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Abstract

Deep learning based approaches have been dominating

the face recognition field due to the significant performance

improvement they have provided on the challenging wild

datasets. These approaches have been extensively tested on

such unconstrained datasets, on the Labeled Faces in the

Wild and YouTube Faces, to name a few. However, their ca-

pability to handle individual appearance variations caused

by factors such as head pose, illumination, occlusion, and

misalignment has not been thoroughly assessed till now. In

this paper, we present a comprehensive study to evaluate

the performance of deep learning based face representa-

tion under several conditions including the varying head

pose angles, upper and lower face occlusion, changing il-

lumination of different strengths, and misalignment due to

erroneous facial feature localization. Two successful and

publicly available deep learning models, namely VGG-Face

and Lightened CNN have been utilized to extract face rep-

resentations. The obtained results show that although deep

learning provides a powerful representation for face recog-

nition, it can still benefit from preprocessing, for example,

for pose and illumination normalization in order to achieve

better performance under various conditions. Particularly,

if these variations are not included in the dataset used to

train the deep learning model, the role of preprocessing be-

comes more crucial. Experimental results also show that

deep learning based representation is robust to misalign-

ment and can tolerate facial feature localization errors up

to 10% of the interocular distance.

1. Introduction

Human face recognition is a challenging problem in

computer vision with several biometrics applications. This

problem essentially faces difficulties due to variations in fa-

cial appearance caused by factors such as illumination, ex-

pression, and partial occlusion from accessories including

glasses, scarves, hats, and the like.

In recent years, deep learning based approaches have

been increasingly applied for face recognition with promis-

ing results [32, 30, 24, 21, 37]. These methods take raw data

as their network input and convolve filters in multiple lev-

els to automatically discover low-level and high-level rep-

resentations from labeled or unlabeled data for detecting,

distinguishing, and/or classifying their underlying patterns

[9, 12, 13, 31, 14]. However, optimizing millions of param-

eters to learn the multi-stage weights from scratch in deep

learning architectures requires millions of training samples

and an access to powerful computational resources such

as Graphical Processing Units (GPUs). Consequently, the

method of transfer learning [34, 20] is efficiently utilized

to apply previously learned knowledge of a relevant visual

recognition problem to the new, desired task domain.

Transfer learning can be applied in two different ways

with respect to the size and similarity between the pre-

training dataset and the new database. The first approach is

fine-tuning the pre-trained network weights using the new

dataset via backpropagation. This method is only suggested

for large enough datasets since fine-tuning the pre-trained

networks with few training samples can lead to overfit-

ting [39]. The second approach is the direct utilization

of learned weights in the desired problem to extract and

later classify features. This scheme is especially efficient

when the new dataset is small and/or a few number of

classes exists. Depending on the task similarity between the

two datasets, one can decide whether to use lower layers’

weights–as generic low-level feature extractors–or higher

layers’ weights–as task specific motif extractors [14].

In this paper, the higher layer portion of learned weights

from two deep convolutional neural networks (CNNs) of

VGG-Face [21] and Lightened CNN [37], pre-trained on

very large face recognition collections, have been employed

to extract face representation. These two models are se-

lected since they have been found to be successful for face

recognition in the wild while being publicly available. The

former network includes a very deep architecture and the
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latter is a computationally efficient CNN. Robustness of

these deep face representations against variations of dif-

ferent factors including illumination, occlusion, pose, and

misalignment has been thoroughly assessed using five pop-

ular face datasets, namely the AR [17], CMU PIE [25], Ex-

tended Yale dataset [7], Color FERET [23], and FRGC [22].

The main contributions and outcomes of this work can

be summarized as follows: (i) A comprehensive evaluation

of deep learning based representation under various condi-

tions including pose, illumination, occlusion, and misalign-

ment has been conducted. In fact, all the proposed deep

learning based face recognition methods such as DeepFace

[32], DeepID [30], FaceNet [24], and VGG-Face [21] have

been trained and evaluated on very large wild face recog-

nition datasets, i.e. Labeled Faces in the Wild (LFW) [10],

YouTube Faces (YTF) [35], and MegaFace [18]. However,

their representation capabilities to handle individual appear-

ance variations have not been assessed yet. (ii) We have

shown that although deep learning provides a powerful rep-

resentation for face recognition, it is not able to achieve

state-of-the-art results against pose, illumination, and occlu-

sion. To enable deep learning models achieve better results,

either these variations should be taken into account during

training or preprocessing methods for pose and illumination

normalization should be employed along with pre-trained

models. (iii) We have found that deep learning based face

representation is robust to misalignment and able to tolerate

facial feature localization errors up to 10% of the interocu-

lar distance. (iv) The VGG-Face model [21] is shown to be

more transferable compared to the Lightened CNN model

[37]. Overall, we believe that deep learning based face

recognition requires further research to address the prob-

lem of face recognition under mismatched conditions, es-

pecially when there is a limited amount of data available for

the task at hand.

