

Abstract

The family of real-time face representations is obtained

via Convolutional Network with Hashing Forest (CNHF).

We learn the CNN, then transform CNN to the multiple

convolution architecture and finally learn the output

hashing transform via new Boosted Hashing Forest (BHF)

technique. This BHF generalizes the Boosted SSC

approach for hashing learning with joint optimization of

face verification and identification. CNHF is trained on

CASIA-WebFace dataset and evaluated on LFW dataset.

We code the output of single CNN with 97% on LFW. For

Hamming embedding we get CBHF-200 bit (25 byte) code

with 96.3% and 2000-bit code with 98.14% on LFW.

CNHF with 2000×7-bit hashing trees achieves 93% rank-

1 on LFW relative to basic CNN 89.9% rank-1. CNHF

generates templates at the rate of 40+ fps with CPU Core

i7 and 120+ fps with GPU GeForce GTX 650.

1. Introduction

Various face recognition applications presume different

priorities of template size, template generation speed,

template matching speed and recognition rates. So, the

unified real-time face identification task requires

constructing the family of face representations, which

provides the flexible balancing of these main properties.

We know that the fastest search in a base is provided by

binary templates with Hamming distance ([1, 7-10, 12, 14,

18, 20, 21, 30, 34]). On the other hand, the best face

recognition rates are achieved by deep convolutional

neural networks (CNN) with non-binary face

representations ([3, 5, 23-25, 27, 29, 31, 35]). These

approaches can be fused in the special CNN architecture

with binary output layer, which we refer as Convolutional

Network with Hashing Layer (CNHL). The most

promising CNHL is described in [6], where CNN and

hashing layer are learned together via back propagation

technique. But now we need the family of face

representations, which continuously varies from small

Hamming codes to coded features with larger size, better

metrics and higher recognition rates. So, in this paper we

propose to combine the CNN and additional hashing

transform based on Hashing Forest (HF). Our HF forms

the vector of features coded by binary trees. HF with

different depth of trees and different coding objectives

allows obtaining the family of face representations based

on the same CNN. We refer such CNN+HF architecture as

Convolutional Network with Hashing Forrest (CNHF). In

case of 1-bit coding trees CNHF degrades to CNHL and

provides the Hamming embedding.

The architecture of our CNHF is based on the Max-

Feature-Map (MFM) CNN architecture proposed by Xiang

Wu [31]. For real-time implementation we accelerate our

CNN via transforming to the multiple convolution

architecture.

We propose the new Boosted Hashing Forest (BHF)

technique, which generalizes the Boosted Similarity

Sensitive Coding (Boosted SSC) [20, 21] for

discriminative data coding by forest hashing with direct

optimization of objective function and given properties of

coded feature space. We also introduce and implement the

new biometric-specific objective function for joint

optimization of face verification and identification.

Proposed CNHF face representations are trained on

CASIA-WebFace dataset and evaluated on LFW dataset.

Our experiments demonstrate both compact binary face

representations and increasing of face verification and

identification rates. In the Hamming embedding task BHF

essentially outperforms the original Boosted SSC. Our

CNHF 200 bit (25 byte) hash achieves 96.3% on LFW

with 70-time gain in a matching speed. CNHF 2000 bit

hash provides 98.14% on LFW. CNHF with 2000×7-bit

hashing trees achieves 93% rank-1 on LFW relative to

basic CNN 89.9% rank-1.

The remainder of this paper is organized as follows.

Section 2 briefly describes the related work. Section 3

describes the architecture and learning of our CNHF with

multiple convolution layers. Section 4 contains the outline

of proposed BHF technique and its implementation for

face hashing. Experimental results are presented in Section

5. Conclusion and discussion are presented in Section 6.

2. Related work

A lot of face representation techniques were proposed

([4, 15, 26]), but all state-of-the-art results are obtained

now via deep CNN. One can learn CNN for multi-class

Real-Time Face Identification via CNN and Boosted Hashing Forest

Yury Vizilter, Vladimir Gorbatsevich, Andrey Vorotnikov, Nikita Kostromov

State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia

viz@gosniias.ru, gvs@gosniias.ru, vorotnikov@gosniias.ru, nikita-kostromov@yandex.ru

78

face identification with classes corresponding to persons

([27, 35]), or learn the similarity metric by training two

identical CNNs (Siamese Architecture ([5, 29]), or

combine these approaches ([23, 24]). Best modern results

on LFW are obtained by ensembles of deep nets learned

on different parts (patches) of face ([13, 23, 24]).

Nevertheless, some single nets can be efficient enough

with essentially lower computational cost [3, 31]. Most

frequently the CNN-based face representation is formed as

an output of top hidden layer [5, 23, 27, 29, 31, 35].

Sometimes the PCA is applied for size reduction [23, 25].

The L2-distance [4, 29] or cosine similarity [23, 27, 31]

are of use for matching of face representations.

