
 

 

 

Abstract 
 

We present a polarimetric thermal face database, the 

first of its kind, for face recognition research.  This 

database was acquired using a polarimetric longwave 

infrared imager, specifically a division-of-time spinning 

achromatic retarder system.  A corresponding set of visible 

spectrum imagery was also collected, to facilitate cross-

spectrum (also referred to as heterogeneous) face 

recognition research.  The database consists of imagery 

acquired at three distances under two experimental 

conditions: neutral/baseline condition, and expressions 

condition.  Annotations (spatial coordinates of key fiducial 

points) are provided for all images.  Cross-spectrum face 

recognition performance on the database is benchmarked 

using three techniques: partial least squares, deep 

perceptual mapping, and coupled neural networks. 

 

1. Introduction 

Face recognition has been an active area of research for 

the past several decades, given its wide range of potential 

applications in the commercial, military, and government 

sectors.  However, face recognition research and 

development have focused primarily on the visible 

spectrum.  Recently, some researchers have evaluated and 

developed methods for face recognition in the infrared 

spectrum, particularly in the near-infrared (NIR, 0.74-1 μm 

wavelength), short-wave infrared (SWIR, 1-3 μm), and 

thermal infrared to a limited extent.  The thermal infrared 

spectrum is composed of two bands: mid-wave infrared 

(MWIR, 3-5 μm) and longwave infrared (LWIR, 8-14 μm).  

While the phenomenology in the NIR and SWIR bands are 

reflection dominated, imaging in the MWIR and LWIR is 

typically emission dominated.  Consequently, facial 

signatures acquired in the NIR and SWIR bands are more 

similar to the visible spectrum facial signature, while facial 

signatures collected in the thermal band appear 

significantly different from their visible spectrum 

counterparts.  It is not until very recently that the 

polarization-state information of LWIR emissions has been 

exploited to enhance face recognition performance in the 

thermal band.  Figure 1 shows the visible spectrum image 

of a subject and the corresponding conventional thermal 

and polarimetric thermal images. 

A particular focus of face recognition research across the 

imaging spectrum has been on developing cross-spectrum, 

or heterogeneous, face recognition algorithms.  The 

objective of cross-spectrum face recognition is to recognize 

the identity of an individual imaged in one spectral band 

(e.g. thermal probe) from a gallery database containing face 

imagery acquired in another band (e.g. visible spectrum 

database).  For cross-spectrum face recognition, the gallery 

is usually taken to be in the visible spectrum, corresponding 

to the real-world scenario where government-maintained 

biometric databases and watch lists only contain visible 

spectrum face imagery.  Given the similar reflective 

phenomenology in the visible, NIR, and SWIR bands, 

research on NIR-to-visible face recognition [1,2] and 

SWIR-to-visible face recognition [3,4] have achieved some 

measure of success.  However, thermal-to-visible face 

recognition is significantly more challenging due to the 

difference in phenomenology between the thermal and 

visible spectra.  Recently, several research groups [5-8] 

have developed techniques for and evaluated the 

performance of thermal-to-visible face recognition, 

achieving limited success.  Although thermal-to-visible 

face recognition is highly challenging, it is also highly 

desirable as thermal imaging is relatively illumination 

invariant and is useful for providing a passive day and night 

face recognition capability. 

Very recently, we have investigated and are continuing 

to explore polarimetric imaging in the LWIR for enhanced 
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Figure 1: Visible spectrum, conventional thermal, and 

polarimetric thermal images of a subject.   
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cross-spectrum face recognition [9,10,13,14].  The 

polarization state information of thermal emissions contain 

geometric and textural facial details that are not present in 

conventional thermal face imagery [9], which can be used 

to improve face identification performance [10].  While 

many visible spectrum face databases exist, and there are a 

few face databases in the infrared bands, no polarimetric 

thermal face database had been available previously.  In this 

work, we present a face database containing corresponding 

polarimetric thermal and visible spectrum imagery, and 

make it available to biometrics researchers to facilitate the 

development of cross-spectrum and multi-spectrum face 

recognition algorithms.   

