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Abstract

We propose a novel approach to template based face

recognition. Our dual goal is to both increase recognition

accuracy and reduce the computational and storage costs of

template matching. To do this, we leverage on an approach

which was proven effective in many other domains, but, to

our knowledge, never fully explored for face images: aver-

age pooling of face photos. We show how (and why!) the

space of a template’s images can be partitioned and then

pooled based on image quality and head pose and the effect

this has on accuracy and template size. We perform exten-

sive tests on the IJB-A and Janus CS2 template based face

identification and verification benchmarks. These show that

not only does our approach outperform published state of

the art despite requiring far fewer cross template compar-

isons, but also, surprisingly, that image pooling performs

on par with deep feature pooling.

1. Introduction

Template based face recognition problems assume that

both probe and gallery items are potentially represented

using multiple visual items rather than just one. Unlike

the term set based face recognition, template was adopted

by the recent Janus benchmarks [25] to emphasize that

templates may have heterogeneous content (e.g., images,

videos) contrary to older benchmarks such as the YouTube

Faces (YTF) [42] in which sets contained images of a sin-

gle nature (e.g., video frames). The template setting was

designed to reflect many real-world biometric scenarios,

where capturing a subject’s facial appearance is possible

more than once and using different acquisition methods.

Ostensibly, having many images instead of one provides

more appearance information which in turn should lead to

more accurate recognition. In reality, however, this is not al-

ways the case. The real-world images populating these tem-

plates vary greatly in quality, pose, expression and more.

Matching across templates requires that all these issues are

taken under consideration to avoid skewing matching scores

based on these and other confounding factors. Doing this

well requires knowing which images should be compared

and how to weigh the similarities of different cross-template

image pairs. Beyond these, however, are also questions of

complexity: How should two templates be efficiently com-

pared without compromising (or even gaining) accuracy?

Previous work on this problem focused on the set based

setting, often with the YTF benchmark, and proposed

various set representations and set-to-set similarity mea-

sures. These prescribe representing face sets as anything

from linear subspaces (e.g., [11, 18]) to non-linear mani-

folds [9, 31]. More recent template based methods, how-

ever, seem to prefer explicitly storing all face images over

using more specialized set representations [1, 7, 33, 34, 37].

Set similarity is then computed by measuring the similari-

ties between all cross template image pairs and aggregating

them into a single, template based similarity score.

We propose simple image averages (a.k.a., average

pooled faces, a.k.a., 1st order set statistics) as template rep-

resentations. Pooling images using pixel-wise average or

median is long since known to be an effective means of cor-

recting images, removing noise and overcoming incidental

occlusions (e.g., the seminal work of [20, 21, 22]). Very

recently, feature pooling (rather than pooling image inten-

sities) was proposed as an extremely useful approach for

endowing existing features with invariant properties. Two

such examples are scale invariance by multi-scale pooling

of SIFT features [30] in [10] and pose (viewpoint) invari-

ance by cross-pose pooling of deep features [38].

Rather than feature pooling, we return to pooling images

directly. As we discuss in Sec. 3, previous work avoided

relying only on this representation for face image sets and

we explain why this was so. We show that the underlying

requirement of successful image based pooling methods –

image alignment – can easily be satisfied by 3D alignment

techniques such as face frontalization [14]. Moreover, us-

ing a number of technical novelties and careful partitioning

of the images in a template, based on head pose and image

quality, we show that few pooled images capture facial ap-
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pearances better than the original template. That is, we pro-

vide improved template matching scores but require fewer

images to represent templates.

We test performance on the Janus CS2 and IJB-A

datasets, using deep feature representations to encode our

pooled images. We show that both face verification and

identification results outperform recent state of the art. Fi-

nally, we compare our image pooling to the increasingly

popular approach of deep feature pooling. Surprisingly, our

results show that pooled images perform on par with pooled

features, despite the fact that image alignment and averag-

ing is computationally cheaper than deep feature extraction.

2. Related work

Much of the relevant work done in the past focused on

the set based settings, where probe and gallery items typ-

ically comprised of multiple frames from the same video.

Possibly the simplest approach to representing and match-

ing image sets is to store the images of each set (or features

extracted from them) directly, and then measure the distance

between two sets by aggregating the distances between all

cross-set image pairs (e.g., min-dist [42]). Other, more elab-

orate methods designed for this purpose can broadly be cat-

egorized as belonging to four different categories.

