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Abstract

Increasingly, absolute frequency and orientation maps

are needed, e.g. for forensics. We introduce a non-linear

scale space via the logarithm of trace of the Structure Ten-

sor. Therein, frequency estimation becomes an orientation

estimation problem. We show that this offers significant ad-

vantages, including construction of efficient isotropic esti-

mations of dense maps of frequency. In fingerprints, both

maps are shown to improve each other in an enhancement

scheme via Gabor filtering. We suggest a novel continuous

ridge counting method, relying only on dense absolute fre-

quency and orientation maps, without ridge detection, thin-

ning, etc. Furthermore, we present new evidence that fre-

quency maps are useful attributes of minutiae. We verify

that the suggested method compares favorably with state of

the art using forensic fingerprints as test bed, and test im-

ages where the ground truth is known. In evaluations, we

use public data sets and published methods only.

1. Introduction

We study dense maps of absolute frequency, where abso-

lute refers to the norm of a frequency vector. However, for

breivity, the term frequency will be used here. We aim to

estimate frequency maps for continuos ridge counting, and

as minutia descriptors. The state of the art and contributions

are given after problem statements below.

Theoretical problem
Conceptually, we have an ideal model of a family of func-

tions f ∈ IR, defined on a dense coordinate set r ∈ IRn,

f(r) =
∑

k∈Q

Ak cos(ωT
k r + ϕk) (1)

where Ak, ϕk ∈ IR, are amplitudes and phases of sinusoids,

respectively. It is assumed that Ak > 0 because signs can

be absorbed by ϕk. Furthermore, the frequency vectors ωk

share the same frequency1, ω0 = ‖ωk‖ > 0.

1In contrast to ωk , the subscript of ω0 is a label (not index).

The set Q is finite and consists of the integers,

1, 2, · · ·M . The frequency vectors are in the same Fourier

domain half, and 0 < ω
T
k′ωk/ω

2
0 ≤ δ i.e. no two vectors

have an angle smaller than arccos(δ) between. The latter is

demanded to discern sinusoids w.r.t. their orientations.

We wish to estimate ω0 which best fits the model (1) to

a local image without knowing (the direction of) ωk nor in-

troducing measurement artifacts depending on input orien-

tation, including orientation bias. No-orientation artifacts in

estimations is a desirable property in applications and called

here isotropy. The opposite, unisotropy, is to be avoided.

Example unisotropy occurs in edge magnitude exctraction if

horizontal and vertical edges/sinusoids have higher magni-

tudes than those of other directions systematically. We wish

thus to have the same level of accuracy in ridge frequency

estimation regardless the directions of input sinusoids/edges

to be measured. We focus on fingerprints having n = 2, but

the method can be adopted for other uses and 2 < n. affect

critical decisions.

Application problem

Fingermarks (or latents) are traces of fingers on objects at

crime scenes, usually producing poor quality images. Ten-

prints are high quality fingerprints imaged, e.g. at country

borders and embassies, Fig. 3 and 6.

It is desirable to support fingerprint examiners, jury,

lawyers, and judges by automatically extracted reliable

measurements but these should be verifiable and under-

standable at their discretion. The question is if automat-

ically extracted i) ridge counting along any path, and ii)

frequency maps have added value for evidence in identi-

fication. This work assumes the current legal procedures of

decision making is in place, i.e. that the minutiae in a fin-

germark will be extracted by a human expert whereas minu-

tia extracton in tenprints will be fully automatic. Addition-

ally, we assume that the human expert will be assisted by

a machine for suggesting additional features (ridge-counts)

along paths defined by minutiae that the expert has ex-

tracted.
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State of the art

Witkin [18], have suggested multi-scale representations of

images by successive Gaussian filterings. Lindeberg 1998,

[14] proposed a general scale selection principle to estimate

the local scale. This is evaluated further in Section 4.

Local orientation characteristics based theories have in-

creasingly come to dominate mammalian vision [8] and lo-

cal description in computational vision. A principle tool

of modeling and extracting local orientation has been the

Structure Tensor, derived as a spectral optimizationin Bi-

gun and Granlund [1], with well-evaluated isotropy proper-

ties. Isotropy and accuracy are critically important to many

applications but especially so for decisions in forensic fin-

gerprints. The method has been producing nearly all dense

orientation maps in fingerprints and in numerous other ap-

plications. Structure Tensor can also be formulated as an

extension of quadrature filtering as in Knutsson [12]. The

quotients of quadrature filters can be used to estimate the

local frequency [13], and will be evaluated here.

