of the strategies tested,

Grouper received the highest overall score.

The difference in overall score against the gold standard

between the IJB-A consolidation and Grouper, which com-

bines clustering, reconsolidation, and a weighted average

bounding box, is statistically significant with p = 0.0084.

Grouper thus represents a significant improvement over the

strategy used to produce the initial IJB-A metadata in terms

of producing annotations that closely resemble the gold

standard.

4.2. Predicting consolidation performance

After evaluating our candidate consolidations in compar-

ison to the gold standard, we examine particular factors that

may contribute to the accuracy of consolidations. The goal

of this analysis is to identify various attributes that might ex-

ist within an image or a consolidation that could predict that

consolidation’s score against the gold standard. It would be

desirable to have a method that could predict consolidation

strength without the use of a gold standard.

First, we tested whether an annotation’s score against the

Grouper consolidation predicted score against the gold stan-

dard, and determined that the scores are highly correlated

(r = 0.906 with p < 2.2×10−16 using the Pearson product-

moment correlation). This finding establishes annotation
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Strategy Overall Score Size Shape Position False Neg. False Pos.

IJB-A 0.926 ± 0.076 0.817 ± 0.147 0.925 ± 0.081 0.923 ± 0.077 0.975 ± 0.114 0.987 ± 0.092

Grouper 0.937 ± 0.052 0.854 ± 0.114 0.93 ± 0.066 0.924 ± 0.068 0.991 ± 0.063 0.984 ± 0.077

Unweighted Var. 0.934 ± 0.041 0.83 ± 0.13 0.934 ± 0.05 0.931 ± 0.045 0.992 ± 0.049 0.986 ± 0.075

Aggregative Var. 0.932 ± 0.08 0.85 ± 0.131 0.924 ± 0.1 0.917 ± 0.102 0.984 ± 0.105 0.985 ± 0.08

Table 1: Overall scores and score components for each consolidation strategy considered, as compared to the gold standard.

score against consolidation as a sound predictor of true an-

notation quality.

For each image, we determined annotator concurrence

by calculating the average amount that each annotator dif-

fers from the combined consolidation. Let Si be the overall

score of box bi against consolidation as described in section

3.4, and n be the number of annotations on the image. Then

the annotator concurrence measure is

nP

i=1

Si

n
. (5)

Leveraging equation 5, we then compare the concurrence

score on a particular image to that consolidation’s score

against the gold standard. Intuitively, we would expect

a consolidation with higher concurrence to perform better

when compared to the gold standard. If a high-concurrence

consolidation performs poorly, that would mean multiple

annotators made the same error. While annotators may have

the same misunderstandings which result in similar errors,

such as drawing bounding boxes too loose or drawing boxes

around the back of a person’s head, we still expect workers

to agree on correct annotations more often. Testing cor-

relation between annotator concurrence and the consolida-

tion’s score against the gold standard, we find a moderate

correlation, with r = 0.477 and p < 2.2×10−16. This re-

sult illustrates that some but not all prediction accuracy is

maintained when annotations are consolidated.

We also hypothesized that the average size of bound-

ing boxes in a consolidation might predict score: larger

boxes should indicate larger faces, less likely to be missed

by annotators and with more easily identified boundaries.

A slight correlation does exist (r = 0.222 with p = 1.693

×10−6), with larger bounding boxes predicting higher con-

solidation scores. It is likely that some larger size averages

merely come from loosely-drawn bounding boxes, which

would score poorly against the gold standard; we conclude

that the correlation between average box size and consoli-

dation score is not stronger because we cannot differentiate

these cases from images with genuinely larger faces based

on raw annotations alone.

Further tests focused on number of bounding boxes per

image in the Grouper consolidation. This variable has a

strong negative correlation with overall consolidation score

(r = -0.458, p < 2.2 ×10−16) and a moderate negative cor-
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Figure 5: Number of boxes in consolidation against overall

consolidation score.

relation with the specific false negative score (r = -0.200,

p = 1.739 ×10−5). The latter result is somewhat intuitive:

the more faces are in an image, the more opportunities the

annotator has to skip a face and receive a lower false neg-

ative score. In the same vein, an annotator who encounters

an image with many faces may also spend less time and ef-

fort per bounding box as they would on an image with only

one or two faces, in order to complete the HIT as quickly as

possible.