Set Convex or Affine hulls were both proposed as repre-

sentations of face image sets. Convex hull was used by [5]

and then extended to the use of Affine hull in [15]. These

methods are most effective when many images are available

in each set and these hulls are well defined.

Subspace methods represent sets using linear sub-

spaces [3, 4, 11, 18]. Though the underlying assumption

that all set elements lie close to a linear subspace may seem

restrictive, it provides a computationally efficient represen-

tation and a natural definition for set-to-set distances: the

angles between different subspaces [4]. Real world pho-

tos of faces, however, rarely lie on linear subspaces. Using

such subspaces to represent them risks substantial loss of

information and a degradation in recognition capabilities.

When set items cannot be assumed to reside on a linear

subspace, sets may still be represented by non-linear man-

ifolds. Some examples of this approach include [9, 19, 31,

41]. These typically require manifold learning techniques

and manifold-to-manifold distance definitions which can be

expensive to compute in practice.

Finally, various distribution based representations were

also considered for this purpose. Possibly the most widely

used are histogram representations such as the bag of fea-

tures [27], Fisher vectors [35] and Vector of Locally Aggre-

gated Descriptors (VLAD) [23]. These are typically applied

to sets of local descriptors, rather than images. Sets con-

taining entire face photos were represented by 1st to n’th

order statistics in [32]. Alternatively, by assuming that sets

of faces are Gaussians, they were represented using covari-

ance matrices (2nd order statistics) in [40] and [44].

3. Motivation: Are 1st order statistics enough?

Let a (gallery or probe) face template be represented by

the set of its member images (assuming that videos are rep-

resented by their individual frames), as: F = {I1, ..., IN}.

where Ii ∈ R
n×m×3 are RGB images, aligned by cropping

the bounding box centered on the face and rescaling it to the

same dimensions for all images (i.e., images are assumed to

be aligned for translation and scale). The 1st order statistics

of this set (the average pooled face) is simply defined as:

F
.
= avg(F) =

1

N

N
∑

i=1

Ii (1)

Although some of the methods surveyed in Sec. 2 used

1st order statistics of face sets as part of their representa-

tions, none ventured so far as to propose using them alone,

and for good reason: High order statistics and/or metric

learning are required to represent and match facial appear-

ance variations that cannot be captured effectively only by

1st order statistics. Fig. 1 illustrates this by showing face

images from a single template and their average. Appar-

ently, averaging loses much of the information available in

each individual image in favor of noise.

Also evident in Fig. 1 is that at least to some extent this

is an alignment problem: if faces appear in exactly the same

alignment (in particular, the same head pose), their average

is far clearer. This was recently demonstrated in [14] which

showed that better head pose alignments produce sharper

average images.

We go beyond the work in [14] and propose to cancel

out variations in pose and image quality, in order to pro-

duce superior pooled faces which can be used for recogni-

tion. This, as an alternative to using high order statistics to

represent face sets or expensive metric learning schemes to

match them.

Specifically, we partition a set of images into subsets

containing faces which share similar appearances. We fur-

ther reduce facial appearances by 3D head pose alignment.

As a consequence, a face set is represented by a small col-

lection of 1st order statistics, extracted from few subsets of

the original template. Doing so has a number of attractive

advantages over previous work:

• Reduced computational costs. Image alignment and

averaging are computationally cheaper than other ex-

isting representations.

• Faster matching. Matching two templates is also

quite efficient, due to the drop in the number of im-

ages representing each set. Moreover, this approach

does not require expensive metric learning schemes to

address appearance variations.
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Figure 1. Pooled faces. (a) Example images from Janus [25] templates. (b) Averages of all in-plane aligned template images. The subjects

are hardly recognizable in these averages. (c) Averages of all 3D aligned template images. Though better than (b), these are over smoothed

and still hard to recognize. (d) Averages of 3D aligned images from four different face bins. These retain more high frequency information

and details necessary for recognizing the subjects in the photos.

• Improved accuracy. Despite reduced storage and

computational costs, accuracy actually improves. This

is likely due to the known properties of average images

to reduce noise and remove incidental occlusions.