The rest of the paper is organized as follows. Section 2

covers a review of existing deep learning methods for face

recognition. Section 3 describes the details of two deep

CNN models for face recognition and presents the extrac-

tion and assessment approach for face representation based

on these models. Section 4 explains the utilized datasets

and presents the designed experiments and their results. Fi-

nally, Section 5 concludes the paper with the summary and

discussion of the conducted experiments and implications

of the obtained results.

2. Related Work

Before the emergence of deep learning algorithms, the

majority of traditional face recognition methods used to

first locally extract hand-crafted shallow features from fa-

cial images using Local Binary Patterns (LBP), Scale In-

variant Feature Transform (SIFT), and Histogram of Ori-

ented Gradients (HOG), and later train features and classify

identities by Support Vector Machines (SVMs) or Nearest

Neighbors (NNs) [1, 6, 27, 3]. However, with the avail-

ability of the state-of-the-art computational resources and

with a surge in access to very large datasets, deep learning

architectures have been developed and shown immensely

impressive results for different visual recognition tasks in-

cluding face recognition [32, 30, 24, 21, 37].

DeepFace [32] is one of these outstanding networks

that contains a nine-layer deep CNN model with two con-

volutional layers and more than 120 million parameters

trained on four million facial images from over 4,000 iden-

tities. This method, through alignment of images based

on a 3D model and use of an ensemble of CNNs, could

achieve accuracies of 97.35% and 91.4% on the LFW and

YTF datasets, respectively. Deep hidden IDentity features

(DeepID) [30] is another successful deep learning method

proposed for face recognition and verification with a nine-

layer network and four convolutional layers. This scheme

first learns weights through face identification and extracts

features using the last hidden layer outputs, and later gen-

eralizes them to face verification. DeepID aligns faces by

similarity transformation based on two eye centers and two

mouth corners. This network was trained on the Celebrity

Faces dataset (CelebFaces) [29] and achieved an accuracy

of 97.45% on the LFW dataset.

FaceNet [24] is a deep CNN based on GoogLeNet [31]

and the network proposed in [40] and trained on a face

dataset with 100 to 200 million images of around eight

million identities. This algorithm uses triplets of roughly

aligned faces obtained from an online triplet mining ap-

proach and directly learns to map face images to a com-

pact Euclidean space to measure face similarity. FaceNet

has been evaluated on the LFW and YTF datasets and has

achieved accuracies of 99.63% and 95.12%, respectively.

3. Methods

In this section, we present and describe two success-

ful CNN architectures for face recognition and discuss face

representation based on these models.

3.1. VGG­Face Network

VGG-Face [21] is a deep convolutional network pro-

posed for face recognition using the VGGNet architecture

[26]. It is trained on 2.6 million facial images of 2,622

identities collected from the web. The network involves 16

convolutional layers, five max-pooling layers, three fully-

connected layers, and a final linear layer with Softmax

activation. VGG-Face takes color image patches of size

224 × 224 pixels as the input and utilizes dropout regu-

larization [28] in the fully-connected layers. Moreover, it

applies ReLU activation to all of its convolutional layers.

Spanning 144 million parameters clearly reveals that the

VGG network is a computationally expensive architecture.
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This method has been evaluated on the LFW dataset and

achieved an accuracy of 98.95%.

3.2. Lightened CNN

This framework is a CNN with a low computational

complexity proposed for face recognition [37]. It uses an

activation function called Max-Feature-Map (MFM) to ex-

tract more abstract representations in comparison with the

ReLU. Lightened CNN is introduced in two different mod-

els. The first network, (A), inspired by the AlexNet model

[13], contains 3,961K parameters with four convolution lay-

ers using the MFM activation functions, four max-pooling

layers, two fully-connected layers, and a linear layer with

Softmax activation in the output. The second network, (B),

is inspired by the Network in Network model [16] and in-

volves 3,244K parameters with five convolution layers us-

ing the MFM activation functions, four convolutional layers

for dimensionality reduction, five max-pooling layers, two

fully-connected layers, and a linear layer with Softmax ac-

tivation in the output.