Section 2 of this paper provides a brief overview of 

polarimetric thermal imaging.  Section 3 describes the 

sensor and experimental setup of the data collection, as well 

as the procedure used to extract the frames that compose the 

database.  Section 4 details a baseline method and two state-

of-the-art techniques that we used to benchmark cross-

spectrum face recognition performance on this database.  

Section 5 presents the results, and Section 6 concludes the 

paper. 

2. Overview of Polarimetric Thermal Imaging 

for Face Recognition 

Both man-made and naturally occurring materials emit 

thermal infrared radiation that exhibit a preferential linear 

polarization state [9].  This preferential linear polarization 

is conjectured to originate by an anisotropy from the 

superposition of elemental thermal radiators near the 

surface-air interface of a material [11], which in turn causes 

the directional nature of the spectral emissivity [12].   By 

acquiring polarization-state imagery of the human face in 

the thermal spectrum, initial research has shown that 

additional textual and geometric information can be 

obtained, as compared to conventional intensity-based 

thermal face imagery [9].   

The Stokes parameters S0, S1, S2, and S3 are commonly 

used to represent polarization-state information, defined in 

Eqs. 1-4, respectively.  These Stokes parameters are 

determined on a pixel-by-pixel basis by measuring the 

radiant intensity transmitted through a polarizer and wave-

plate pair that is rotated to various angles.  We will refer to 

these Stokes parameters as Stokes images for the purposes 

of this work. ܵ = ܫ + cmଶሻ   (1) ଵܵ	ሺW/sr								ଽܫ = ܫ − cmଶሻ   (2) ܵଶ	ሺW/sr								ଽܫ = ସହܫ − cmଶሻ   (3) ܵଷ	ሺW/sr				ସହିܫ = ோܫ − ܫ 										ሺW/sr	cmଶሻ   (4) 

In Eqs. 1-3, I0, I90, I45, and I-45
 represent the measured 

radiant intensity of the linear states at angles 0°, 90°, 45°, 

and -45°, respectively (relative to the horizontal).  S0 

represents the conventional total intensity thermal image, 

while S1 captures the horizontal and vertical polarimetric 

information, and S2 captures the diagonal polarimetric 

information.  Note that S1 and S2 capture orthogonal, yet 

complementary, polarimetric information.  In Eq. 4, IR and 

IL are the right and left circularly polarized radiant states.  

In typical applications, S3 is very small and usually taken to 

be zero [9]. The degree-of-linear-polarization (DoLP) 

describes the portion of an electromagnetic wave that is 

linearly polarized, as defined in Eq. 5. DoLP = ඥ ଵܵଶ + ܵଶଶ ܵ൘       (5) 

We first assessed polarimetric thermal face imagery from 

a visual perspective [9], and then proceeded to develop a 

feature extraction approach exploiting the Stokes imagery 

followed by support vector machine (SVM) classification 

to enhance cross-spectrum face recognition, demonstrating 

that polarimetric thermal-to-visible face identification 

significantly outperformed conventional thermal-to-visible 

face identification [10].  The polarization state information 

represented by S1 and S2 complements the conventional 

intensity only information represented by S0, providing 

additional textural and geometric details that enhance 

recognition.  Most recently, we developed neural network 

algorithms (based on deep perceptual mapping and coupled 

neural networks) to optimally combine polarimetric 

features followed by partial least squares (PLS) for 

classification, achieving the best results reported to date for 

polarimetric thermal-to-visible face recognition [13].      