4. Face pooling

Our pipeline is illustrated in Fig. 2. Given a face tem-

plate F , we align its images in 3D and then bin the aligned

images according to pose and image quality. Images falling

into the same bin are pooled, Eq. (1), and the pooled images

are encoded using a convolutional neural network (CNN).

Finally, we use these CNN features to match templates. We

next describe these steps in detail.

4.1. Binning by head pose

3D head pose estimation: The recent work of [13] showed

that the 6dof pose of a head appearing in a 2D image can be

estimated by minimizing the geometrical distances between

extracted 2D facial landmarks and their corresponding re-

projected 3D landmarks on a generic 3D face model. In this

work, we perform a similar process, with slight changes.

Given a bounding box around a face, we detect 68 land-

marks using CLNF [2]. Bounding boxes were estimated

using the DLIB library of [24]. We used CLNF to detect

the same landmarks in a rendered image of a generic 3D

face. The correspondences between the 3D coordinates on

the generic model and its rendered view are obtained using

the rendering code of [13]. Hence, given the detected points

pi,i=1..68 ∈ R
2 on the input photo, and their corresponding

points p̂i,i=1..68 ∈ R
2 on the rendered view, we have the

3D coordinates for these points, P̂i,i=1..68 ∈ R
3, on the

generic face model.

Assuming the principal point is in the image center we

use the 68 correspondences (pi, P̂i) to solve for the extrin-

sic camera parameters with the PnP method [12]. This pro-

vides us with a camera matrix M = K [R t] minimizing

the projection errors of the 3D landmarks to the landmarks

detected on the input photo. The estimated pose M is then

decomposed to provide a rotation matrix R ∈ R
3×3 for the

yaw, pitch and roll angles of the head.

These three angles are used in three ways: roll compen-

sation, head pose quantization and pose cancellation. Roll

compensation simply means in-plane alignment of the faces

so that the line between the eyes is horizontal [12].

Head pose quantization: Once 2D roll is eliminated,

we consider only yaw angles (in practice we found pitch

variations in our datasets to be small, and so only yaw an-

gle variations were addressed; pitch angles can presumably

also be used to quantize head poses to, e.g., ±15◦ pitch an-

gle bins). Yaw angles (|θ|) are quantized into four groups,

{(0◦ ≤ |θ| < 20◦), (20◦ ≤ |θ| < 40◦), (40◦ ≤ |θ| <
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Figure 2. Template representation and matching pipeline. Illustrates the various stages of our approach. Please see text for details.

60◦), (60◦ ≤ |θ|}.

Head pose cancellation: All images in all bins are then

aligned in 3D to remove any remaining pose variations.

We perform a process similar to the one described in [14],

including soft-symmetry. Unlike [14], our own rendering

code produced faces over a black background (the original

background of the input photos was not preserved in ren-

dering). More importantly, we found that better overall per-

formance is obtained by rendering the faces not to frontal

pose, as in [14], but to a 40◦ (half-profile) view (Fig. 1).

4.2. Binning by image quality

Inspecting the images available in the templates of a re-

cent collection such as Janus [25] reveals that their quality

varies significantly from one photo to another. This may

be due to motion blur, difficult viewing conditions or low

quality camera gear. Regardless of the reason, one imme-

diate consequence of this is that pooling low quality photos

may degrade the average image.

One way to address this is to eliminate poor images. We

found, however, that doing so reduces overall accuracy, pre-

sumably because even poor photos carry some valuable in-

formation. As a consequence, these images are still used,

but are pooled separately from high quality images.

Estimating Facial Image Quality (FIQ): We seek a FIQ

measure which assigned a normalized image quality based

score for a facial image I. Work on estimating image quality

is abundant. We tested several existing methods for image

quality estimation, ultimately choosing the Spatial-Spectral

Entropy based Quality (SSEQ) [28].

SSEQ is a no-reference image quality assessment model

that utilizes local spatial and spectral entropy features on

distorted images [28]. It uses a support vector machine

(SVM) trained to classify image distortion and quality. A

key advantage of SSEQ is that its final index allows assess-

ing the quality of a distorted photo across multiple distor-

tion categories. It additionally matches well with human

subjective opinions of image quality [28].