The usefulness of Structure Tensor has also been ob-

served by di Zenzo and Silvano [3], Förstner and Gülch [5],

Kass and Witkin [11]. The Generalized Structure Tensor

has been an alternative to generalized Hough transform [7]

to recognize arbitrary shape, including fingerprint cores and

deltas, [17].

In the context of tenprints, [6], and [15] suggested a

method of frequency estimation when orientations of local

images are known. The orientations are computed from the

eigen-vectors of the Structure Tensor [1]. As will be shown,

the assumption of unique orientation (computed [6], or not

[13]) is not a necessary condition, and may undermine fre-

quency estimations if it does not hold, Sections 4, 7.

The dense orientation and frequency maps of [2] were

estimated by applying the Fourier Transform to 32x32

(overlapping) image blocks. These were used to reject out-

lyers and to reinforce one frequency and one orientation per

image block in palmprints, [10]. The orientation estimator

of [2], and that of the Structure Tensor can model the ori-

entation as weighted averages of power spectra, the weights

being similar ω2 exp 2i∠ω (eq. (8) of [2] vs Lemma 1, and

eqs. (14-16) of [1]). This hints that both maps are concep-

tually from the same estimator, one realized in the spatial

and the other in the Fourier domain, motivating fundamen-

tal studies of dense maps to complement the understanding

of the practice.

Image based features have the potential to improve the

recognition of fingermarks compared to using minutia loca-

tions and directions (constellations), [9]. However, in the

latter image based features were computed by commercial,

unpublished software and on tenprints. This suggests fur-

ther studies of feature extraction on tenprints and finger-

marks with published algorithms for better understanding

the potentials and limitations.

Contributions and organization
We summarize first the Structure Tensor in Section 2. In

itself this is not new, but the summary is motivated in that

the summary is used to build up the novelties.

An initial contribution is to elucidate how Structure Ten-

sor evolves isotropically as its “scale” changes. The deriva-

tion is given in Section 3.1, and 3.2.

It will be shown that frequency estimation is equivalent

to orientation estimation in the scale space obtained by the

logarithm of trace of Structure Tensor, Section 3.3. This

novelty offers a mathematical unification of orientation and

frequency estimation. A practical consequence is that with

few scale-space samples frequency maps along with their

certainties based on modelling errors, can be obtained.

In Section 4, we evaluate the method when the ground

truth is known by using planar waves and noise. The results

provide evidence for that our estimator is more isotropic and

accurate w.r.t. the ground truth, in comparision to state of

the art. We think that this is novel.

An iterative scheme to improve frequency maps of poor

quality images is introduced, Section 6. Using Gabor fil-

ters, the scheme offers improved dense orientation maps

too. Both maps are evaluated in comparative tests using

fingermarks, Section 7.

We introduce an original use of frequency maps, to count

ridges continuously in fingerprints along arbitrary paths,

without detecting ridges, Section 5. The method allows au-

tomatic ridge counting in forensic fingermarks, at a quality

not demonstrated before (83 % reliability), Section 7.

2. Orientation and Structure Tensor

Structure Tensor is a symmetric positive semi-definite

matrix S. It summarizes the statistics of directional con-

tents of a local image f(r), with r ∈ IRn

S =

∫

r∈IRn

∇f(r) · ∇T f(r)dr (2)

where f represents brightness (gray-value). Here, and in

the sequel the integration domain is r ∈ IRn. However, for

convenience of reading and compactness, this fact and dr
are omitted from integrals in the sequel.

In 2D, a linear combination of the elements of S directly

yields the direction of the most significant eigenvector along

with differences of eigenvalues, readily expressed as a sec-

ond order complex moment (of the power spectrum).

I20 =

∫

(Dxf)2 −
∫

(Dyf)2 + i · 2
∫

(Dxf)(Dyf) (3)

Then, the most significant eigenvector of S, umax, and the

eigenvalues of S, λmax and λmin are connected to I20 via:

∠I20 = 2∠umax, |I20| = λmax − λmin (4)
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The trace of S, Tr(S), is the other second order complex

moment (although it is always real valued),

I11 =

∫

(Dxf)2+

∫

(Dyf)2=λmax+λmin, |I20| ≤ I11 (5)

The inequality is a consequence of both triangle and

Schwartz inequalities. It is tight, i.e. it holds with equal-

ity if and only if a single orientation fits the image perfectly

(linear symmetry), [1]. However, the inequality is meaning-

ful only in 2D as I20 is defined only in 2D, (3). By contrast,

because I11 is real and equals to Tr(S) in 2D, we define

it as I11 = Tr(S) for nD below, making I11 well defined

even for 2 < n.