The Stokes images S0, S1, and S2, can also be used to 

reconstruct a 3D representation of the facial surface.  Yuffa 

et al. [14] developed a technique combining the Stokes 

images with Fresnel relations to estimate the surface normal 

at each pixel, followed by integration over the computed 

surface normals to generate a 3D facial image.  Letting the 

surface normal be defined with respect to θ (angle between 

the surface normal and camera’s imaging axis) and azimuth 

angle φ, the major challenge lies in resolving the inherent π 
ambiguity in the angle φ (i.e. whether the surface normal is 

pointing outwards or inwards is ambiguous).   Yuffa et al. 

[14] introduced a set of constraints based on the boundary 

condition to partially overcome the π ambiguity in 

reconstructing the 3D facial surface.  Being able to 

reconstruct the 3D facial surface from the Stokes images is 

potentially very useful for face recognition, enabling an off-

frontal probe to be “frontalized” for pose-invariance when 

matching with gallery datasets that typically contain frontal 

or near-frontal face imagery. 

3. Polarimetric Thermal Face Database 

The face database presented here is the first of its kind, 

containing polarimetric LWIR imagery and simultaneously 

acquired visible spectrum imagery from a set of 60 distinct 

subjects.  The following subsections describe the sensors 

(Section 3.1), the data collection protocol (Section 3.2), and 

provides details on the data preparation (Section 3.3).  
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Information on how to request this database is given in the 

Appendix. 

3.1. Sensors 

The polarimetric LWIR imager used to collect this 

database is shown in Figure 2, developed by Polaris Sensor 

Technologies.  The imager is based on the division-of-time 

spinning achromatic retarder (SAR) design that uses a 

spinning phase-retarder mounted in series with a linear 

wire-grid polarizer [9].  This system, also referred to as a 

polarimeter, has a spectral response range of 7.5-11.1 μm, 

using a Stirling-cooled mercury telluride focal plane array 

with pixel array dimensions of 640×480.  A Fourier 

modulation technique is applied to the pixel readout, 

followed by a series expansion and inversion to compute 

the Stokes images.  Data were recorded at 60 frames per 

second (fps) for this database, using a wide FOV of 

10.6°×7.9°.  Prior to collecting data for each subject, a two-

point non-uniformity correction (NUC) was performed 

using a Mikron blackbody at 20°C and 40°C, which covers 

the range of typical facial temperatures (30°C-35°C).  Data 

was recorded on a laptop using custom vendor software. 

An array of four Basler Scout series cameras was used to 

collect the corresponding visible spectrum imagery.  Two 

of the cameras are monochrome (model # scA640-70gm), 

with pixel array dimensions of 659×494.  The other two 

cameras are color (model # scA640-70gc), with pixel array 

dimensions of 658×494.  Note that the pixel size for all four 

cameras are 7.4 μm × 7.4 μm.  Objective lenses with 

different focal lengths were mounted on these cameras, to 

capture face images of different resolutions/interocular 

distances for the purposes of another study investigating the 

impact of resolution on face recognition performance.  

Table 1 lists the focal length and field of view for each 

Basler camera.  Data from all four Basler cameras were 

streamed via GigE vision at 30 fps to a Quazar recording 

platform manufactured by Boulder Imaging, and recorded 

simultaneously.   

 

 

 

Table 1. Basler Scout camera information  

Camera Mono or 

Color 

Focal 

Length 

Horizontal Field 

of View 

VIS1 RGB 50 mm 5° 

VIS2 Mono 16 mm 17° 

VIS3 RGB 8.0 mm 34° 

VIS4 Mono 4.5 mm 53° 

3.2. Data collection protocol 

The data collection protocol used to acquire the 

polarimetric thermal face database was reviewed and 

approved by the Institutional Review Board (IRB) of the 

U.S. Army Research Laboratory (ARL).  Eighty subjects 

participated in this data collection, of which 60 subjects 

have consented to having their data be released for face 

recognition research.  Data from the first 31 of the 60 

consented subjects were acquired in the fall of 2014, while 

data from the remaining 29 subjects were acquired in the 

spring of 2016. 