The Lightened CNN models take grayscale facial patch

images of size 128×128 pixels as the network inputs. These

models are trained on 493,456 facial images of 10,575 iden-

tities in the CASIA WebFace dataset [38]. Both Lightened

CNN models have been evaluated on the LFW dataset and

achieved accuracies of 98.13% and 97.77%, respectively.

3.3. Face Representation with CNN Models

The implemented and pre-trained models of VGG-Face

and Lightened CNN are used in the Caffe deep learning

framework [11]. To systematically evaluate robustness of

the aforementioned deep CNN models under different ap-

pearance variations, all the layer weights of each network

until the first fully-connected layer–before the last dropout

layer and fully-connected layer with Softmax activation–

are used for feature extraction. These layers are indicated

as FC6 and FC1 in the VGG-Face and Lightened CNN

models, respectively. To analyze the effects of different

fully-connected layers, we also deploy the FC7 layer of

the VGG-Face network. The VGG-Face model provides a

4096-dimensional, high-level representation extracted from

a color image patch of size 224 × 224 pixels, whereas the

Lightened CNN models provides a 512-dimensional, high-

level feature vector obtained from a grayscale image patch

of size 128 × 128 pixels. Extracted features are then clas-

sified using the method of nearest neighbors with cosine

distance metric. Although we tested other metrics such as

Euclidean distance and cross-correlation as well, the cosine

distance almost always achieved the best results.

Preprocessing steps including alignment and/or illumi-

nation normalization and contrast enhancement are applied

when needed. The face alignment is done with respect to

the eye centers while illumination normalization and con-

Figure 1: Samples from the AR database with different oc-

clusion conditions. The first three images from left are asso-

ciated with Session 1 and the next three are obtained from

Session 2 with repeating conditions of neutral, wearing a

pair of sunglasses, and wearing a scarf.

trast enhancement are performed using the proposed meth-

ods in [33].

In the conducted experiments, neutral images from the

datasets–including face images captured from frontal pose

under controlled illumination with no face occlusion–are

used for gallery images while probe images contain sev-

eral appearance variations due to head pose, illumination

changes, facial occlusion, and misalignment.

4. Experiments and Results

In this section, we provide the details of utilized datasets

and experimental setups. Furthermore, we present the sce-

narios used for evaluation of deep CNN-based face repre-

sentation and discuss the obtained results.

4.1. The AR Face Database – Face Occlusion

The AR face database [17] contains 4,000 color, frontal

face images of size 768×576 pixels with different facial ex-

pressions, illuminations, and occlusions from 126 subjects.

Each subject had participated in two sessions separated by

two weeks and with no restrictions on headwear, make-up,

hairstyle, accessories, etc. Since the aim of this experiment

is to benchmark the robustness of deep CNN-based features

against occlusion, one image per subject with the neutral

expression from the first session is used for training. Sub-

sequently, two images per subject per session are used for

testing, one while wearing a pair of sunglasses to test the

impact of upper face occlusion and one while wearing a

scarf to test the effect of lower face occlusion. In total, these

samples could be completely acquired from 110 subjects.

Each selected image is later aligned, cropped into a

square facial patch, and scaled to either 224 × 224 or

128 × 128 pixels. Finally, the mean image obtained from

the training set of VGG-Face is subtracted from each image

to ascertain the implementation of the same image trans-

forms applied on pre-tained models. Figure 1 shows im-

ages associated with one subject from the AR database used

for the experiment. Four experiments are conducted on the

AR dataset. The first two experiments involved training

and testing within the first session while the rest are trained

with samples from the first session and tested on images

from the second session. Table 1 summarizes the results of
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Table 1: Classification results (%) for the AR database us-

ing deep features against different occlusion conditions

Testing Set VGG-Face Lightened CNN

FC6 FC7

Sunglasses Session 1 33.64 35.45 5.45 (A)

Scarf Session 1 86.36 89.09 12.73 (A)

Sunglasses Session 2 29.09 28.18 7.27 (B)

Scarf Session 2 85.45 83.64 10.00 (A)

our experiments on occlusion variations using the AR face

database.

As it can be observed from Table 1, deep face repre-

sentation has difficulty to handle upper face occlusion due

to wearing sunglasses. Compared to the state-of-the-art

occlusion-robust face recognition algorithms [36, 4, 19],

the obtained results with deep representation are rather low.

