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Abstract

In this work, we have undertaken the task of occlusion

and low-resolution robust facial gender classification. In-

spired by the trainable attention model via deep architec-

ture, and the fact that the periocular region is proven to

be the most salient region for gender classification pur-

poses, we are able to design a progressive convolutional

neural network training paradigm to enforce the attention

shift during the learning process. The hope is to enable the

network to attend to particular high-profile regions (e.g. the

periocular region) without the need to change the network

architecture itself. The network benefits from this atten-

tion shift and becomes more robust towards occlusions and

low-resolution degradations. With the progressively trained

CNN models, we have achieved better gender classifica-

tion results on the large-scale PCSO mugshot database with

400K images under occlusion and low-resolution settings,

compared to the one undergone traditional training. In ad-

dition, our progressively trained network is sufficiently gen-

eralized so that it can be robust to occlusions of arbitrary

types and at arbitrary locations, as well as low resolution.

1. Introduction

Facial gender classification has always been one of the

most studied soft-biometric topics. Over the past decade,

gender classification on constrained faces has almost been

perfected. However, challenges still remain on less con-

strained faces such as faces with occlusions, of low reso-

lution, and off-angle poses. Traditional methods such as

the support vector machines (SVMs) and its kernel exten-

sion can work pretty well on this classic two-class problem

as listed in Table 8. In this work, we approach this prob-

lem from a very different angle. We are inspired by the

booming deep convolutional neural network (CNN) and the

Input Image Image Signature - LAB Image Signature - RGB

Input Image Image Signature - LAB Image Signature - RGB

Figure 1: (Top) Periocular region on human faces exhibits the high-

est saliency. (Bottom) Foreground object in focus exhibits the highest

saliency. Background is blurred with less high-frequency details preserved.

attention model to achieve occlusion and low resolution ro-

bust facial gender classification via progressively training

the CNN with attention.

Motivation: Xu et al. [58] proposed an attention based

model that automatically learns to describe the content of

images which has been inspired by recent work in machine

translation [2] and object detection [1, 48]. In their work,

two attention-based image caption generators were intro-

duced under a common framework: (1) a ‘soft’ determin-

istic attention mechanism which can be trained by standard

back-propagation method and (2) a ‘hard’ stochastic atten-

tion mechanism which can be trained by maximizing an

approximate variational lower bound. The encoder of the

models uses a convolutional neural network as a feature ex-

tractor, and the decoder is comprised of a recurrent neural

network (RNN) with long short-term memory (LSTM) ar-

chitecture where the attention mechanism is learned. The

authors can then visualize that the network can automati-
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cally fix its gaze on the salient objects (regions) in the image

while generating the image caption word by word.

For facial gender classification, we know from previous

work [13, 47] that the periocular region provides the most

important cues for determining the gender information. The

periocular region is also the most salient region on human

faces, such as shown in the top part of Figure 1, using a

general purpose saliency detection algorithm [11]. Similar

results can also be obtained using other saliency detection

algorithms such as [14] and [12]. We can observe from the

saliency heat map that the periocular region does fire the

most strongly compared to the remainder of the face.

Now we come to think about the following question:

Q: How can we let the CNN shift its attention towards

the periocular region, where gender classification has been

proven to be the most effective?

The answer comes from our day-to-day experience with

photography. If you are using a DSLR camera with a big

aperture lens, and fixing the focal point onto an object in the

foreground, all background beyond the object in focus will

become out of focus and blurred. This is illustrated in the

bottom part of Figure 1 and as can be seen, the sharp fore-

ground object (cherry blossom in hand) attracts the most

attention in the saliency heat map.

Thus, we can control the attention region by specifying

where the image is blurred or remains sharp. In the context

of gender classification, we know that we can benefit from

fixing the attention onto the periocular region. Therefore,

we are ‘forcing’ what part of the image the network weighs

the most, by progressively training the CNN using images

with increasing blur levels, zooming into the periocular re-

gion, as shown in Table 1. Since we still want to use a full

face model, we hope that by employing the mentioned strat-

egy, the learned deep model can be at least on par with other

full face deep models, while harnessing gender cues in the

periocular region.

Q: Why not just use the periocular region crop?

Although experimentally, periocular is the best facial re-

gion for gender classification, we still want to resort to other

facial parts (beard/moustache) for providing valuable gen-

der cues. This is specially true when the periocular region

is less ideal. For example, some occlusion like sunglasses

could be blocking the eye region, and we want our network

to still be able to generalize well and perform robustly, even

when the periocular region is corrupted.

To strike a good balance between full face-only and

periocular-only models, we carry out a progressive train-

ing paradigm for CNN that starts with the full face, and

progressively zoom into the periocular region by leaving

other facial regions blurred. In addition, we hope that the

progressively trained network is sufficiently generalized so

that it can be robust to occlusions of arbitrary types and at

arbitrary locations.

Q: Why blurring instead of blackening out?

We just want to steer the focus, rather than completely

eliminating the background, like the DSLR photo example

shown in the bottom part of Figure 1. Blackening would

create abrupt edges that confuse the filters during the train-

ing. When blurred, low frequency information is still well

preserved. One can still recognize the content of the image,

e.g. dog, human face, objects, etc. from a blurred image.

Blurring outside the periocular region, and leaving the

high frequency details at the periocular region will both help

providing global and structural context of the image, as well

as keeping the minute details intact at the region of interest,

which will help the gender classification, and fine-grained

categorization in general.

Q: Why not let CNN directly learn the blurring step?