For the data collection, each subject was asked to sit in a 

chair and remove his or her glasses.   A floor lamp with a 

compact fluorescent light bulb rated at 1550 lumens was 

placed 2 m in front of the chair to illuminate the scene for 

the visible cameras, as shown in Figure 3, and a uniform 

background was placed approximately 0.1 m behind the 

chair.  Data was collected at three distances: Range 1 (2.5 

m), Range 2 (5 m), and Range 3 (7.5 m).  At each range, a 

baseline condition is first acquired where the subject is 

asked to maintain a neutral expression looking at the 

polarimetric thermal imager.  A second condition, which we 

refer to as the “expressions” condition, was collected where 

the subject is asked to count out loud numerically from one 

upwards.  Counting orally results in a continuous range of 

motions of the mouth, and to some extent, the eyes, which 

can be recorded to produce variations in the facial imagery.  

For each acquisition, 500 frames are recorded with the 

polarimeter (duration of 8.33 s at 60 fps), while 300 frames 

are recorded with each visible spectrum camera (duration 

of 10s at 30 fps).  

 

Figure 2: Polarimetric LWIR imager used in this study.  

Figure 3: Data collection setup showing the floor lamp and chair 

at Range 1 (2.5 m).  In addition, a cardboard background was 

placed 0.1 m behind the chair.  
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3.3. Data preparation 

The raw data recorded from the polarimeter are 

processed using custom software from Polaris Sensor 

Technologies to generate S0, S1, S2, and DoLP sequences.  

For the S1, S2, and DoLP sequences from the baseline 

condition, 4 images are generated by averaging 24 

consecutive frames at the 1 s, 3 s, 5 s, and 7 s marks, to 

improve the signal-to-noise ratio, as in [10].  No averaging 

is performed to extract the intensity-only S0 images at these 

intervals.  For the expressions condition where the subject 

counts orally, more images are extracted to sample the 

range of facial expressions.  Specifically, 12 images are 

generated by averaging 24 consecutive frames at 12 

uniform intervals for the S1, S2, and DoLP sequences from 

the expressions data.  Again, no averaging is performed to 

extract the intensity-only S0 images at these intervals.  All 

averaged images are saved as 16-bit PNG files, and 

provided as part of the database release.  Furthermore, the 

original 24-frame sequences are also provided in double 

precision (stored as Matlab .mat files) as part of the 

database release.      

For the polarimetric thermal facial imagery, the inter-

ocular distances are 87 pixels, 44 pixels, and 31 pixels at 

Range 1, Range 2, and Range 3, respectively.  The database 

includes a set of visible facial imagery from the cameras 

that acquired similar interocular distances.  Specifically, 

camera VIS1 data from Range 2 had the same 87 pixels 

interocular distance as the polarimetric thermal data from 

Range 1, camera VIS2 data from Range 1 had the same 44 

pixels interocular distance as the polarimetric thermal data 

from Range 2, and camera VIS2 data from Range 2 had the 

same 31 pixels interocular distance as the polarimetric 

thermal data from Range 3.  Four frames are extracted from 

these visible data sequences for the baseline condition, and 

twelve frames are extracted for the expressions condition, 

following the same procedure as for the polarimetric 

thermal data. 

The set of polarimetric LWIR images was manually 

annotated.  For the baseline condition, spatial coordinates 

of the centers of the eyes, tip of the nose, and center of the 

mouth were visually located and recorded.  For the 

expressions condition, two additional coordinates are 

annotated: upper tip of the upper lip, and the lower tip of 

the lower lip.  The visible spectrum imagery were 

automatically annotated, using PittPatt SDK v.5.2.2 

developed by Pittsburgh Pattern Recognition, which 

produced accurate labeling for all visible spectrum imagery.  