These results indicate that, unless specifically trained on a

large amount of data with occlusion, deep CNN-based rep-

resentation may not function well when a facial occlusion

exists. In the same experiments, the VGG-Face model is

also found to be more robust against facial occlusion com-

pared to the Lightened CNN models. In this table, only the

results of the best performing Lightened CNN models are

presented.

4.2. CMU PIE Database – Illumination Variations

The CMU PIE face database [25] contains 41,368 color,

facial images of size 640 × 480 pixels photographed from

68 subjects under 13 different head poses, 43 different illu-

mination conditions, and four different expressions. Since

the goal of the experiment is to evaluate the effects of illu-

mination variations on the performance of deep CNN-based

features, frontal images from the illumination subset of the

CMU PIE dataset are chosen for further analyses. This sub-

set contains 21 images per subject taken under varying illu-

mination conditions. One frontally illuminated facial image

per subject is used for training and the remaining 20 face

images containing varying illumination are used for testing.

All collected images are aligned, cropped into a square

facial patch, and finally scaled to either 224 × 224 or

128 × 128 pixels. The VGG-Face mean image is then sub-

tracted from each image. Figure 2 depicts, as an exam-

ple, the utilized samples for one subject from the CMU PIE

database. Results of the experiments on illumination varia-

tions are presented in Table 2.

As can be seen, the obtained deep representation us-

ing the VGG-Face is robust against illumination varia-

tions. However, the obtained accuracies are slightly lower

compared to the results achieved by the state-of-the-art

illumination-robust face recognition approaches [15, 41,

33]. These results indicate that the performance of deep

Figure 2: Samples from the CMU PIE database with differ-

ent illumination conditions. The first image in the upper left

is the frontal face picture used for training and the rest are

assigned for testing.

face representations needs to be further improved using

illumination-based preprocessing methods [33].

4.3. Extended Yale Dataset – Illumination Changes

The extended Yale face dataset B [7] contains 16,128 im-

ages captured from 38 subjects under nine poses and 64 il-

lumination variations. These 64 samples are divided into

five subsets according to the angle between the light source

direction and camera’s optical axis; subset 1 contains seven

images with the lighting angles less than 12 degrees; subset

2 has 12 images with angles between 20 and 25 degrees;

subset 3 contains 12 images with angles between 35 and

50 degrees; subset 4 has 14 images with angles between 60

and 77 degrees; and, finally, subset 5 contains 19 images

with angles larger than 77 degrees. In other words, illumi-

nation variations become stronger by increasing the subset

number.

To evaluate the effects of illumination variations using

deep CNN-based features, only the frontal face images of

this dataset under all illumination variations are selected.

The first subset with almost perfect frontal illumination is

used for training while subsets 2 to 5 are used for test-

ing. All obtained images are later aligned, cropped into a

square facial patch, and finally scaled to either 224×224 or

128 × 128 pixels. The VGG-Face mean image is then sub-

tracted from each image. A few samples associated with

one subject from the Extended Yale database B are shown

in Figure 3. The results of the experiments on illumination

variations using the Extended Yale dataset B subsets are re-

ported in Table 3.

Table 2: Classification results (%) for the CMU PIE

database using deep facial features against different illumi-

nation conditions

VGG-Face Lightened CNN

FC6 FC7

Accuracy 93.16 92.87 20.51 (A)
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Figure 3: Samples from the Extended Yale Dataset B with

various illumination conditions. Rows 1 to 5 correspond to

subsets 1 to 5, respectively, and the last two rows are the

preprocessed samples of subsets 4 and 5.

As it can be observed, deep face representations are ro-

bust against small illumination variations which exist in

subsets 2 and 3. However, the performance degrades signifi-

cantly when the illumination change strength increases. The

main reason for this outcome can be attributed to the fact

that the deep face models are mainly trained on celebrity

pictures obtained from the web that are usually collected un-

der relatively well-illuminated conditions. Therefore, they

do not learn to handle strong illumination variations. One

way to tackle this problem would be to employ preprocess-

ing before applying the deep CNN models for feature ex-

traction. To assess the contribution of image preprocess-

ing, we preprocessed face images of subsets 4 and 5 by

illumination normalization and contrast enhancement and

Table 3: Classification results (%) for the Extended Yale

database B using deep representations against various illu-

mination conditions

Testing Set VGG-Face Lightened CNN

FC6 FC7

Subset 2 100 100 82.43 (A)

Subset 3 88.38 92.32 18.42 (B)

Subset 4 46.62 52.44 8.46 (B)

Subset 5 13.85 18.28 4.29 (B)

Preprocessed Subset 4 71.80 75.56 26.32 (A)

Preprocessed Subset 5 73.82 76.32 24.93 (A)

Figure 4: Samples from the color FERET database with dif-

ferent pose conditions. The first image on the left is the

frontal face picture (fa) used for training and the rest (ql, qr,

hl, hr, pl, pr) are assigned for testing.

ran the same experiments on these newly obtained subsets.