We know that CNN filters operate on the entire image,

and blurring only part of the image is a pixel location depen-

dent operation and thus is difficult to emulate in the CNN

framework. Therefore, we carry out the proposed progres-

sive training paradigm to enforce where the network atten-

tion should be.

2. Related Work

We provide relevant background on facial gender classi-

fication and attention models.

The periocular region is shown to be the best facial re-

gion for recognition purposes [37, 20, 23, 33, 22, 30, 27,

23, 51, 21, 26, 19, 18, 28, 50], especially for gender classi-

fication tasks [13, 47]. A few recent work also applies CNN

for gender classification [41] and [3]. More related work on

gender classification is consolidated in Table 8.

Attention models such as the one used for image caption-

ing [58] have gained much popularity only very recently.

Rather than compressing an entire image into a static rep-

resentation, attention allows for salient features to dynam-

ically come to the forefront as needed. This is especially

important when there is a lot of clutter in an image. It also

helps gaining insight and interpreting the results by visu-

alizing where the model attends to for certain tasks. This

mechanism can be viewed as a learnable saliency detector

that can be tailored to various tasks, as opposed to the tradi-

tional ones such as [11, 14, 12, 6].

It is worth mentioning the key difference between the

soft attention and the hard attention. The soft attention is

very easy to implement. It produces distribution over in-

put locations, re-weights features and feeds them as input.

It can attend to arbitrary input locations using spatial trans-

former networks [16]. On the other hand, the hard attention

can only attend to a single input location, and the optimiza-

tion cannot utilize gradient descent. The common practice

is to use reinforcement learning.

Other applications involving attention models may in-

clude machine translation which applies attention over in-
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Table 1: Blurred images with increasing levels of blur.

13.33% 27.62% 41.90%

56.19% 68.57% 73.33%

put [45]; speech recognition which applies attention over

input sounds [4, 7]; video captioning with attention over in-

put frames [60]; image, question to answer with attention

over image itself [57, 62]; and many more [55, 56].

3. Proposed Method

In this section we detail our proposed method on pro-

gressively training the CNN with attention. The entire train-

ing procedure involves (k + 1) epoch groups from epoch

group 0 to k, where each epoch group corresponds to one

particular blur level.

3.1. Enforcing Attention in the Training Images

In our experiment, we heuristically choose 7 blur levels,

including the one with no blur at all. The example images

with increasing blur levels are illustrated in Table 1. We use

a Gaussian blur kernel with σ = 7 to blur the correspond-

ing image regions. Doing this is conceptually enforcing the

network attention in the training images without the need of

changing the network architecture.

3.2. Progressive CNN Training with Attention

We employ the AlexNet [38] architecture for our pro-

gressive CNN training. The AlexNet has 60 million param-

eters and 650,000 neuron, consisting of 5 convolution layers

and 3 fully connected layers with a final 1000-way softmax.

To reduce overfitting in the fully-connected layers, AlexNet

employs “dropout” and data-augmentation, both of which

are preserved in our training. The main difference is that

we only need a 2-way softmax due to the nature of gender

classification problems.

As illustrated in Figure 2, the progressive CNN training

begins with the first epoch group (Epoch Group 0, images

with no blur), and the first CNN model M0 is obtained and

frozen after convergence. Then, we input the next epoch

group for tuning the M0 and in the end produce the sec-

Figure 2: Progressive CNN training with attention.

ond model M1, with attention enforced through training

images. The procedure is carried out sequentially until the

final model Mk is obtained. Each Mj(j = 0, . . . , k) is

trained with 1000 epochs and with a batchsize of 128. At

the end of the training for step j, the model corresponding to

best validation accuracy is taken ahead to the next iteration

(j + 1).

3.3. Implicit LowRank Regularization in CNN

Blurring the training images in our paradigm may have

more implications. Here we want to show the similarities

between low-pass Fourier analysis and low-rank approxi-

mation in SVD. Through the analysis, we hope to make

connections to the low-rank regularization procedure in the

CNN. We have learned from a recent work [53] that en-

forcing a low-rank regularization and removing the redun-

dancy in the convolution kernels is important and can help

improve both the classification accuracy and the computa-

tion speed. Fourier analysis involves expansion of the orig-
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inal data xij (taken from the data matrix X ∈ Rm×n) in an

orthogonal basis, which is the inverse Fourier transform:

xij =
1

m

m−1
∑

k=0

cke
i2πjk/m (1)

The connection with SVD can be explicitly illustrated by

normalizing the vector {ei2πjk/m} and by naming it v′
k:

xij =

m−1
∑

k=0

bikv
′

jk =

m−1
∑

k=0

u′

iks
′

kv
′

jk (2)

which generates the matrix equation X = U′Σ′V′⊤. How-

ever, unlike the SVD, even though the {v′
k} are an orthonor-

mal basis, the {u′
k} are not in general orthogonal. Neverthe-

less this demonstrates how the SVD is similar to a Fourier

transform. Next, we will show that the low-pass filtering

in Fourier analysis is closely related to the low-rank ap-

proximation in SVD.

Suppose we have N image data samples in original two-

dimensional form {x1,x2, . . . ,xN}, and each has dimen-

sion d. Let matrix X̂ contain all the data samples undergone

2D Fourier transform F(·), in the vectorized form:

X̂ =



 vec(F(x1)) vec(F(x2)) . . . vec(F(xN ))





d×N

Matrix X̂ can be decomposed using SVD: X̂ = ÛΣ̂V̂⊤.