Though multiple fiducial points are annotated/labeled, only 

the centers of the eyes are used for geometric normalization, 

Figure 4. Example database imagery from the baseline condition, showing S0 (representing conventional thermal), S1, S2, and DoLP 

at three ranges (Range 1 – 2.5 m, Range 2 – 5.0 m, Range 3 – 7.5 m).  Rightmost column shows example visible imagery from the

database, selected from the cameras that produced similar interocular distance (IOD) as in the corresponding polarimetric imagery. 
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using the same procedure as in [7].  The procedure is as 

follows: (1) each face image is rotated so that the eye 

centers lie on a horizontal line, (2) the rotated image is then 

scaled so that the inter-ocular distance is 75 pixels, and (3) 

the scaled image is cropped to 250×200 pixels centered 

horizontally on the eyes (vertically placed at row 115).  The 

last step produces a loose crop around the face, containing 

the facial outline along with the top of the head.   The 

geometrically normalized imagery, both visible and 

polarimetric thermal, are provided as part of the database 

release.  

 

4. Cross-Spectrum Face Recognition 

Evaluation 

Three different techniques are used to quantify cross-

spectrum face recognition performance on this database: 

partial least squares (PLS), deep perceptual mapping 

(DPM), and coupled neural networks (CpNN).  The PLS 

approach [8] serves to provide a baseline measure of 

performance. The DPM and CpNN approaches have 

achieved the best results to date for polarimetric thermal-

to-visible face recognition [13], and these two techniques 

are used here to quantify state-of-the-art performance on 

this database.   

4.1. Deep perceptual mapping 

The original DPM approach [15] consists of a multilayer 

neural network to perform regression on the image features 

directly, essentially finding a mapping that transforms 

visible face image features into thermal face image features.  

Specifically, Sarfraz and Stiefelhagen [15] used the dense 

scale invariant feature transform (SIFT), and trained a 

neural network to map visible SIFT features into the 

corresponding thermal SIFT feature representation (i.e. the 

predicted thermal SIFT features).  Note that principal 

component analysis (PCA) was used to reduce the 

dimensionality of the feature vectors.  After learning this 

mapping, Sarfraz and Stiefelhagen [15] used the following 

procedure for cross-spectrum face recognition.  Given a 

gallery set of visible face images, visible SIFT features are 

extracted and then mapped to the corresponding thermal 

SIFT feature representation.  Given an input thermal probe 

image for recognition, SIFT features were extracted from 

the thermal probe, and matching is performed by computing 

the cosine similarity between the thermal probe SIFT 

features and the predicted thermal SIFT features from the 

visible face images in the gallery [15]. 

For this work, we used an extended DPM model for 

polarimetric thermal imagery.  As in [13], instead of the 

thermal SIFT features, we form polarimetric thermal SIFT 

features by concatenating SIFT features extracted from the 

S0, S1, and S2 Stokes images, and learn the mapping from 

polarimetric thermal SIFT features to visible SIFT features.  

SIFT features were extracted from the visible, S0, S1, and S2 

Stokes imagery at two different scales by smoothing with 

Gaussian filters with standard deviations of 0.6 and 1.0.  

Patch size used was 20×20 pixels, with a stride of 8 pixels, 

resulting in a 128 dimensional SIFT feature vector for each 

patch.  PCA was used to reduce the dimensionality to 64.  

The SIFT feature vector from each patch was augmented 

with its spatial location (i.e. row # and column #) to provide 

spatial dependence between the input and output, as in [13]. 

For a DMP model with k hidden layers and a single output 

layer (i.e. n = k + 1), the output of layer l is given by: 	ࢌℓሺ⋅ሻ = 	 ቊߪ൫ࢃℓࢌℓିଵ + ℓ൯࢈ 1 ≤ ℓ < ℓିଵࢌℓࢃ݊ ℓ = ݊ ,     (6) 

where W is the weight matrix, b is the bias vector, and σ is 

the activation function.  For this work, two hidden layers 

are used, each with 200 hyperbolic tangent units, similar to 

[15].  The weight matrices and bias vectors are learned by 

minimizing the following objective through mini-batch 

gradient descent: ܬெሺࢃ, … ,ଵࢃ, ,࢈ … , ଵሻ࢈ = ∑ ฮ࢜ − ෝฮଶெୀଵ࢜	 ,   (7) 
where vi denotes the visible feature vector and ࢜ෝ denotes 

the predicted visible feature vector from its polarimetric 

thermal counterpart.  Cosine similarity is then used for 

matching.  