Nonetheless, I20 and the inequality will be useful. This

is because it will be shown that frequency estimation is

equivalent to line-fitting in the 2D space of Tr(S), and σ2

(scale), which is a 2D orientation estimation problem, re-

gardless n, the variable fixing the dimension of r, and S.

Defining a Gaussian gn in nD with variance σ2 as

gn(r, σ2) =
1

(2πσ2)n/2
exp(−‖r‖2

2σ2
), (6)

the steps of dense orientation map construction by Structure

Tensor are as follows.

i) Convolve the original (large) image f to obtain the gra-

dient image

∇f = h ∗ f (7)

where h is obtained by sampling the gradient of a

Gaussian gn (6), containing the Gaussian as factor,

h(r, σ2
in) = ∇gn(r, σ2

in) = − r

σ2
in

gn(r, σ2
in) (8)

with σ2
in fixing its inner-scale, the frequency range re-

tained by (7). This corresponds to Dxf + iDyf in 2D.

ii) Apply pointwise tensor product to obtain

S̃ = ∇f∇T f (9)

which represents S in “zero-sized” neighborhoods (in-

finitesimal linear symmetry). This corresponds to

(Dxf + iDyf)2 in 2D.

iii) Convolve S̃ with a Gaussian filter gn(r, σ2
out) defining

the local image (the outer-scale).

S = gn(r, σ2
out) ∗ S̃ (10)

To obtain dense maps in 2D with complex pixels

representing orientation vectors, the complex image

(Dxf + iDyf)2 is convolved by gn to yield I20, (3),

whereas I11, the local upper bound of |I20|, assess-

ing local orientation estimation quality, is obtained by

convolving the absolute values |Dxf + iDyf |2 with

gn, (5).

3. Frequency estimation

3.1. Fourier Transform and gradient
Gradient filtering, (7), is needed to obtain (local) Struc-

ture Tensor and the filter is given by, (8). Symbolized by H ,

FT of components of h are essentially mapped on h:

H(ω, σ−2
in )= iω exp(−‖ω‖2

2σ−2
in

)= iωGn(ω, σ−2
in ) (11)

where ω ∈ IRn and Gn is FT of gn (6), a Gaussian in

essence

Gn(ω, σ−2
in ) = exp(−‖ω‖2

2σ−2
in

) (12)

such that its “variance” is σ−2
in and its value at the origin is

1. Once σ2
in is fixed, Gn depends on the length ω = ‖ω‖,

i.e. it is 1D in ω even if ω is nD. Since it is independent of

direction of ω, Gn is isotropic. Thereby ‖H‖ (but not H)

‖H(ω, σ−2
in )‖ = ω exp(− ω2

2σ−2
in

) = ωG1(ω, σ
−2
in ) (13)

where ω = ‖ω‖, is isotropic. It attains its maximum at all

nD points on a ball with radius ‖ω‖ = ω̂

ω̂ = argmax
ω

‖H‖ =
1

σin
(14)

3.2. Isotropic, spatially invariant energy by Trace
We assume, for now, that the input is a planar wave with

a unique frequency vector, ω1

f = A cos(ωT
1 r) (15)

that is, 0<A1 =A and ‖ω1‖ = ω0 and Ak = 0 for k > 1
in (1). The s presumption will be widened to include M
sinusoids and will be stated as a theorem later, the present

restriction serving as a pedagogical tool illustrating the sig-

nal processing mechanism behind our frequency estimation.

Using (11) we obtain the result of Step i) above as,

h ∗ f(r) = −ω1Gn(ω1, σ
−2
in )A sin(ωT

1 r) (16)

As it stands, (16) has significant spatial variation, due to the

amplified sinusoid changing with r. Thus, (16) is not suit-

able to estimate ‖ω1‖ densely and in a spatially invariant

manner. The latter is due because ω1 is constant w.r.t. r

whereas h ∗ f changes as r does. Using the property inher-

ent to the Structure Tensor, doubling frequency content of

the input followed by low-pass filtering, essentially ripple-

free (spatially invariant) estimations of ‖A ·H(ω1, σ
−2
in )‖2

can be obtained via the trace I11, as below.

Following up the input of (15), the trace is computed in

a Gaussian window having the variance σ2
out,

I11(r
′, σ2

in, σ
2
out) =

∫

‖h ∗ f(r + r
′)‖2gn(r, σ2

out) (17)
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= (A · ω0Gn(ω1, σ
−2
in ))2

∫

sin2(ωT
1 (r + r

′))gn(r, σ2
out)

where we can substitute the quadratic sinusoid with its

equivalent having the double frequency

I11(·) = ‖A ·H‖2 1

2
[1 −

∫

cos(2ωT
1 (r + r

′))gn(r, σ2
out)]

(18)

The integral term is an ordinary convolution of a sinusoid

with the Gaussian window representing the outer scale. The

convolution of a sinusoid yields also a sinusoid so that

I11(·)=‖A·H(ω1, σ
−2
in )‖21

2
[1−Gn(2ω1, σ

−2
out) cos(2ωT

1 r
′)]

(19)

where the ripple amplitude is Gn(2ω1, σ
−2
out).