Without loss of generality, let us assume that N = d for

brevity. Let g and ĝ be the Gaussian filter in spatial domain

and frequency domain respectively, namely ĝ = F(g). Let

Ĝ be a diagonal matrix with ĝ on its diagonal. The convo-

lution operation becomes dot product in frequency domain,

so the blurring operation becomes:

X̂blur = Ĝ · X̂ = Ĝ · ÛΣ̂V̂⊤ (3)

where Σ̂ = diag(σ1, σ2, . . . , σd) contains the singular val-

ues of X̂blur, already sorted in descending order: σ1 ≥
σ2 ≥ . . . ≥ σd. Suppose we can find a permutation ma-

trix P such that when applied on the diagonal matrix Ĝ, the

diagonal elements is sorted in descending order according

to the magnitude: Ĝ′ = PĜ = diag(ĝ′
1
, ĝ′

2
, . . . , ĝ′d). Now,

let us apply the same permutation operation on X̂blur, we

can thus have the following relationship:

P · X̂blur = P · Ĝ · ÛΣ̂V̂⊤ (4)

X̂′

blur
= Ĝ′ · ÛΣ̂V̂⊤ = Û · (Ĝ′Σ̂) · V̂⊤ (5)

= Û · diag(ĝ′
1
σ1, ĝ

′

2
σ2, . . . , ĝ

′

dσd) · V̂
⊤ (6)

Due to the fact that Gaussian distributing is not a heavy-

tailed distribution, the already smaller singular values will

Table 2: Datasets used for progressive CNN training.

DB Name Males Females

JNET 1900 1371

mugshotDB 1772 805

Pinellas Subset 13215 3394

pdx2 46346 12402

olympic2012 4164 3634

Total
67397 21606

89003

be brought down to 0 by the Gaussian weights. Therefore,

X̂blur actually becomes low-rank after Gaussian low-pass

filtering. To this end, we can say that low-pass filtering in

Fourier analysis is equivalent to the low-rank approximation

in SVD up to a permutation.

This phenomenon is loosely observed through the visu-

alization of the trained filters, as shown in Figure 10, which

will be further analyzed and studied in future work.

4. Experiments

In this section we detail the training and testing proto-

cols employed and various occlusions and low resolutions

modeled in the testing set. Accompanying figures and tables

for each sub-section encompass the results and observations

and are elaborated in each section.1

4.1. Database and Preprocessing

Training set: We source images from 5 different

datasets, each containing samples of both classes. The

datasets are JNET, olympic2012, mugshotDB, pdx2 and

Pinellas. All the datasets, except Pinellas are evenly sep-

arated into males and females of different ethnicity. The

images are centred. By which, we mean that we have land-

marked certain points on the face, which are then anchored

to fixed points in the resulting training image. For exam-

ple, the eyes are anchored at the same coordinates in every

image. All of our input images have the same dimension

168 × 210. The details of the training datasets are listed in

Table 2. The images are partitioned into training and vali-

dation and the progressive blur is applied to each image as

explained in the previous section. Hence, for a given model

iteration, the training set consists of ∼90k images.

Testing set: The testing set was built primarily from the

following two datasets: (1) The AR Face database [46] is

one of the most widely used face databases with occlusions.

It contains 3,288 color images from 135 subjects (76 male

subjects + 59 female subjects). Typical occlusions include

sunglasses and scarves. The database also captures expres-

sion variations and lighting changes. (2) Pinellas County

1A note on legend: (1) Symbols M correspond to each model trained,

with MF corresponding to the model trained on full face (equivalent to

M0), MP to one with just periocular images and Mk , k ⊆ (1, . . . , 6)
to the incremental models trained. (2) The tabular results show model

performance on the original images in column 1 and corrupted images in

other columns.
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Figure 3: Various degradations applied on the testing images. Row 1:

random missing pixel occlusions; Row 2: random additive Gaussian noise

occlusions; Row 3: random contiguous occlusions. Percentage of degra-

dation for Row 1-3: 10%, 25%, 35%, 50%, 65%, 75%. Row 4: various

zooming factors (2x, 4x, 8x, 16x) for low-resolution degradations.

Sherrif’s Office (PCSO) mugshot database is a large-scale

database of over 1.4 million images. We took a subset of

around 400K images from this dataset. These images are

not seen during training.

The testing images are centered and cropped in the same

way as the training images, though other pre-processing like

the progressive blur are not applied. Instead, to model real

world occlusions we have conducted the following experi-

ments to be discussed in Section 4.2.

4.2. Experiment I: Occlusion Robustness

In Experiment I, we carry out occlusion robust gender

classification on both the AR Face database and the PCSO

mugshot database. We manually add artificial occlusions to

test the efficacy of our method on the PCSO database and

test on the various images sets in the AR Face dataset.

Experiments on the PCSO mugshot database:

To begin with, the performance of various models on the

clean PCSO data is shown in Figure 4. As expected, if the

testing images are clean, it should be preferable to use MF ,

rather than MP . We can see that the progressively trained

models M1 −M6 are on par with MF .

We corrupt the testing images (400K) with three types

of facial occlusions. These are visualized in Figure 3 with

each row corresponding to some modeled occlusions.

(1) Random missing pixels occlusions: Varying factors

of the image pixels (10%, 25%, 35%, 50%, 65%, 75%) were

dropped to model lost information and grainy images2. This

is corresponding to the first row in Figure 3. From Table 3

and Figure 5, M5 performs the best with M6 showing a

2This can also model the dead pixel/shot noise of a sensor and these

results can be used to accelerate in-line gender detection by using partially

demosaiced images.
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Figure 4: Overall classification accuracy on the PCSO (400K). Images are

not corrupted.

Table 3: Overall classification accuracy on the PCSO (400K). Images are

corrupted with random missing pixels of various percentages.