4.2. Coupled neural network 

In contrast to DPM, CpNN [13,16] performs an indirect 

regression, and extracts common latent features between 

the visible SIFT features and polarimetric thermal SIFT 

features by jointly learning two mappings.  A CpNN 

therefore has two encoder networks, denoted by ࡲሺ࢞ሻ ࢌ= ∘ ⋯ ∘ ଶࢌ ∘ ଵࢌ ሺ࢞ሻ	 and ࢀࡲሺ࢟ሻ = ்ࢌ ∘ ⋯∘ ଶ்ࢌ ∘ ଵ்ࢌ ሺ࢟ሻ , 

where the subscript V represents the visible domain and the 

subscript T represents the polarimetric thermal domain, k is 

the number of hidden layers, and the output of each layer is 

given by ࢌℓ = ℓ݂ℓିଵࢃሺߪ +  ,ℓሻ.  Note that unlike in DPM࢈

dimensionality reduction is not necessary for the CpNN 

approach.  A detailed description of the procedure to learn 

the parameters  ࢃℓ , ℓ࢈ ℓ்ࢃ, , ℓ்࢈  is given in [13].  For this 

work, each encoder has two hidden layers with 92 and 64 

units.  The trained encoders are used to extract the common 

latent descriptors from the visible SIFT features of the 

gallery images and the polarimetric thermal SIFT features 

of the probe set.  The descriptors are normalized, and cosine 

similarity is used for matching.   

4.3. Partial least squares 

PLS was developed by Herman Wold and extended by 

Svante Wold, with its first applications in the social 

sciences [17].  Recently, PLS has been applied to face 

recognition in the visible spectrum [18] and for thermal-to-

visible face recognition [8].  Let ࢄ×ௗ 	and ࢟×ଵ  be the 

descriptor variable matrix and the corresponding label 
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vector, respectively, where m is the number of samples each 

with feature vector dimensionality of d.  PLS regression 

finds a set of latent vectors ࢚ and ࢛, ݅ =  that best ,…1

predict ࢄ :࢟ = ்ࡼࢀ + ࢟ ,௦ࢄ = ்ࢁ +  ௦. (8)࢟

(9) 

In Eqs. 8 and 9, matrices ࢀ and ࢁ contain the extracted 

latent vectors, ࡼ and  are the loadings, and ࢄ௦	and ࢟௦ 
are the residuals.  The latent vectors can be computed by 

solving iteratively for a set of weight vectors ࢝:  max covሺ࢚ , =ሻଶ࢛ max࢝ covሺ࢝ࢄ , ሻଶ࢟ .ݏ	݅∀	 .ݐ |࢝| = 1, (10) 

Let ࢃ	 be the matrix of weight vectors ࢝ , the PLS 

regression vector (i.e. PLS model) is computed as  ࢼ = ்࢟ࢀሻିଵࢃ்ࡼሺࢃ .  Given a visible gallery of N 

subjects, a PLS model is generated for each subject, using 

visible feature vectors from a given subject as positive 

samples, and visible feature vectors of the subjects from the 

training set as negative samples, similar to the procedure of 

[19].  The visible negative samples are augmented by a set 

of polarimetric thermal counter-examples (5 polarimetric 

thermal feature vectors from each subject in the training 

set).  Let f be a polarimetric thermal probe feature vector, 

generated by averaging edge orientation features extracted 

the Stokes images per the procedure of [10].  A similarity 

score ݕ  can be computed for each subject’s model 

(n=1,…,N) according to Eq. 11.   ݕ = തݕ +  (11)       ࢌ்ࢼ

These similarity scores are used to compute face 

identification performance.   