4.3. Face recognition experiments

To justify the appropriateness of our gold standard

bounding box guidelines and the validity of our bounding

box similarity metric, we designed experiments to test how

performance with a state-of-the-art face recognition algo-

rithm compares using input generated from various consol-

idation strategies. We began by identifying all mutual face

locations, defined as a group of bounding boxes (one from

each metadata set being tested) which overlap with each

other at least 60%. Only face locations that correspond to a

subject in IJB-A are included and any unmated samples are

removed. We then enrolled the imagery using a deep learn-

ing approach based on implementations of methods in [16]

and [10]. This approach scores in the same range as the top-

10 results on the LFW leaderboard [4]. When the templates

are compared against each other, slight flaws caused by mis-

aligned or overly loose bounding boxes may compound and
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Figure 6: Face recognition performance on the IJB-A con-

solidations and Grouper.

Figure 7: Example of an annotation that received a high

score and one that received a low score for the same image.

increase errors.

Note that because the experiments described here only

consider mutual face locations, any results are independent

of the false positive and false negative rates of the various

consolidation algorithms. Therefore, these results should

not be the only consideration when evaluating consolidation

success.

First, three different metadata sets were considered: the

gold standard annotations, the original IJB-A consolida-

tions, and Grouper. The differences in true accept rates

among the three strategies were not statistically significant

at N = 370 (the number of faces represented in all meta-

data sets). We also performed a larger scale FR experiment

to compare Grouper to the consolidation that was included

with IJB-A. The partial ROC curve in Figure 6 demonstrates

that at operational false accept rates (FARs) of one in a thou-

sand and below, using Grouper consolidations resulted in

a significantly higher true accept rate (TAR) by approxi-

mately 1%. At higher FARs, the TAR did not differ sig-

nificantly between the two strategies.

Finally, we identified a set of face annotations for which

Figure 8: FR performs consistently better on the high-

scoring annotations as compared to their low-scoring coun-

terparts.

some annotator’s bounding box had scored relatively low

when evaluated against the gold standard (0.80 or lower)

and some other annotator had scored relatively high (0.86 or

higher). Examples of annotations in the two sets are shown

in Figure 7. The final set contained 107 face images. Vis-

ible in Figure 8, the FR algorithm was significantly more

accurate when the high-scoring annotations were used as

opposed to the low-scoring annotations, with TARs improv-

ing by up to 20%. This indicates that our evaluation metric

is relevant for predicting success of FR using bounding box

metadata. In addition, this result indicates that the lack of

variation in face recognition performance found in the other

experiments performed in this paper does not indicate the ir-

relevance of bounding box quality to FR performance, but

rather indicates that the metadata sets tested were of simi-

larly superior quality.

5. Conclusions

This paper illustrated the benefits of specific analysis on

bounding box annotations and presented Grouper, a consol-

idation method that produces better annotations than pre-

viously published methods. The clustering approach used

by Grouper decreases the percentage of false positives and

false negatives among consolidated face annotations, which

is particularly critical if the data is to be used to evaluate

face detection algorithms. Grouper’s weighted averaging

strategy reduces variation in bounding box tightness.

Furthermore, the analyses presented here allow the iden-

tification of high-performing consolidations. When anno-

tators closely agree on bounding boxes, the consolidated

result is closer to the ground truth. Additionally, images
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with fewer boxes are more likely to have strong consolida-

tions. Future work could leverage this information to iden-

tify consolidations that do and do not require further quality

assurance processes, hence increasing overall collection ef-

ficiency. The metrics developed here could also be applied

to evaluating particular workers’ annotations against a gold

standard or a suitably validated consolidation, since it has

been established elsewhere that annotation quality for an in-

dividual worker is relatively stable. Such evaluation could

identify particularly successful workers or reject workers

who perform poorly, forming the basis of a qualification test

to improve the quality of raw annotations before consolida-

tion.

The use of Grouper-produced metadata does result in

different FR templates and improved performance at low

FARs, but not to an extent that notably impacts scores along

the entire ROC. However, FR performance is significantly

worse on consolidations that perform poorly against the

gold standard, which underscores the need to enforce clear

and consistent bounding box guidelines.

There is significant complexity inherent in creating and

validating boxed region annotations. Thus, we recommend

use of a delineated metric that provides supplementary in-

formation about annotation geometry. When monitored,

the additional information can be used to demonstrably im-

prove bounding box metadata quality.
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