Corrup. 0% 10% 25% 35% 50% 65% 75%

MF 97.66 97.06 93.61 89.15 82.39 79.46 77.4

M1 97.63 96.93 92.68 87.99 81.57 78.97 77.2

M2 97.46 96.83 93.19 89.17 83.03 80.06 77.68

M3 97.4 96.98 94.06 90.65 84.79 81.59 78.56

M4 97.95 97.63 95.63 93.1 87.96 84.41 80.22

M5 97.52 97.26 95.8 94.07 90.4 87.39 83.04

M6 97.6 97.29 95.5 93.27 88.8 85.57 81.42

MP 95.75 95.45 93.84 92.02 88.87 86.59 83.18
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Figure 5: Overall classification accuracy on the PCSO (400K). Images are

corrupted with random missing pixels of various percentages.

dip in accuracy suggesting a tighter periocular region is not

well suited for such applications, i.e., a limit on the peri-

ocular region needs to be maintained in the blur-set. There

is a flip in performance of the models MP and MF going

from the original to 25% with the periocular model gener-

alizing better for higher corruptions. As the percentage of

missing pixels increases, the performance gap between MP

and MF increases. As hypothesized, the trend of improv-

ing performance between progressively trained models is

maintained across factors indicating a better learned model

towards noise.

(2) Random additive Gaussian noise occlusions: Gaus-

sian white noise (σ = 6) was added to image pixels in

varying factors (10%, 25%, 35%, 50%, 65%, 75%). This

is corresponding to the second row in Figure 3 and is done
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Table 4: Overall classification accuracy on the PCSO (400K). Images are

corrupted with additive Gaussian random noise of various percentages.

Corrup. 0% 10% 25% 35% 50% 65% 75%

MF 97.66 97 94.03 91.19 86.47 83.43 79.94

M1 97.63 96.93 94 91.26 87 84.27 81.15

M2 97.46 96.87 94.43 92.19 88.75 86.44 83.33

M3 97.4 97 95.18 93.27 89.93 87.55 84.16

M4 97.95 97.67 96.45 95.11 92.43 90.28 87.06

M5 97.52 97.29 96.25 95.21 93.21 91.65 89.12

M6 97.6 97.32 96.04 94.77 92.46 90.8 88.08

MP 95.75 95.59 94.85 94 92.43 91.15 88.74
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Figure 6: Overall classification accuracy on the PCSO (400K). Images are

corrupted with additive Gaussian random noise of various percentages.

to model high noise data and bad compression. From Ta-

ble 4 and Figure 6, M4 − M6 perform best for medium

noise. For high noise, M5 is the most robust. Just like

before, as the noise increases, the trend undertaken by the

performance of MP & MF and M5 & M6 is maintained

and so is the performance trend of the progressively trained

models.

(3) Random contiguous occlusions: To model big oc-

clusions like sunglasses or other contiguous elements, con-

tinuous patches of pixels (10%, 25%, 35%, 50%, 65%,

75%) were dropped from the image as seen in the third row

of Figure 3. The most realistic occlusion correspond to the

first few patches, other patches are extreme cases. For the

former cases, M1−M3 are able to predict the classes with

the highest accuracy. From Table 5 and Figure 7, for such

large occlusions and missing data, more contextual infor-

mation is needed for correct classification since M1 −M3

perform better than other models. However, since they per-

form better than MF , our scheme of focused saliency helps

generalizing over occlusions.

Experiments on the AR Face database:

We partitioned the original set to smaller subsets to better

understand our methodology’s performance under different

conditions. Set 1 consists of neutral expression, full-face

subjects. Set 2 has full-face but varied expressions. Set 3

includes periocular occlusions such as sunglasses and Set 4

includes these and other occlusions like clothing etc. Set 5

Table 5: Overall classification accuracy on the PCSO (400K). Images are

corrupted with random contiguous occlusions of various percentages.

Corrup. 0% 10% 25% 35% 50% 65% 75%

MF 97.66 96.69 93.93 88.63 76.54 73.75 64.82

M1 97.63 96.95 94.64 90.2 77.47 75.2 53.04

M2 97.46 96.76 94.56 90.04 75.99 70.83 56.25

M3 97.4 96.63 94.65 90.08 77.13 71.77 68.52

M4 97.95 96.82 92.7 86.64 75.25 70.37 61.63

M5 97.52 96.56 92.03 83.95 70.36 69.94 66.52

M6 97.6 96.61 93.08 86.34 71.91 71.4 69.5

MP 95.75 95 93.01 88.34 76.82 67.81 49.73
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Figure 7: Overall classification accuracy on the PCSO (400K). Images are

corrupted with random contiguous occlusions of various percentages.

is the entire dataset including illumination variations.

Referring to Table 6 and Figure 8, for Set 1, the full face

model performs the best and this is expected as this model

was trained on images very similar to this. Set 2 suggests

that the models need more contextual information when ex-

pressions are introduced. Thus, M4 which has focus on

periocular but has face information too performs best. For

Set 3, we can see two things, one, MP performs better than

MF indicative of its robustness to periocular occlusions.

Two, M5 is the best as it combines periocular focus with

contextual information gained from incremental training.

Set 4 performance brings out why periocular region is

preferred for occluded faces. We ascertained that some tex-

ture and loss of face contour is throwing off the models

M1 − M6. The performance of the models on Set 5 re-

iterates previously stated observations of the combined im-

portance of contextual information about face contours and

the importance of periocular region. This is the reason for

the best accuracy reported by M3.