4.4. PLS∘DPM and PLS∘CpNN 

Though DPM and CpNN are state-of-the-art approaches, 

face recognition performance can be further improved by 

using discriminative regression in the form of PLS for 

matching [13], instead of cosine similarity.  As shown in 

Figure 5, the sequential processing chain consists of dense 

sampling (specifically dense SIFT), followed by DPM or 

CpNN, and then PLS (trained using the mapped features to 

improve the discrimination between match and non-match 

classes, as in [13]).   These combined techniques are 

referred to as PLS∘DPM and PLS∘CpNN. 

5. Experiments and Results 

Of the 60 total subjects, data from 25 subjects were used 

for training and data from the remaining 35 subjects were 

used for testing.  The training set was used to learn the DPM 

and CpNN mappings from the polarimetric thermal feature 

space to the visible spectrum feature space. For each 

modality (visible, thermal, and polarimetric thermal), there 

are four images per subject for the baseline condition and 

twelve images per subject for the expressions condition at 

each of the three ranges: Range 1 (2.5 m), Range 2 (5.0 m), 

and Range 3 (7.5m).  The face resolutions in terms of inter-

ocular distance at these ranges are 87, 44, and 31 pixels, 

respectively.  Following geometric normalization as 

described in Section 3.3, the face regions were further 

cropped to 143×132 pixels, covering the core facial region 

that consists of the eyes, nose, and mouth.  “Tight cropping” 

is used here, which is more practical from an operational 

standpoint compared to “loose cropping”, as the tightly 

cropped facial region is less affected by changes in facial 

pose and hair style.  In this work, as in [13], the Range 1 

baseline visible images of the subjects in the testing set 

were used to form the gallery.  This emulates the real-world 

scenario where biometric repositories typically contain 

higher resolution visible spectrum facial images.  Features 

extracted from these Range 1 baseline visible images were 

used to build PLS models for classification/matching.  Note 

that polarimetric thermal images from the training set were 

used as counter-examples to augment the negative samples 

from the testing set during model building to improve PLS 

performance [8].  To evaluate cross-spectrum face 

recognition performance, the probe set consists of four 

polarimetric thermal face images from each subject in the 

testing set for the baseline condition at each range, and 

twelve polarimetric thermal face images from each subject 

for the expressions condition at Range 1.  

The performance evaluation was repeated 100 times, by 

randomly partitioning the subject pool into training and 

testing sets.  For each trial, the same training set and testing 

set were used for PLS, DPM, and CpNN, and results are 

averaged over the 100 trials.   Figure 7 shows the overall 

cumulative matching characteristics (CMC) curves for 

PLS, DPM, and CpNN, representing results aggregated 

over the three different ranges as well as the expressions 

data at Range 1.  In additional to polarimetric thermal-to-

visible face recognition performance (denoted with 

subscript polar in Figure 6’s legend), we also show the 

results for conventional thermal-to-visible face recognition 

(denoted with subscript therm) for comparison.  The 

Figure 5. Conceptual illustration of cross-spectrum recognition 

framework consisting of SIFT feature extraction, followed by 

DPM or CpNN, and PLS for discriminative classification. 
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conventional thermal-to-visible results are generated using 

the same methodology as polarimetric thermal-to-visible, 

using S0 to represent conventional thermal imagery and 

learning the corresponding DPM and CpNN mappings. 

Three key findings can be summarized from the results 

shown in Figure 6.  Firstly, learning the cross-spectrum 

feature mapping either directly using DPM or indirectly 

using CpNN significantly increases cross-spectrum face 

recognition performance compared to the baseline 

technique represented by PLS.  Secondly, using 

discriminative classification in conjunction with cross-

spectrum feature mapping (i.e. PLS∘DPM and PLS∘CpNN) 

outperforms DPM or CpNN alone (with the standard cosine 

similarity measure).  Lastly, exploiting the polarization 

state information of thermal emissions enhances cross-

spectrum face recognition performance compared to 

conventional “intensity-only” thermal-to-visible face 

recognition. 