The vacillation amplitude is determined by 2ω0, excit-

ing the Gaussian insignificantly, compared to ω0. Assuming

that a rough range of ω0 is known, ω0 ∈ [ωmin, ωmax] (or a

bandpass filtering is applied to f ), the ripple amplitude

Gn(2ω1, σ
−2
out) = G1(2ω0, σ

−2
out) = exp(− (2ω0)

2

2σ−2
out

) ≤ ǫ

can be contained. The inequality can be rewritten as

1

2ω2
0

log(
1

ǫ
) ≤ σ2

out (20)

For example, for Gn(2ω1, σ2

out) < 0.007, i.e. ǫ = 0.007,

we obtain via (20) that σout must be 1.575ω−1
min, or larger.

The response energy, ‖A·H‖2 with prescribed accuracy can

be estimated via I11 according to (17), where σout is fixed

by the range of ω0, via (20).

I11(r
′, σ2

in)≈
1

2
‖AH(ω1,σ

−2
in )‖2=

A2ω2
0

2
G2

1(ω0,σ
−2
in ) (21)

We have not σ2
out as argument of I11 since it is now fixed.

The next theorem, the proof of which is similar to the

procedure above and omitted for the convenience of reading

in limited space, essentially states that Equation (21) holds

even if the input consists of M sinusoids, (1). Its evaluation

will however be given experimentally e.g. when the input

consists in two sinusoids, in Section 4.

Theorem (Trace constancy). The Trace of Structure Ten-

sor, I11, with parameters σin, σout obtained in an image

region obeying the same single frequency model of (1) is

nearly constant in the region, i.e. it differs absolutely from

a constant with the prescribed amount of ǫ1 ∈ IR,

|I11(r, σ2
in) − A2

2
ω2
0 exp(− ω2

0

σ−2
in

)| ≤ ǫ1 with r ∈ IRn

(22)

where 0 < ω0 and A =
√

A2
1 + · · · + A2

M , provided that

σout is sufficiently large compared to ω−1
0 of the input.

3.3. Implementation
Using the Theorem above, (22), we can obtain ω0 by ap-

plying logarithm to I20 and to its model, A2

2 ω2
0 exp(− ω2

0

σ−2

in

),

log I11(r
′, σ2

in) = log(
1

2
A2ω2

0) − ω2
0σ

2
in (23)

which proves the next theorem, valid for any dimension n.

Theorem (Log-trace in scale-space). Logarithm of the

Structure Tensor trace constructs a non-linear scale space

in which signals fulfilling (1) generate a line

log I11(r, σ
2
in) = CA − ω2

0σ
2
in with r ∈ IRn (24)

with direction determined by −ω2
0 , and constant CA =

log(2−1A2ω2
0) being independent of the scale σ2

in.

Tangents of the parametric curve generated by s

s(τ) = (σ2
in(τ), log I11(r, σ

2
in(τ)) (25)

where τ is the parameter, determine ω0(τ). If and only if

the curve is a line, ω0 is constant, i.e. tangent vectors are

parallel. This scale space is always two dimensional even if

the dimension of r is not.

The 2D tensor fits Total Least Square, TLS, angles (3,5),

Is20 =

∫

τ∈[τmin,τmax]

(
dσ2

in(τ)

dτ
+ i

d log I11
dτ

)2dτ (26)

Is11 =

∫

τ∈[τmin,τmax]

(
dσ2

in(τ)

dτ
)2 +

∫

(
d log I11

dτ
)2dτ (27)

with s referring to the logarithmic scale space (not the im-

age space), and with integrations over a range of τ deter-

mined next. Equations (26)-(27) deliver the double of TLS

tangent angle in the argument of Is20, and the error sum.

Then, ω0 is estimated from half the argument of Is20, (24).

ω0 =

√

− tan(
1

2
∠Is20) (28)

The magnitude of Is20 reaches its upper bound, Is11, iff

TLS error vanishes. Thus, the magnitudes of (26)-(27) can

be utilized as quality measure, q, of model-fitting, e.g. alone

q = |Is20| or in combination, q = |Is20|/Is11 ≤ 1 in practice.