4.3. Experiment II: Low Resolution Robustness

Our scheme of training on Gaussian blurred images

should generalize well to low resolution images. To test

this hypothesis, we tested our models on images from the

PCSO mugshot dataset by first down-sampling them by a

factor and then blowing them back up (zooming factor for
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Table 6: Gender classification accuracy on the AR Face database.

Sets Set 1 Set 2 Set 3 Set 4 Set 5 (Full Set)

MF 98.44 93.23 89.06 83.04 81.65

M1 97.66 92.71 86.72 81.7 82.82

M2 97.66 92.71 90.62 82.14 85.1

M3 97.66 93.23 91.41 80.8 85.62

M4 98.44 95.31 92.97 77.23 84.61

M5 96.88 93.49 94.53 80.36 84.67

M6 96.09 92.71 92.97 79.02 83.9

MP 96.09 90.62 91.41 86.61 83.44
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Figure 8: Gender classification accuracy on the AR Face database.

Table 7: Overall classification accuracy on the PCSO (400K). Images are

down-sampled to a lower resolution with various zooming factors.

Zooming Factor 1x 2x 4x 8x 16x

MF 97.66 97.55 96.99 94.19 87.45

M1 97.63 97.48 96.91 94.76 87.41

M2 97.46 97.31 96.73 94.77 88.82

M3 97.4 97.2 96.37 93.5 87.57

M4 97.95 97.89 97.56 95.67 90.17

M5 97.52 97.4 96.79 95.26 89.66

M6 97.6 97.51 97.05 95.42 90.79

MP 95.75 95.65 95.27 94.12 91.59

example: 2x, 4x, 8x, 16x)3. This inculcates the loss of edge

information and other higher order information and is cap-

tured in the last row of Figure 3. As seen in Table 7 and

Figure 9 for cases, 2x, 4x, 8x, the trend between M1−M6

and their performance with respect to MF is maintained.

As mentioned before, M4 performs well due to the balance

between focus on periocular region and saving the contex-

tual information of a face.

4.4. Summary and Discussion

We have proposed a methodology for building a gen-

der recognition system which is robust to occlusions. It

involves training a deep model incrementally over several

batches of input data pre-processed with progressive blur.

The intuition and intent is two-fold, one to have the network

focus on periocular regions of the face for gender recogni-

tion. And two, to preserve contextual information of facial

3Effective pixel for 16x zooming factor is around 10x13, which is a

quite challenging low-resolution setting.
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Figure 9: Overall classification accuracy on the PCSO (400K). Images are

down-sampled to a lower resolution with various zooming factors.

contours to generalize better over occlusions.

Through various experiments we have observed that our

hypothesis is indeed true and that for a given occlusion set,

it is possible to have high accuracy from a model that en-

compasses both of above stated properties. Irrespective of

the fact that we did not train on any occluded data, or opti-

mize for a particular set of occlusions, our models are able

to generalize well over synthetic data and real life facial oc-

clusion images.

We have summarized the overall experiments and con-

solidated the results in Table 8. For PCSO large-scale exper-

iments, we believe that 35% occlusion is the right amount

of degradations, on which accuracies should be reported.

Therefore we average the accuracy from our best model

on three types of occlusions (missing pixel, additive Gaus-

sian noise, and contiguous occlusions) which gives 93.12%

in Table 8. For low-resolution experiments, we believe 8x

zooming factor is the right amount of degradations, so we

report the accuracy 95.67% in Table 8. Many other related

work on gender classification are also listed for a quick

comparison. This table is based on [13].

5. Conclusions and Future Work

In this work, we have undertaken the task of occlusion

and low-resolution robust facial gender classification. In-

spired by the trainable attention model via deep architec-

ture, and the fact that the periocular region is proven to be

the most salient region for gender classification purposes,

we are able to design a progressive convolutional neural net-

work training paradigm to enforce the attention shift during

the learning process. The hope is to enable the network to

attend to particular high-profile regions (e.g. the periocular

region) without the need to change the network architecture

itself. The network benefits from this attention shift and be-
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Table 8: Summary of many related work on gender classification. The proposed method is shown in the top rows.

Authors Methods Dataset Variation
Unique

Resolution # of Subjects (Male/Female) Accuracy
Subj.

Proposed
Mugshots

Frontal-only, mugshot Yes

168x210

89k total tr, 400k total te 97.95% te

Progressive CNN training Occlusion Yes 89k total tr, 400k total te 93.12% te

w/ attention Low-resolution Yes 89k total tr, 400k total te 95.67% te

AR Face Expr x4, occl x2 No 89k total tr, 76/59 te 85.62% te

Hu et al. [13]
Region-based MR-8 filter bank Flickr Li,exp,pos,bkgd,occl Yes

128x170
10037/10037 tr, 3346/3346 te 90.1% te

w/ fusion of linear SVMs FERET Frontal-only, studio Yes 320/320 tr, 80/80 te 92.8% te

Chen & Lin [5]
Color & edge features

Web img
Lighting, expression

Yes N/A 1948 total tr, 210/259 te 87.6% te
w/ Adaboost+weak classifiers background

Wang et al. [8]
Gabor filters

BioID
Lighting

Yes 286x384 976/544 tr, 120 total te 92.5% te
w/ polynomial-SVM & expression

Golomb et al. [9]
Raw pixel

SexNet Frontal-only, studio Yes 30x30 40/40 tr, 5/5 te 91.9% tr
w/ neural network

Gutta et al. [10]
Raw pixel w/ mix of neural net

FERET Frontal-only, studio No 64x72 1906/1100 tr, 47/30 te 96.0% te
RBF-SVM & decision tree