Table 2 tabulates the Rank-1 identification rates for a few 

different scenarios: overall (corresponding to Figure 6), 

Range 1 expressions, Range 1 baseline, Range 2 baseline, 

and Range 3 baseline.  For PLS ∘ CpNN, exploiting 

polarization state information increased the Rank-1 

identification rate by 2.58%, 6.52%, 6.01%, and 7.25%, 

compared to conventional thermal-to-visible face 

recognition, corresponding to Range 1 baseline, Range 1 

expressions, Range 2 baseline, and Range 3 baseline, 

respectively.  For PLS∘DPM, exploiting polarization state 

information increased the Rank-1 identification rate by 

2.90%, 6.67%, 5.27%, and 6.77%, compared to 

conventional thermal-to-visible face recognition, 

corresponding to Range 1 baseline, Range 1 expressions, 

Range 2 baseline, and Range 3 baseline, respectively.  This 

suggests that polarization state information is more 

beneficial for cross-spectrum face recognition under more 

challenging scenarios (e.g. expressions, longer range), 

which is unsurprising, as the conventional thermal-to-

visible Rank-1 identification rate was already very high 

under the Range 1 baseline scenario (94.17% for PLS∘DPM 

and 93.88% for PLS ∘ CpNN).   Another interesting 

observation from Table 2 is that while PLS∘CpNN has very 

similar performance to PLS∘DPM in almost all scenarios 

(within 1%, except for only Range 3), CpNN typically 

outperformed DPM by 1%-3%.  This suggests that the 

indirect mapping to a common subspace is more effective 

than the direct mapping.  However, the use of a 

discriminative classifier (e.g. PLS) in conjunction with 

DPM helps recover this deficit, resulting in similar 

performance between PLS∘DPM and PLS∘CpNN. 

 

Figure 6: Overall cumulative matching characteristics curves 

from testing PLS, DPM, and CpNN using polarimetric (polar) and 

thermal (therm) probe samples, matching against a visible 

spectrum gallery. 

Table 2. Rank-1 identification rate of evaluated algorithms for cross-spectrum face recognition using polarimetric thermal and thermal 

probe imagery. 
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6. Conclusion 

We present in this paper a polarimetric thermal face 

database, the first of its kind, for face recognition research.  

This database was acquired using a polarimetric longwave 

infrared imager, specifically a division-of-time spinning 

achromatic retarder system, which acquires geometric and 

textural facial details not available in conventional thermal 

face imagery.  Three techniques are used to benchmark 

cross-spectrum face recognition performance: PLS, DPM, 

and CpNN.  PLS results serve as the baseline performance 

measure, while DPM and CpNN are state-of-the-art 

approaches that, when used in conjunction with a 

discriminative classifier such as PLS, provide the current 

“gold standard” performance on this polarimetric thermal 

database.  The motivation behind the release of this 

database is to help promote research on polarimetric and 

multi-spectrum face recognition.  As no previous 

polarimetric thermal face database existed, our intention is 

to first provide a “pristine” database collected under 

controlled conditions.  We recognize the need for additional 

data collected under more unconstrained real-world 

settings, and intend to do so in the near future, as sensor and 

algorithm development progresses.    

Appendix 

Requests for the database can be made by contacting the 

following points of contact (POCs) at the U.S. Army 

Research Laboratory: 

• Matthew Thielke 

matthew.d.thielke.civ@mail.mil 

• Shuowen (Sean) Hu  

shuowen.hu.civ@mail.mil  

Each request will be vetted by the POCs to be for valid 

scientific research, and requestors will be asked to sign a 

database release agreement.  The standard dataset described 

in Section 3.3 will then be made available to the requestor.  

Custom data requests may be accommodated on an 

individual basis.  
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