We have discretized the derivatives in (26)-(27) by set-

ting τ to σ2
in and integration domain to [ω−2

max, ω
−2
min] (14),

dσ2
in

dτ
=

dσ2
in

dσ2
in

= 1 (29)

d log I11
dτ

=
1

∆σ2
in

log(
I11(r, σ

2
in + ∆σ2

in)

I11(r, σ2
in)

) (30)
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4. Evidence on data with known ground truth

Evaluating accuracy and isotropy
Fig. 1 shows an example test image where we have syn-

thetized 2 planar waves locally [4]. Our waves were real-

ized via cos(C log r) + cos(C.ϕ) where C is integer. The

periods of the two waves are the same (T0 = 2π/ω0) and

change linearly with spatial radius r, attaining T0 = 4 and

T0 = 17 at the boundaries of the disc.

On the right half, normally distributed zero mean Gaus-

sian noise is added to the signal, amounting to 65 % of the

resulting amplitudes (peak-to-peak) in the average, (0 % in

the left-half).

In the figure (top-right), local estimates of the period,

T0, are shown as a gray image (bright=large T0), computed

from frequency estimations (T0 = 2π/ω0). The frequency

interval in which to search the local frequency was given as

[ 2π13 ,
2π
6 ], representing fingerprint frequencies. Thereby, the

method could be stressed to operate under “false” premises,

the ground truth span, [ 2π17 ,
2π
4 ],

The resulting image suggests directional istotropy in

the estimations, and the periods increase (brighter) with

increased radius. Translated to locations in the im-

age, the apriori interval points in a distance between

[r(Tmin), r(Tmax)] from the origin. These are marked as

small and medium streaks.

In bottom left, Cr (black) represents the local period es-

timated along the horizontal diameter (shown in top-right).

In the apriori interval of the clean (left) half, the estima-

tion coincides with the ground truth graph, GT, (green) well.

In the noisy (right) half, the method offers a good concor-

dance with GT inside the apriori range, changing visibly

linearly, although with a slight inclination bias compared to

GT. This is most noticable at points having large T0, outside

of the apriori interval. The bias is caused by the absolute

frequencies of the noise, shifting the estimations systemat-

ically. Accordingly, in the noisy part no frequency method

should be blamed for having bias but for not having linear

change or for not having isotropic behaviour (along circles).

At bottom right, the black graph is the local period T0

but along the circular demarcation (green, top-right). The

ground truth (GT) period is constant and the estimations

follow it well in the clean half-circle, and with larger de-

viations in the noisy part. In the clean half-circle, the mean

is a horizontal straight line, which also agrees with GT, (no

bias). In the noisy half there is a larger deviation and with a

bias (compared to GT), explained by the presence of noise.

The third row of the table beneath represents the relative

deviation of the current method, ǫ̂r = |TCr − TGT |/TGT ,

averaged over all half-circles (top-right image), inside and

outside of the apriori range, in clean and noisy parts, respec-

tively. The errors reach as low as 0.00 %.

These results support the view that accurate local fre-

quency estimations are achievable by the suggested method

50 100 150 200 250
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Ap. Int. Ap. Int.

Pixel Count

T
0

 

 
GT
Li
Kn
Cr

   
















 

 

Polar angle

T
0

GT
Li
Kn
Cr

C: ǭr, in C: ǭr, out

0.05 0.16

0.08 0.09

0.00 0.04

Method

Li

Kn

Cr

N : ǭr, in N : ǭr, out

0.12 0.22

0.33 0.41

0.07 0.11

Figure 1. Top-Left Two orthogonal waves at each pixel with

changing absolute frequencies. Top Right Period estimation by

the suggested method, Section 3. Bottom Left Estimation on mid-

horizontal line. Bottom right Estimation on a circular path

even without precise knowledge of the frequency range.

Laplacian of Gaussian scale space,

We have implemented the automatic scale selection of [14]

to estimate the local frequency. The presumptions (input

image, noise, apriori knowledge, scale taps, etc) were iden-

tical to those of ours.

The table beneath Fig. 1 (marked as “Li”) suggests that

the technique offers a correct estimation of the local period

up-to scale discretization step. The frequency estimation in

the clean part can be as much as 5 % erroneous compared to

the ground truth. We recall that the ground truth frequency

is known up to image grid discretization since the original

image is synthesized by waves the local frequencies which

are known, see C at the beginning of this section. The cal-

culated ground-truth is shown as dashed green curves in the

graph. The argmax operation used in the method chooses

the closest sampling tap. In the noisy part the frequency es-

timations are more biased towards the included noise, and

with higher variation than the present method.