Jabid et al. [15]
Local directional patterns

FERET Frontal-only, studio No 100x100 1100/900 tr, unknown te 95.1% te
w/ SVM

Lee et al. [39]
Region-based w/ linear FERET Frontal-only, studio

N/A N/A
1158/615 tr, unknown te 98.8% te

regression fused w/ SVM Web img Unknown 1500/1500 tr, 1500/1500 te 88.1% te

Leng & Wang [40] Gabor filters w/ fuzzy-SVM

FERET Frontal-only, studio Yes 256x384 160/140 total, 80% tr, 20% te 98.1% te

CAS-PEAL Studio N/A 140x120 400/400 total, 80% tr, 20% te 93.0% te

BUAA-IRIP Frontal-only, studio No 56x46 150/150 total, 80% tr, 20% te 89.0% te

Lin et al. [42] Gabor filters w/ linear SVM FERET Frontal-only, studio N/A 48x48 Unknown 92.8% te

Lu & Lin [43]
Gabor filters

FERET Frontal-only, studio N/A 48x48 150/150 tr, 518 total te 90.0% te
w/ Adaboost + linear SVM

Lu et al. [44]
Region-based w/ RBF-SVM

CAS-PEAL Studio Yes 90x72 320/320 tr, 80/80 te 92.6% te
fused w/ majority vote

Moghaddam Raw pixel
FERET Frontal-only, studio N/A 80x40 793/715 tr, 133/126 te 96.6% te

& Yang [49] w/ RBF-SVM

Yang et al. [59]
Texture normalization Snapshots Unknown

N/A N/A
5600/3600 tr, unknown te 97.2% te

w/ RBF-SVM FERET Frontal-only, studio 1400/900 tr, 3529 total te 92.2% te

comes more robust towards occlusions and low-resolution

degradations. With the progressively trained CNN models,

we have achieved better gender classification results on the

large-scale PCSO mugshot database with 400K images un-

der occlusion and low-resolution settings, compared to the

one undergone traditional training. In addition, our progres-

sively trained network is sufficiently generalized so that it

can be robust to occlusions of arbitrary types and at arbi-

trary locations, as well as low resolution.

Future work: We have carried out a set of large-scale

testing experiments on the PCSO mugshot database with

400K images, shown in the experimental section. We

have noticed that, under the same testing environment, the

amount of time it takes to test on the entire 400K im-

ages various dramatically for different progressively trained

models (M0 − M6). As shown in Figure 10, we can ob-

serve a trend of testing time decrease when testing using

M0 all the way to M6, where the curves correspond to the

additive Gaussian noise occlusion robust experiments. This

same trend is observed across the board for all the large-

scale experiments on PCSO. The time difference is stun-

ning. For example, if we look at the green curve, M0 takes

over 5000 seconds while M6 only around 500. One of the

future directions is to study the cause of this phenomenon.

One possible direction is to study the sparsity or the smooth-

ness of the learned filters.

Shown in our visualization (Figure 10) of the 64 first-

layer filters in AlexNet for models M0, M3, and M6, re-

spectively, we can observe that the progressively trained

filters seems to be smoother and this may be due to the

implicit low-rank regularization phenomenon discussed in

Section 3.3. Other future work may include studying how

the ensemble of models can further improve the perfor-

Model

0 1 2 3 4 5 6

T
e

st
in

g
 T

im
e

 o
n

 P
C

S
O

 (
4

0
0

K
) 

(s
e

c)

0

1000

2000

3000

4000

5000

6000

Gaussian Noise 10%

Gaussian Noise 25%

Gaussian Noise 35%

Gaussian Noise 50%

Gaussian Noise 65%

Gaussian Noise 75%

M0 M3 M6

Figure 10: (Top) Testing time for the additive Gaussian noise occlusion

experiments on various models. (Bottom) Visualization of the 64 first-

layer filters for models M0, M3, and M6, respectively.

mance and how various multi-modal soft-biometrics traits

[61, 32, 17, 54, 52, 24, 25, 36, 29, 34, 31, 35] can be fused

for improved gender classification, especially under more

unconstrained scenarios.

References

[1] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recog-

nition with visual attention. arXiv preprint arXiv:1412.7755,

2014. 1

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine

75



translation by jointly learning to align and translate. arXiv

preprint arXiv:1409.0473, 2014. 1

[3] A. Bartle and J. Zheng. Gender classification with deep

learning. 2

[4] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals. Listen, attend

and spell. arXiv preprint arXiv:1508.01211, 2015. 3

[5] D.-Y. Chen and K.-Y. Lin. Robust gender recognition for un-

controlled environment of real-life images. Consumer Elec-

tronics, IEEE Transactions on, 56(3):1586–1592, 2010. 8

[6] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. Torr. Bing: Bina-

rized normed gradients for objectness estimation at 300fps.

In IEEE CVPR, pages 3286–3293, 2014. 2

[7] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and

Y. Bengio. Attention-based models for speech recognition.

In NIPS, pages 577–585. 2015. 3

[8] W. Chuan-xu, L. Yun, and L. Zuo-yong. Algorithm re-

search of face image gender classification based on 2-d ga-

bor wavelet transform and svm. In Computer Science and

Computational Technology, 2008. ISCSCT’08. International

Symposium on, volume 1, pages 312–315. IEEE, 2008. 8

[9] B. A. Golomb, D. T. Lawrence, and T. J. Sejnowski. Sexnet:

A neural network identifies sex from human faces. In NIPS,

volume 1, page 2, 1990. 8

[10] S. Gutta, J. R. Huang, P. Jonathon, and H. Wechsler. Mixture

of experts for classification of gender, ethnic origin, and pose

of human faces. Neural Networks, IEEE Transactions on,

11(4):948–960, 2000. 8

[11] J. Harel, C. Koch, and P. Perona. Graph-based visual

saliency. In NIPS, pages 545–552, 2006. 2

[12] X. Hou, J. Harel, and C. Koch. Image signature: High-

lighting sparse salient regions. IEEE TPAMI, 34(1):194–201,

2012. 2

[13] S. Y. D. Hu, B. Jou, A. Jaech, and M. Savvides. Fusion

of region-based representations for gender identification. In

IEEE/IAPR IJCB, pages 1–7, Oct 2011. 2, 7, 8

[14] L. Itti, C. Koch, and E. Niebur. A model of saliency-based

visual attention for rapid scene analysis. IEEE TPAMI,

(11):1254–1259, 1998. 2

[15] T. Jabid, M. H. Kabir, and O. Chae. Gender classification

using local directional pattern (ldp). In IEEE ICPR, pages

2162–2165. IEEE, 2010. 8

[16] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial

transformer networks. In NIPS, pages 2008–2016, 2015. 2

[17] F. Juefei-Xu, C. Bhagavatula, A. Jaech, U. Prasad, and

M. Savvides. Gait-ID on the Move: Pace Independent Hu-

man Identification Using Cell Phone Accelerometer Dynam-

ics. In IEEE BTAS, pages 8–15, Sept 2012. 8

[18] F. Juefei-Xu, M. Cha, J. L. Heyman, S. Venugopalan, R. Abi-

antun, and M. Savvides. Robust Local Binary Pattern Feature

Sets for Periocular Biometric Identification. In IEEE BTAS,

pages 1–8, sep 2010. 2

[19] F. Juefei-Xu, M. Cha, M. Savvides, S. Bedros, and J. Tro-

janova. Robust Periocular Biometric Recognition Using

Multi-level Fusion of Various Local Feature Extraction Tech-

niques. In IEEE DSP, pages 1–7, 2011. 2

[20] F. Juefei-Xu, K. Luu, and M. Savvides. Spartans:

Single-sample Periocular-based Alignment-robust Recogni-

tion Technique Applied to Non-frontal Scenarios. IEEE

Trans. on Image Processing, 24(12):4780–4795, Dec 2015.

2

[21] F. Juefei-Xu, K. Luu, M. Savvides, T. Bui, and C. Suen. In-

vestigating Age Invariant Face Recognition Based on Perioc-

ular Biometrics. In IEEE/IAPR IJCB, pages 1–7, Oct 2011.

2

[22] F. Juefei-Xu, D. K. Pal, and M. Savvides. Hallucinating

the Full Face from the Periocular Region via Dimensionally

Weighted K-SVD. In IEEE CVPRW, pages 1–8, June 2014.

2

[23] F. Juefei-Xu, D. K. Pal, and M. Savvides. Methods and Soft-

ware for Hallucinating Facial Features by Prioritizing Re-

construction Errors, 2014. U.S. Provisional Patent Applica-

tion Serial No. 61/998,043, June 17, 2014. 2

[24] F. Juefei-Xu, D. K. Pal, and M. Savvides. NIR-VIS Hetero-

geneous Face Recognition via Cross-Spectral Joint Dictio-

nary Learning and Reconstruction. In IEEE CVPRW, pages

141–150, June 2015. 8

[25] F. Juefei-Xu, D. K. Pal, K. Singh, and M. Savvides. A

Preliminary Investigation on the Sensitivity of COTS Face

Recognition Systems to Forensic Analyst-style Face Pro-

cessing for Occlusions. In IEEE CVPRW, pages 25–33, June

2015. 8

[26] F. Juefei-Xu and M. Savvides. Can Your Eyebrows Tell Me

Who You Are? In IEEE ICSPCS, pages 1–8, Dec 2011. 2

[27] F. Juefei-Xu and M. Savvides. Unconstrained Periocular

Biometric Acquisition and Recognition Using COTS PTZ

Camera for Uncooperative and Non-cooperative Subjects. In

IEEE WACV, pages 201–208, Jan 2012. 2

[28] F. Juefei-Xu and M. Savvides. An Augmented Linear Dis-

criminant Analysis Approach for Identifying Identical Twins

with the Aid of Facial Asymmetry Features. In IEEE

CVPRW, pages 56–63, June 2013. 2

[29] F. Juefei-Xu and M. Savvides. An Image Statistics Approach

towards Efficient and Robust Refinement for Landmarks on

Facial Boundary. In IEEE BTAS, pages 1–8, Sept 2013. 8

[30] F. Juefei-Xu and M. Savvides. Subspace Based Discrete

Transform Encoded Local Binary Patterns Representations

for Robust Periocular Matching on NIST’s Face Recogni-

tion Grand Challenge. IEEE Trans. on Image Processing,

23(8):3490–3505, aug 2014. 2

[31] F. Juefei-Xu and M. Savvides. Encoding and Decoding Local

Binary Patterns for Harsh Face Illumination Normalization.