The corresponding results are shown in the last two rows

of Table 3. As it can be seen, preprocessing helps to im-

prove the obtained accuracies. These results justify that,

although deep CNNs provide a powerful representation for

face recognition, they can still benefit from the preprocess-

ing approaches. This is especially the case, when the vari-

ations available in the test set are not accounted for pre-

training, making it essential to normalize these variations.

4.4. Color FERET Database – Pose Variations

The color FERET database [23] contains 11,338 color

images of size 512 × 768 pixels captured in a semi-

controlled environment with 13 different poses from 994

subjects. To benchmark robustness of deep features against

pose variations, we use the regular frontal image set (fa) for

training with one frontal image per subject. The network is

then tested on six non-frontal poses, including two quarter

left (ql) and quarter right (qr) poses with head tilts of about

22.5 degrees to left and right, two half left (hl) and half right

(hr) poses with head tilts of around 67.5 degrees, and two

profile left (pl) and profile right (pl) poses with head tilts of

around 90 degrees.

All the utilized images are cropped into a square facial

patch and scaled to either 224 × 224 or 128 × 128 pixels.

The VGG-Face mean image is then subtracted from each

image. Figure 4 shows samples associated with one subject

from the FERET database. The obtained accuracies for pose

variations on the same datasets are reported in Table 4.

As the results indicate, the VGG-Face model is able to

Table 4: Classification results (%) for the FERET database

using deep features against different pose conditions

Testing Set VGG-Face Lightened CNN

FC6 FC7

Quarter Left 97.63 96.71 25.76 (A)

Quarter Right 98.42 98.16 26.02 (A)

Half Left 88.32 87.85 6.08 (B)

Half Right 91.74 87.85 5.98 (A)

Profile Left 40.63 43.60 0.76 (B)

Profile Right 43.95 44.53 1.10 (B)
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Figure 5: Samples from the FRGC database aligned with

different registration errors. The first three rows are ac-

quired from FRGC1 and show the training samples (row1)

and testing samples aligned with zero (row2) and 10%

(row3) registration errors, respectively. The second three

rows are associated with FRGC4 and depict the train-

ing samples (row4) and testing samples aligned with zero

(row5) and 20% (row6) registration errors, respectively.

handle pose variations of up to 67.5 degrees. Nevertheless,

the results can be further improved by employing pose nor-

malization approaches, which have been already found use-

ful for face recognition [5, 2, 8]. The performance drops

significantly when the system is tested with profile images.

Besides the fact that frontal-to-profile face matching is a

challenging problem, the lack of enough profile images in

the training datasets of deep CNN face models could be rea-

son behind this performance degradation.

4.5. The FRGC Database – Misalignment

The Face Recognition Grand Challenge (FRGC)

database [22] contains frontal face images photographed

both in controlled and uncontrolled environments under two

different lighting conditions with neutral or smiling facial

expressions. The controlled subset of images was captured

in a studio setting, while the uncontrolled photographs were

taken either in hallways, atria, or outdoors.

To assess the robustness of deep CNN-based features

against misalignment, the Fall 2003 and Spring 2004 col-

lections are utilized and divided into controlled and uncon-

trolled subsets to obtain four new subsets, each containing

photographs of 120 subjects with ten images per subject.

The Fall 2003 subsets are used for gallery, while those from

Spring 2004 are employed as probe images. In other words,

gallery images are from the controlled (uncontrolled) sub-

set of Fall 2003 and probe images are from the controlled

(uncontrolled) subset of Spring 2004. We named the exper-

iments run under controlled conditions FRGC1 and those

conducted under uncontrolled conditions, FRGC4.