We use the code originally released for SSEQ by its au-

thors [29]. Normalized SSEQ scores were partitioned into

five image quality bins, with bin limits determined empiri-

cally. Specifically, given face image the following threshold

values are used to assign the image with a quality index:

Q(I) =































0, if −∞ < SSEQ(I) < 0.45

1, if 0.45 ≤ SSEQ(I) < 0.55

2, if 0.55 ≤ SSEQ(I) < 0.65

3, if 0.65 ≤ SSEQ(I) < 0.75

4, if 0.75 ≤ SSEQ(I) < ∞,

(2)

where SSEQ(I) is the FIQ measure of the input image I.

4.3. Representing and comparing templates

Template representation: Table 1 summarizes the bin

indices used in this work. All told, 20 bins are available,

though, as we later show, typical templates have far fewer

bins populated by images in practice.

Pooled images are represented using deep features.

Specifically, we use the VGG-19 CNN of [6] to encode face

images. This 19 layer network was originally trained on the

large scale image recognition benchmark (ILSVRC) [36].

We fine tune the weights of this network twice: first on orig-

inal CASIA WebFace images [43], with the goal of learning

to recognize 10, 575 subject labels of that set.

A second fine tuning is performed again using CASIA

images. This time, however, training is performed follow-

ing image pooling, using the process described in Sec. 4.

Since CASIA has not template definitions, we use subject

labels instead: We take random subsets of images from the

same subject. Each subset is then treated as a template. Sub-

jects for which only a single image exists are used in this

second fine tuning step, without pooling.

Matching images and templates: A trained CNN is de-

fined by linear functions and non-linear activations. The

Pose [0◦...20◦), [20◦...40◦), [40◦...60◦),
(head yaw) [60◦...90◦]
Quality (−∞...0.45), [0.45...0.55), [0.55...0.65), [0.65...0.75),
(SSEQ [28]) [0.75...∞)

Table 1. Bin indices. The quantized pose and image quality in our

template representation. Twenty bins used altogether, though few

are populated in practice.
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(a) LFW (b) IJB-A

Figure 3. Qualitative comparison between facial imagery of a subject present in both LFW and IJB-A: images in LFW has a strong bias

towards media collected from the web whereas the quality of IJB-A images is far more variable. Moreover LFW benchmark considers only

image-pair comparisons for face verification; while IJB-A subjects are described using image templates (sets).

network is parametrized with a set of convolutional layers

and fully connected layers, including values for the weights,

W, and biases, b. The CNN is used to extract feature rep-

resentations, x = f(I; {W,b}), for each image, I (pooled

or not). We take the response produced after the fully con-

nected layer fc7 as the image representation. Given an im-

age Ip in a probe template P and Ig in a gallery template

G, we compute their similarity, s(xfc7
p ,xfc7

g ), by taking the

normalized cross correlation (NCC) of their feature vectors.

A template similarity is defined by aggregating these

scores for all cross-template (pooled) image pairs (i.e., all-

vs-all matching of features extracted from pooled images).

We define the similarity s(P,G) of two templates P and

G as follows. After computing all pair-wise pooled-image

level similarity scores, these values are fused using Soft-

Max: sβ(P,G), defined in Eq.(3), below. The use of Soft-

Max here to aggregate image level similarity scores can be

considered a weighted average which depends on the score

to set the weights as:

sβ(P,G) =

∑

p∈P,g∈G
wpg s(xp,xg)

∑

p∈P,g∈G
wpg

, wpg
.
= eβ s(xp,xg)

(3)

As the final template similarity score, we average the Soft-

Max responses over multiple values of β = [0...20].

5. Experiments

We tested our pooling approach extensively on the

IARPA Janus Benchmark-A (IJB-A) and JANUS CS2

benchmark. Compared to previous benchmarks (e.g., La-

beled Faces in the Wild [16, 17] and YTF [42]) this dataset

is far more challenging and diverse in its contents. In par-

ticular IJB-A brings two design novelties over these older

benchmarks:

• Janus faces reflect a wider range of challenges, includ-

ing extreme poses and expressions, low quality and

noisy images and occlusions. This is mainly due to the

its design principles which emphasize heterogeneous

media collections.

• Subjects are represented by templates of images from

multiple sources, rather than single images. They are

moreover described by both still-images and frames

from multiple videos. Throughout this paper, we there-

fore followed their terminology, referring to image

templates rather than sets (as in the YTF collection).