In IEEE ICIP, pages 3220–3224, Sept 2015. 8

[32] F. Juefei-Xu and M. Savvides. Facial Ethnic Appearance

Synthesis. In Computer Vision - ECCV 2014 Workshops,

volume 8926 of Lecture Notes in Computer Science, pages

825–840. Springer International Publishing, 2015. 8

[33] F. Juefei-Xu and M. Savvides. Pareto-optimal Discriminant

Analysis. In IEEE ICIP, pages 611–615, Sept 2015. 2

[34] F. Juefei-Xu and M. Savvides. Pokerface: Partial Order

Keeping and Energy Repressing Method for Extreme Face

Illumination Normalization. In IEEE BTAS, pages 1–8, Sept

2015. 8

[35] F. Juefei-Xu and M. Savvides. Single Face Image Super-

Resolution via Solo Dictionary Learning. In IEEE ICIP,

pages 2239–2243, Sept 2015. 8

76



[36] F. Juefei-Xu and M. Savvides. Weight-Optimal Local Bi-

nary Patterns. In Computer Vision - ECCV 2014 Workshops,

volume 8926 of Lecture Notes in Computer Science, pages

148–159. Springer International Publishing, 2015. 8

[37] F. Juefei-Xu and M. Savvides. Multi-class Fukunaga Koontz

Discriminant Analysis for Enhanced Face Recognition. Pat-

tern Recognition, 52:186–205, apr 2016. 2

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, pages 1097–1105, 2012. 3

[39] P.-H. Lee, J.-Y. Hung, and Y.-P. Hung. Automatic gender

recognition using fusion of facial strips. In IEEE ICPR,

pages 1140–1143. IEEE, 2010. 8

[40] X. Leng and Y. Wang. Improving generalization for gender

classification. In IEEE ICIP, pages 1656–1659. IEEE, 2008.

8

[41] G. Levi and T. Hassner. Age and gender classification using

convolutional neural networks. In IEEE CVPRW, June 2015.

2

[42] H. Lin, H. Lu, and L. Zhang. A new automatic recogni-

tion system of gender, age and ethnicity. In Intelligent Con-

trol and Automation, 2006. WCICA 2006. The Sixth World

Congress on, volume 2, pages 9988–9991. IEEE, 2006. 8

[43] H. Lu and H. Lin. Gender recognition using adaboosted fea-

ture. In Natural Computation, 2007. ICNC 2007. Third In-

ternational Conference on, volume 2, pages 646–650. IEEE,

2007. 8

[44] L. Lu, Z. Xu, and P. Shi. Gender classification of facial im-

ages based on multiple facial regions. In Computer Science

and Information Engineering, 2009 WRI World Congress on,

volume 6, pages 48–52. IEEE, 2009. 8

[45] M.-T. Luong, H. Pham, and C. D. Manning. Effective ap-

proaches to attention-based neural machine translation. In

Conference on Empirical Methods in Natural Language Pro-

cessing (EMNLP), Sept 2015. 3

[46] A. Martinez and R. Benavente. The AR Face Database. CVC

Technical Report No.24, June 1998. 4

[47] J. Merkow, B. Jou, and M. Savvides. An exploration of gen-

der identification using only the periocular region. In IEEE

BTAS, pages 1–5, Sept 2010. 2

[48] V. Mnih, N. Heess, A. Graves, et al. Recurrent models of

visual attention. In NIPS, pages 2204–2212, 2014. 1

[49] B. Moghaddam and M.-H. Yang. Gender classification with

support vector machines. In IEEE FG, pages 306–311. IEEE,

2000. 8

[50] D. K. Pal, F. Juefei-Xu, and M. Savvides. Discriminative

Invariant Kernel Features: A Bells-and-Whistles-Free Ap-

proach to Unsupervised Face Recognition and Pose Estima-

tion. In IEEE CVPR, June 2016. 2

[51] M. Savvides and F. Juefei-Xu. Image Matching Using

Subspace-Based Discrete Transform Encoded Local Binary

Patterns, Sept. 2013. US Patent US 2014/0212044 A1. 2

[52] K. Seshadri, F. Juefei-Xu, D. K. Pal, and M. Savvides. Driver

Cell Phone Usage Detection on Strategic Highway Research

Program (SHRP2) Face View Videos. In IEEE CVPRW,

pages 35–43, June 2015. 8

[53] C. Tai, T. Xiao, X. Wang, and W. E. Convolutional

neural networks with low-rank regularization. ICLR,

abs/1511.06067, 2016. 3

[54] S. Venugopalan, F. Juefei-Xu, B. Cowley, and M. Sav-

vides. Electromyograph and Keystroke Dynamics for Spoof-

Resistant Biometric Authentication. In IEEE CVPRW, pages

109–118, June 2015. 8

[55] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and

tell: A neural image caption generator. In IEEE CVPR, pages

3156–3164, June 2015. 3

[56] T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, and Z. Zhang.

The application of two-level attention models in deep convo-

lutional neural network for fine-grained image classification.

In IEEE CVPR, pages 842–850, June 2015. 3

[57] H. Xu and K. Saenko. Ask, attend and answer: Exploring

question-guided spatial attention for visual question answer-

ing. arXiv preprint arXiv:1511.05234, 2015. 3

[58] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudi-

nov, R. Zemel, and Y. Bengio. Show, attend and tell - neural

image caption generation with visual attention. In ICML,

pages 2048–2057, June 2015. 1, 2

[59] Z. Yang, M. Li, and H. Ai. An experimental study on auto-

matic face gender classification. In IEEE ICPR, volume 3,

pages 1099–1102. IEEE, 2006. 8

[60] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle,

and A. Courville. Describing videos by exploiting temporal

structure. In IEEE ICCV, pages 4507–4515, Dec 2015. 3

[61] N. Zehngut, F. Juefei-Xu, R. Bardia, D. K. Pal, C. Bhagavat-

ula, and M. Savvides. Investigating the Feasibility of Image-

Based Nose Biometrics. In IEEE ICIP, pages 522–526, Sept

2015. 8

[62] Y. Zhu, O. Groth, M. Bernstein, and L. Fei-Fei. Visual7w:

Grounded question answering in images. arXiv preprint

arXiv:1511.03416, 2015. 3

77