Similar to previous tasks, the gallery images are aligned

with respect to manually annotated eye center coordinates,
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Figure 6: Classification results for the FRGC dataset using

deep facial representations against different facial feature

localization error levels

cropped into a square facial patch, and scaled to either

224 × 224 or 128 × 128 pixels. The VGG-Face mean im-

age is also subtracted from each image. To imitate mis-

alignment due to erroneous facial feature localization, while

aligning probe images, random noise up to 40% of the dis-

tance between the eyes is added to the manually annotated

eye center positions. Figure 5 shows sample face images

associated with one subject from the different subsets of the

FRGC database. The classification results of the utilized

deep models with respect to varying degrees of facial fea-

ture localization errors are shown in Figure 6. Note that the

VGG-Face features for this task are all obtained from FC6.

Analysis of the results displayed in Figure 6 shows that

deep CNN-based face representation is robust against mis-

alignment, i.e. it can tolerate up to 10% of interocular dis-

tance error from the facial feature localization systems. This

is a very important property since traditional appearance-

based face recognition algorithms have been known to be

sensitive to misalignment.

4.6. Facial Bounding Box Extension

As our last experiment, we evaluate deep facial repre-

sentations against alignment with a larger facial bounding

box. For this purpose, each image of the utilized datasets is

aligned and cropped into an extended square facial patch

to include all parts of the head, i.e. ears, hair, and the

chain. These images are then scaled to either 224 × 224

or 128× 128 pixels and the VGG-Face mean image is sub-

tracted from each image. Table 5 shows the results of align-

ment with larger bounding boxes on different face datasets.

Comparing the obtained results in Table 5 with those of

Tables 1 to 3 shows that using deep features extracted from
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Table 5: Classification results (%) using deep features for

different face datasets aligned with a larger bounding box

Training Set Testing Set VGG-Face (FC6)

AR Neutral Set 1 AR Sunglasses Set 1 44.55

AR Neutral Set 1 AR Scarf Set 1 93.64

AR Neutral Set 1 AR Sunglasses Set 2 39.09

AR Neutral Set 1 AR Scarf Set 2 91.82

CMU PIE Train CMU PIE Test 97.72

Ext. Yale Set 1 Ext. Yale Set 2 100

Ext. Yale Set 1 Ext. Yale Set 3 94.52

Ext. Yale Set 1 Ext. Yale Set 4 56.58

Ext. Yale Set 1 Ext. Yale Set 5 27.56

the whole head remarkably improves the performance. One

possible explanation for this observation is that the VGG-

Face model is trained on images that contained all the head

rather than merely the face image; therefore, extending the

facial bounding box increases classification accuracy by in-

cluding useful features extracted from the full head.

5. Summary and Discussion

In this paper, we presented a comprehensive evaluation

of deep learning based representation for face recognition

under various conditions including pose, illumination, oc-

clusion, and misalignment. Two successful deep CNN mod-

els, namely VGG-Face [21] and Lightened CNN [37], pre-

trained on very large face datasets, were employed to extract

facial image representations. Five well-known face datasets

were utilized for these experiments, namely the AR face

database [17] to analyze the effects of occlusion, CMU PIE

[25] and Extended Yale dataset B [7] for analysis of illumi-

nation variations, Color FERET database [23] to assess the

impacts of pose variations, and the FRGC database [22] to

evaluate the effects of misalignment.

It has been shown that deep learning based representa-

tions provide promising results. However, the achieved per-

formance levels are not as high as those from the state-of-

the-art methods reported on these databases in the literature.

The performance gap is significant for the cases in which

the tested conditions are scarce in the training datasets of

CNN models. We propose that using preprocessing meth-

ods for pose and illumination normalization along with pre-

trained deep learning models or accounting for these vari-

ations during training substantially resolve this weakness.

Besides these important observations, this study has re-

vealed that an advantage of deep learning based face rep-

resentations is their robustness to misalignment since they

can tolerate misalignment due to facial feature localization

errors of up to 10% of the interocular distance.

The VGG-Face model has shown a better transferabil-

ity compared to the Lightened CNN model. This could be

attributed to its more sophisticated architecture that results

in a more abstract representation. On the other hand, the

Lightened CNN model is, as its name implies, a faster ap-

proach that uses an uncommon activation function (MFM)

instead of ReLU. Also, the VGG-Face features obtained

from the FC6 layer show better robustness against pose vari-

ations, while those obtained from the FC7 layer have better

robustness to illumination variations.

Overall, although a significant progress has been

achieved during the recent years with the deep learn-

ing based approaches, face recognition under mismatched

conditions–especially when a limited amount of data is

available for the task at hand–still remains a challenging

problem.
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