Fig. 3 provides a qualitative comparison between LFW and

IJB-A images, highlighting the difference between a subject

included in both sets: images in LFW are strongly biased

towards web based production quality images, whereas IJB-

A images are of poorer quality and wide pose changes.

5.1. Performance Metrics

Standard Janus verification metrics: We report the stan-

dard performance metrics for IJB-A. For both the verifica-

tion and identification protocols we show different recall

values (True Positive Rate) at different cut-off points in the

False Positive Rate (FPR) of the ROC. The FPR is sam-

pled at an order of magnitude less each time, ranging from

TPR-1%F (TPR at 1% of FPR) to the most difficult point at

TPR-0.01%F (TPR at 0.01% of FPR).

This evaluation fits perfectly with the face verification

protocol defined in IJB-A verification, as also previously

done for LFW. Considering the ROC, we also show the op-

posite, which we believe to be more relevant in real-world

scenarios: assume that we want to have a fixed recall of

85%, the system should report what is the FPR. We denoted

this metric as FPR-85T% in the Tables.

Normalized Area under the Curve: We propose a novel

metric which is relevant to applications where high recall

is desired at very low FPR. We derive it from the ROC, as

follows: we report the normalized Area under the Curve

(nAUC) in a very low FPR range of FPR = [0, ..., 1%]. We

denote this metric by nAUCj in our results.

Face identification: If the protocol allows for face identi-

fication, we also report metrics designed to assess how well

each method retrieves probe subjects across a pre-defined

gallery. A standard tool to measure this is the Cumula-

tive Matching Characteristic (CMC): for IJB-A identifica-

tion and JANUS CS2 we also provide the recognition rate

at different ranks (Rank-1, Rank-5 and Rank-10).

Template size: Unique to this work is its emphasis on re-

ducing the number of images used to represent a template.
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IJB-A identification (closed-set)

TPR-1%F TPR-0.1%F TPR-0.01%F nAUCj FPR-85%T Rank-1 Rank-5 Rank-10 avg-imgG avg-imgP

All images 85.9 71.6 51.3 63.8 0.7 82.8 92.1 94.3 24.3±20.8 7.2±13.1

Single feature pooling 83.5 68.9 50.7 62.0 1.1 83.0 91.8 94.0
1±0 1±0

Single image pooling 61.9 38.4 19.9 44.3 7.8 59.2 79.4 86.0

Random Selection per bin 85.0 70.4 52.1 63.0 0.9 81.9 91.6 93.9

8.1±3.9 3.0±3.3
Pooled features per bin 86.1 72.3 54.1 63.8 0.7 82.8 91.7 93.9

Pooled images per bin, wo/ft 86.5 72.5 53.2 64.2 0.6 83.2 91.9 94.2

Pooled images per bin, w/ft 87.5 73.5 53.8 65.0 0.5 84.6 93.3 95.1

Table 2. Comparative analysis of our proposed feature pooling per bin with other baseline methods on the IJB-A identification.

JANUS CS2

TPR-1%F TPR-0.1%F TPR-0.01%F nAUCj FPR-85%T Rank-1 Rank-5 Rank-10 avg-imgG avg-imgP

All images 86.4 71.9 51.0 67.6 0.6 80.9 90.8 93.0 24.3±20.5 7.3±13.4

Single feature pooling 82.9 68.1 50.9 64.8 1.3 79.8 89.8 91.6
1±0 1±0

Single image pooling 62.1 38.9 20.5 46.2 7.7 55.5 75.6 82.6

Random Selection per bin 85.2 70.8 52.6 66.8 0.8 79.9 89.7 92.5

8.2±3.9 3.0±3.3
Pooled features per bin 86.5 73.4 54.0 67.8 0.6 81.4 90.5 92.7

Pooled images per bin, wo/ft 86.9 73.2 54.2 68.1 0.6 81.2 90.7 93.0

Pooled images per bin, w/ft 87.8 74.5 54.5 69.0 0.5 82.6 91.8 94.0

Table 3. Comparative analysis of our proposed feature pooling per bin with other baseline methods on the JANUS CS2 splits.

As such, for each matching method we additionally report

the number of pooled images used in practice (i.e., the num-

ber of populated bins in our representation, Sec. 4). We

provide the average ± standard deviation (SD) for probe

and gallery templates for each of the methods used. Im-

portantly, besides reducing storage requirements, a smaller

number of images results in fewer images being compared

and hence faster template to template comparisons.