It can be argued that, our method is in a more advanta-

geous position when the noise type is additive and Gaus-

sian. However, changing the noise to salt&pepper replace-

ment noise (not detailed here) continues to support the ev-

idence for excessive vulnerability of the argmax combined

with max operation (used in [14]) to noise, when estimating
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frequency.

Quadrature filters
In [13] it has been shown that frequency can be estimated

by quotients of magnitude response averages of quadrature

filters, which we have implemented in the Fourier domain.

We report our results emanating from a version of the filters

having frequencies tuned to {π2−k}4k=0, and orientations

tuned to {lπ/4}3l=0, Fig. 1. The filter relative bandwidths

were B = 2
√

2.

In the two graphs and the table of Fig. 1, we present the

results of this technique (marked as Kn). In the left graph,

the method is nearly linear in the clean part. However, it suf-

fers from bias in inclination compared to the ground truth.

In the noisy part however, the method is not able to retain

the linear change, nearly explicitly as Cr and Li methods.

The right graph suggests that there is a bias and systematic

non-isotropy (periodicity) in the clean part whereas in the

noisy part the estimated period is too unstable and far from

the linear progression of the ground-truth compared to Cr

and Li.

We attempted to alleviate the bias by calibrating the es-

timated frequencies by a linear as well as affine mapping,

which gave promising results on single orientation images

(not detailed here) but the calibration constants had to be

changed when the setup was exposed to two or more orien-

tation neighborhoods. However, manual determination of

the number of orientations upfront is not feasable in many

applications.

5. Continuous ridge-counting in fingerprints

In fingermark identification ridge-counting on paths, e.g

lines between minutia points, is a desirable but difficult op-

eration performed by human experts. The difficulty is due

to the low-quality of the ridges as well as the tediousness

of the task which grows quadratically with the number of

points between which the counts are desired.

Our algorithm for ridge-counting is summarized by

NP =
L

2π

∫

P

q̂(τ)ω(τ)| cos(θ(τ) − θP(τ))|dτ (31)

where τ parametrizes the integration path, P . The function

θ is the direction of the local image. Furthermore, 0 < q̂
is a quality function, which is normalized along the path

of integration, (so that
∫

q̂(τ) = 1 ). The quality func-

tion is assumed to have been generated by local computa-

tions/assesments performed along the path. The angle θP
is the direction angle of the tangent of the path and L is

the length of the path, the presence of which is due to that

q̂ is normalized, clarified below. Examples of q̂ along the

path are certainty of frequency, certainty of orientation or a

combination of the two.

The equation introduces continuous ridge-count, NP ,

along an arbitrary path. The continuous refers to the fact

End, f̃ Start, f

3: Gabor p.

1: Freq. e.

2: Orient. e.

?

A:

Figure 2. Iterative improvement of dense maps

that NP is not an integer, i.e. it changes continuously if

the path is prolonged continuously, allowing to measure the

distance in terms of the average local period. Evidently, NP

can be rounded off to the nearest integer when needed.

The Rationale behind the quality measure in (31) is

to improve the accuracy of ridge-counting. Extrapolating

ridge-counts for subsets of the path where ridge informa-

tion is absent is facilitated by q̂.

6. Iterative improvement of dense maps

Estimating dense frequency and orientation maps in poor

quality images, including forensic fingermarks, is expected

to be challenging. To meet the challenge, we adopted the

following iterative improvement scheme consisting of three

steps, Fig. 2.

First, frequency estimation was implemented based on

scale space of log(I11), as detailed in Section 3.

Second, the estimated frequency map was averaged over

to automatically obtain a global inner scale parameter, σ2
in

for the entire image. Using this parameter, a dense orienta-

tion estimation by Structure Tensor, I20/I11, was obtained,

(3) and (5).

Third, a Gabor filter with frequency and direction param-

eters estimated as in the previous steps was manufactured

for each location in the image. The local image was pro-

jected on the real part of the (dynamically computed) Gabor

filter2.

The projection produces a real image, which is the origi-

nal image smoothed along its iso-gray curves, therefore here

referred to as the enhanced image. At this point, we replace

the initial input image with the enhanced image and restart

from the first step above. The three steps are iterated until

the weighted average of the frequency, A: in the flow-chart,

converges, or the maximum number of enhancement cycles

(5 here) are reached. Here, the weights were chosen as the

2This estimates the value of a sinusoid at the correct phase w.r.t. the

nearest ridge, given that local frequency and orientation are correctly esti-

mated. Derivation details and motivation of this projection are presented

in the supplementary material.