5.2. Comparison with template pooling baselines

We begin by examining the following alternative means

for pooling and their effect on performance:

• All images. No pooling, all template images are used

directly. To this end we use a CNN that was only fine

tuned once on CASIA (was not fine tuned again using

pooled images).

• Single image pooling Pooling all images after render-

ing to half-profile view into a single-averaged image

per template (i.e., no image binning).

• Single feature pooling Average pooling all the deep

features extracted from all the images in a template

into one feature vector. This follows similar techniques

recently shown to be successful by, e.g., [7, 37]. Fea-

tures were extracted using a CNN that was not trained

on pooled images.

• Random Selection per bin Rather than pooling the

images inside a bin, we randomly select one of the

images as the representative for that bin. A template

therefore has the same number of images used to rep-

resent it as our own method. Here too, we used a CNN

that was not fine tuned on pooled images to extract the

features.

• Pooled features per bin Same as single feature pool-

ing above, but pooling features of each bin separately.

• Pooled images per bin (proposed) The method de-

scribed in Sec. 4 and 4.3. Note that for this particular

approach we additionally tested the effect of fine tun-

ing the network for each of the ten training splits in

each benchmark (denoted by “w/ft”).

5.2.1 Analysis of Performance

All the methods presented in this paper solve the problem of

comparing two sets of images and produce a score or a dis-

tance. More formally, they estimate the similarity s(P,G),
given a template in the probe P = {x1, ...,xP } and another

template in the gallery G = {x1, ...,xG}, where xi repre-

sents a feature extracted from the CNN given an image Ii.

G and P represent the cardinality of each set. Note that if

both G = 1 and P = 1, then the problem is reduced to the

more standard LFW matching problem. What we analyze

in our work is how to exploit multiple images present in a

template in the framework of the Janus benchmarks. We

emphasize that the Janus benchmarks do not specify fixed

sizes for both G and P , so the number of images per tem-

plate varies for each testing pair, and can be as low as one.

We can interpret the pooling method as a set operator

which merges together features or images, changing the

cardinality of the template. For instance, considering a

template in the gallery, after pooling the template, G′ =
pool(G), its cardinality changes: G → G′. As previously

mentioned, this may reduce the space and time complexity

required for face recognition, but it could also degrade per-

formance if this process is not carefully performed, due to

potential loss of important information.

The first baseline we examine uses no pooling, instead

using all the images available in a template: this approach
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Figure 4. (a) ROC and (b) CMC curves for Janus CS2 dataset considering all the tested pooling techniques.

IJB-A verification

TPR-1%F TPR-0.1%F TPR-0.01%F nAUCj FPR-85T% avg-imgT1 avg-imgT2

All images 80.8 64.0 33.3 42.6 1.7 24.3±20.8 7.3±13.4

Single feature pooling 76.8 58.5 41.0 40.6 2.8
1±0 1±0

Single image pooling 51.5 29.2 13.7 27.4 14.2

Random Selection per bin 79.3 62.2 33.7 41.8 2.1

8.2±3.9 3.0±3.3
Pooled features per bin 80.3 64.8 27.4 42.4 1.8

Pooled images per bin, wo/ft 81.0 62.6 35.2 42.7 1.7

Pooled images per bin, w/ft 81.9 63.1 30.9 43.1 1.4

Table 4. Comparative analysis of our proposed feature pooling per bin with other baseline methods on the IJB-A verification.

has complexity O(G · P ) and provides a good baseline in

the Janus benchmarks, evident in Tables 2, 3 and 4.

At the opposite end are methods which pool all images

together into a single, compact representation (i.e., trans-

forming template cardinality to G′ = 1. This is a tremen-

dous compression in terms of media used for recognition.

One interesting observation from our analysis is that pool-

ing all features together is much more robust than pooling

all the images. This can be explained by noting that deep

features are trained explicitly to recognize faces and are

very discriminative. Thus averaging them does not impair

matching. Moreover, such methods can evaluate a template

pair at constant time as each template is represented by a

single feature, yielding a complexity of O(1)1.

The trade-off between the two approaches is defined by

compressing the media into a certain number which is more

than one but still lower than the number of images in the

original template, thus requiring 1 < G′ ≪ G. In our case

G′ corresponds to the number of populated bins, and it is

always far smaller than G.