4326141



Figure 3. (Top-left) A tenprint detail and (Top-right) its corre-

sponding fingermark from an image pair in SD27. (Bottom) Same

images with common minutia identified by forensic experts, over-

layed. Overlayed are also two example minutia edges (red and

blue)

certainties of frequencies, but can be other regions of inter-

est, e.g. expert delineations.

7. Evidence on tenprint-fingermark pairs

We have applied the iterative scheme of Section 6 to im-

ages of SD27. In Step 1, we have used the same apriori

knowledge ω0 ∈ [ 2π13 ,
2π
6 ], but using 3 discrete scales, σ2

in :
0.92, 2.60, 4.28. For the majority of images of SD27, at

most 3 iterations were sufficient for convergence. This is

exemplified by Fig. 4, for the converged frequency and ori-

entation maps, and by Fig. 5 for converged enhanced im-

age. In the applications below, only the dense maps were

used whereas the enhanced images were not used explicitly.

Ridge counting experiments
We have applied our ridge counting method, Section 5, on

paths of tenprint-fingermarks of SD27. As paths, we have

chosen the lines joining pairs of minutia, called here edges,

e.g. the blue and red lines in Fig. 3.

Because we have 74278 mated edge-pairs, whose end

minutia were verified by experts (Match-Set), and that the

respective ridge counts on them must agree, we can evalu-

ate our automatic ridge counting by computing to what ex-

tent the ridge counts on mated edges of tenprint-fingermark

pairs agree, a correlation. The rationale behind this evalua-

tion is that if all edge-pairs would have the same (Euclidean)

Lengths, then matching two edges by chance is 1/74278.

Table 1 depicts the relative agreements RA(|ǫrc|) be-

tween our automatic estimations of ridge counts on corre-

sponding edges, rounded off to closest integers. For 78 % of

the edges (57937), the agreement between the ridge counts

were at most one ridge apart, when our frequency and orien-

tation maps in combination with our ridge counting method

was in use (Row of RCr). The columns depict the relative

agreements measured at different error tolerances (0 pixels,

1 pixels, etc.).

We have used all edges exhaustively and blindly. How-

ever a human expert avoids some edges since they would be

more prone to counting errors than others constellation er-

rors, described next. The first type of this error occurs if an

edge between two minutia passes through or nearby a third

minutia. The total ridge count on the edge can then be one

more or less, depending on the localization accuracy of the

(three) involved minutiae. If such an edge is barred from

ridge counting, the (smaller two) edges joining the middle

minutia to the initial two still contain the same information

for identification purposes.

In Fig. 3, drawn in red, an edge suffering from this type

of error is shown, along with another edge, shown in blue

which does not suffer from the phenomenon. On red edges,

the (automatic) ridge counts differ with 2.7 ridges (7.9, 5.2

for tenprint, fingermark respectively), whereas along the

blue edges, the same counts differ with 0.0 ridges (16.6,

16.6 ). Even if the (blue) edge is long and runs through

noisy ridges, the suggested method was able to estimate the

ridge count better than on the shorter (red) edge.

In Table 1, marked as R′
Cr, agreements between the

ridge counts are shown the underlying minutia edges had

been screened. The latter was done by rejecting edges with

a third minutia within 8 pixels (Euclidean) distance, re-

sulting in 6045 edges. The 8 pixels treshold corresponds

roughly to the average inter-ridge distance. Accordingly, in

83% of mated edges, the ridge counts were in agreement.

On the average this represents 26 different ridge counts per

tenprint-fingermark pair which can be offered to experts au-

tomatically in SD27.

In our ridge counting, the quality measures of dense

maps offer interpolation in intervals where ridges are not

available from adjacent intervals where they are available.

We are not aware of other studies on ridge counting for fin-

germarks to do comparison. Instead, we have used a differ-

ent frequency map, Section 4, but with our orientation map

and ridge counting to evaluate the role of frequency maps.

The results, marked with Li in Table 1, support the view

that our frequency maps to ridge counting is preferable.
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Table 1. Prevalence of |ǫrc|, on edges between minutia (SD27)

|ǫrc| 0 1 2 3 4 5

RLi(|ǫrc|) 0.37 0.71 0.84 0.91 0.94 0.96

RCr(|ǫrc|) 0.43 0.78 0.90 0.95 0.97 0.98

R′
Li(|ǫrc|) 0.43 0.77 0.88 0.93 0.94 0.96

R′
Cr(|ǫrc|) 0.51 0.83 0.92 0.96 0.97 0.98

Figure 4. (Top) Dense frequency maps of the tenprint-fingermark

pair in Fig. 3. Bottom Dense orientation map of the same pair.

Both maps constitute the (only) inputs of dense ridge counting al-

gorithm along arbitrary paths

Figure 5. Enhanced images (of Fig. 3) using dense orientation

and frequency maps. Gray regions are formed by points where

frequency and orientation certainties were too low

Frequency map as descriptor of minutia
Our purpose is to evaluate the description power of fre-

quency maps around single minutiae in a fingermark. This

is measured by verifying the frequency map around a minu-

tia in a fingermark against its mate in the genuine tenprint,

as well as against its non-mates selected from a large ran-

dom set of minutiae neighborhoods from tenprints.

In Fig. 6 a fingermark (SD27) left on a cheque along

with its 106 minutia identified by experts are shown (left)

along with the zoomed-in minutia area (right). The period-

ical strokes and letters in high curvature ridge areas present

additional deviations from a single frequency and/or single

orientation model.

The match score sM used in the verification has been ob-

tained by sM =< f, g > /(‖f‖‖g‖) where f , and g where

sM ≤ 1 are the frequency maps around the two minutiae,

after (rotational) alignment. A rotation is applied to the ten-

print neighborhood of the minutia such that the directions of

the two minutiae agree. In SD27 1032 fingermark minutiae

labels are available with mates in matching tenprints [16] so

that as-many client verifications can be mbe made. Conse-

quently, even non-mate minutiae are available, choosable at

random. We have effectuated random impostor verifications

against all genuines, 5508 total. We emphasize that both

client and impostor refer to the identity of a single minutia

(not the finger).

In the experiments, f and g were chosen to be maps ex-

tracted from neighborhoods of various sizes and shapes. We

only report on two sizes and shapes that provide most in-

sight. First is a disc neighborhood consisting of (digital

grid) points with distance less than 23 pixels to the origin

(minutia location). Second is a ring constisting of points

with distance between 67 and 90 pixels to the origin.

Figure 6 shows the client (false rejection, FR) versus im-

postor (false acceptence, FA) probability estimates, drawn

as Detection Error Trade-off (DET) curves. These are

equivalents of Receiver Operator Curves but with “loga-

rithmed” axes. The graphs on the disc (DS-PR), on the ring

(RN-PR), and as the fusion of both (FS-PR) are marked,

yielding the Equal Error Rates (EER) of 40 %, 32% and

30% respectively.

We have also used frequency maps produced by the

method of [2]. The corresponding graphs are marked as

DS-CH, RN-CH, and FS-CH, yielding EERs of 48 %, 39%

and 39% respectively. The results suggest that 9 (=39-30)

better decisions were made in 100 trials when our frequency

maps were in use.

The model of [2] fits a (single) frequency (ring) to the

power spectrum for a whole block. Accordingly, the method

represents a lower resolution of the frequency map com-

pared to ours where the frequency is the expectation of the

radial coordinate when the power spectrum is interpreted as

probability. Our frequency estimation is a TLS fit in the log

scale space, and affords a higher spatial resolution.

Heuristics, for example continuity of orientation, and

frequency can be added to any frequency estimation method
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Figure 6. (Top) A sample fingermark with contamination super-

imposed with its minutiae and its zoomed version. (Bottom) Im-

postor versus Client error probabilities for minutia identities based

on frequency maps estimated on SD27.

(i.e. to both methods) to reduce the problems caused by am-

biguities when a foreign wave pattern contaminates a gen-

uine wave, e.g. as is done in palm-print recognition [10]

(their eq. (5) and (6)), or by using robust statistics to re-

ject outlyers. Additionally, fingerprint minutia information

can be combined automatically or manually to deliver more

robust identification of a fingermark in real crime cases.

8. Conclusions

Our study suggests that more accurate and isotropic fre-

quency estimations are possible by using a novel non-linear

scale space compared to state of the art.

The study suggests that frequency measurement is an ori-

entation estimation problem in the logarithmic scale space

generated by the Structure Tensor.

We have presented a new method counting ridges contin-

uosly in tenprints as well as fingermarks based on dense fre-

quency and orientation maps. Experimental evidence sup-

ports that it can count ridges without edge thinning, ridge

extraction, etc, at agreement level of 83% between mated

paths.

Experimental evidence supports that our frequency map

is more helpful to verify mated minutiae neighborhoods

than published frequency map methods used in fingerprint

recognition.

The presented evidence supports that with 3 to 5 sam-

pling taps in the scale-space, one can estimate the frequency

accurately and obtain a certainty of the estimation.

Independently obtained dense frequency and orientation

maps can be combined in iterative schemes to improve each

other.

The theory supported by 2 theorems suggest that these

benefits can be extended to images with higher dimensions

than 2 for other applications.
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