Importantly, our tests show that binning and quantiza-

tion play remarkable roles in partitioning the template im-

age spaces: even naive random selection of an image within

a bin improves over single feature and image pooling tech-

niques, nearly matching the baseline performances obtained

by using all template images. The complexity for these

1Complexities do not reflect the time spent for performing pooling.

methods is equivalent to performing pair-wise bin match-

ing, thus yielding O(G′ · P ′).
Performance curves for all tested methods are provided

in Fig. 4 for JANUS CS2 and Fig. 5 for IJB-A. In partic-

ular in both figures we can see that the first order pooling

methods, such as single feature/image pooling, represented

by dashed curves in the graphs, are less robust compared

to our proposed approach. Moreover, a big gap is clearly

evident for single image pooling in the figures.

5.3. Comparison with stateoftheart methods

Table 5 compares our performance to a number of ex-

isting methods on the Janus benchmarks. Our approach

outperforms open-source and closed-source systems and is

comparable to other published results.

In particular we largely outperform the two baselines re-

ported in the IJB-A dataset in [25], obtained using Com-

mercial and Government Off-The-Shelf systems (“C” and

“G” in Table 5). Moreover, we consistently improve over

the Open Source Biometric tool of [26] (ver. 0.5).

Our CNN based method improves over frontalized im-

ages encoded using the Fisher Vectors of [8] in all met-

rics. It further provides a better ROC for face verification

in IJB-A than the recent method of [37]. The latter, how-

ever, achieves better results on the search protocol (identi-

fication). Interestingly, our method and [37] work in very

different ways and provide different outcomes: we leverage

template image pooling and a deeper network while [37]
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Figure 5. (a) ROC and (b) CMC curves for IJB-A benchmark considering all the tested pooling techniques.

C[25] G[25] [26] [8] [39] [37] Ours

JANUS CS2

TPR-1%F .581 .467 – .411 – – .878

TPR-0.1%F .37 .25 – – – – .745

R. Rank-1 .551 .413 – .381 – – .826

R. Rank-5 .694 .571 – .559 – – .918

R. Rank-10 .741 .624 – .637 – – .940

IJB-A Verification

TPR-1%F – .406 .236 – .732 .79 .819

TPR-0.1%F – .198 .104 – – .59 .631

IJB-A Identification

R. Rank-1 – .443 .246 – .820 .88 .846

R. Rank-5 – .595 .595 – .929 .95 .933

R. Rank-10 – – – – – – .951

Table 5. Comparison with the state-of-the-art methods. Results

that are not available are marked with a dash.

use a shallower CNN but learn a triplet similarity embed-

ding (TSE) for each IJB-A split. This technique appears to

have a better impact on identification compared to verifica-

tion. Moreover, it is worth noting that [37] performs what

we call “single feature pooling”, which in our tests under-

performed compared to the other methods we tested.

6. Conclusions

The effort to improve face recognition performance

has resulted in increasingly more complex recognition

pipelines. Though this process is continuously pushing per-

formances up, the computational costs of some of these

methods may not be entirely necessary. This paper turns to

some of the most well established principles in image pro-

cessing and computer vision – image averaging for reduced

storage and computation, and improved image quality –

seeking a simpler approach to representing sets of face im-

ages. We show that by aligning faces in 3D and partitioning

them according to facial and imaging properties, average

pooling provides a surprisingly effective yet computation-

ally efficient approach to representing and matching face

sets. Our system was tested on the most challenging bench-

marks available today, the IJB-A and Janus CS2, demon-

strating that not only does pooling compress template sizes

and reduces the numbers of cross template comparisons it

also lifts performances by noticeable margins.

Our results suggest several compelling future directions.

We partition faces into expert tailored bins to provide opti-

mal performances. A natural question arising from this is:

can these bins be optimally determined automatically? Al-

ternatively, pooling images (rather than features extracted

from them) offer opportunities for more elaborate pool-

ing schemes. Specifically, we pooled images using a sim-

ple, non-weighted average. A potential modification would

be to explore weighted averages on image pixels; that is,

weighing different facial regions differently based on the

information they provide. We hope this will better exploit

facial information from multiple, partially corrupt images.
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