Binary hashing means the assigning of binary code to

each input feature vector. The review of classical hashing

techniques is presented in [9]. The simplest binary hashing

idea is to use some dimensionality reduction transform and

then apply some quantization technique. The optimization-

based hashing approach presumes the similarity-driven

data embedding into the Hamming space. In [7] the

similarity search is proposed based on linear binary coders

and vectors of weights obtained by random rotations. The

Iterative Quantization (ITQ) technique [8] considers the

hashing problem as a search of rotation, which minimizes

the quantization error. Kernel-Based Supervised Hashing

(KSH) [14] utilizes a kernel formulation for the target

hash functions. The affinity-preserving algorithm [10]

performs k-means clustering and learns the binary indices

of the quantized cells. The manifold hashing techniques

follow the ideas of manifold learning. The Spectral

Hashing [30] relaxes the hashing problem in the manner of

Laplacian Eigenmaps [1]. Topology Preserving Hashing

(TPH) [34] perfroms the Hamming embedding with

additional preserving the neighbor ranks. Locally Linear

Hashing (LLH) [12] presumes both preserving distances

and reconstructing the locally linear structures. The

Semantic Hashing (SH) [18] solves the hashing problem

with the use of Restricted Boltzmann Machines (RBM).

Boosted Similarity Sensitive Coding (Boosted SSC)

proposed by Shaknarovich, Voila and Darrell [20, 21]

performs the sequential bit-by-bit growing of the hash

code with reweighting of samples in the manner of

AdaBoost and forming the weighted Hamming space.

The idea of binary face coding based on deep learning

is well implemented in [6]. The CNN and hashing layer

are learned together via back propagation technique, and

32-bit binary face representation is generated with 91%

verification on LFW. Unfortunately, the direct

optimization of more complex face coding criterions is not

available in this one-step CNHL learning framework. In

particular, it cannot provide the immediate optimization of

Cumulative Matching Curve (CMC). Due to this we

implement the two-step CNHF learning procedure:

learning basic CNN first and hashing transform second.

Fig.1. Architecture of CNHF: CNN + Hashing Transform based

on Hashing Forest.

Fig.2. Architecture of source MFM deep net [24]

Our hashing transform is based on hashing forest. Look

at some previous forest hashing techniques. Qiu, Sapiro,

and Bronstein [17] propose the random forest semantic

hashing scheme with information-theoretic code

aggregation for large-scale data retrieval. The feature

induction based on random forest for learning regression

and multi-label classification is proposed by Vens and

Costa [28]. Yu and Yuan [33] implement a forest hashing

with special order-sensitive Hamming distance. The forest

hashing by Springer et al. [22] combines kd-trees with

hashing technique. The Boosted Random Forest algorithm

proposed by Mishina, Tsuchiya and Fujiyoshi [16] is out

of the binary hashing topic. Our approach performs the

feature space coding via boosted forest hashing in the

manner of Boosted SSC with optimizing of task-specific

objective function. So, we mainly consider our BHF

technique as a generalization of Boosted SSC.

3. CNHF with multiple convolution CNN

Our CNHF contains the basic deep CNN and additional

hashing transform based on Hashing Forrest (HF). This

hashing forest forms the output CNHF binary face

representation, which semantically corresponds to some

objective vector of features coded by these binary trees

(Fig.1). For obtaining the family of optimized face

representations based on the same CNN we use the two-

step CNHF learning procedure. At the first step the CNN

79

Fig.3. Architecture of CNHF based on MFM net with multiple convolutions.

is formed and trained for multi-class face identification.

At the second step the hashing transform is trained for

combined face verification and identification.

We start from learning the source CNN with softmax

output layer for face identification. Then we transform its

convolution layers to the multiple convolution form.

Finally we cut the output softmax layer and use the

activations of top hidden layer as a basic face

representation for further hashing. In this paper we use the

Max-Feature-Map (MFM) CNN architecture proposed by

Xiang Wu [31]. It is based on the Max-Feature-Map

activation function instead of ReLU. [31] demonstrates

that Max-Feature-Map can get the compact and

discriminative feature vectors. The source network

architecture contains 4 convolutional layers, 4 layers of

pooling + MFM pooling, 1 fully connected layer and the

sofmax layer (Fig.2). Following the approach of Xiang

Wu [31] we start from learning this source MFM deep net

for multi-class face identification with classes

corresponding to persons in the manner [25, 31] using the

back-propagation technique. We accelerate our basic CNN

via transforming to the multiple convolution architecture.

The each convolutional layer is substituted by the

superposition of some (2-4) simpler convolutional layers.

Such structure allows essentially decreasing the number of

multiplication operations in calculation of network output

values.

After these simplifying substitutions, the transformed

CNN is trained again for multi-class face identification

with classes corresponding to persons in the manner [25,

31] using the back-propagation technique. Finally the

output soft-max layer of transformed MFM net is replaced

by hashing forest, and we obtain the CNHF based on

MFM with multiple convolution layers (Fig.3). In result

our CNHF contains 10 convolutional layers, 4 layers of

MFM+pooling, fully-connected layer and hashing forest.

This CNHF generates face templates at the rate of 40+ fps

with CPU Core i7 and 120+ fps with GPU GeForce GTX

650.

4. Learning face representation via boosted

hashing forest

4.1. Boosted SSC, Forest Hashing and Boosted

Hashing Forest

We learn our hashing transform via the new Boosted

Hashing Forest (BHF) technique, which combines the

algorithmic structure of Boosted SSC [20, 21] and the

binary code structure of forest hashing [16, 17, 22, 28, 33].

Boosted SSC algorithms optimize the performance of

L1 distance in the embedding space as a proxy for the

pairwise similarity function, which is conveyed by a set of

examples of positive (similar) and negative (dissimilar)

pairs. The SSC algorithm takes pairs labeled by similarity

and produces a binary embedding space. The embedding

is learned by independent collecting thresholded

projections of the input data. The threshold is selected by

optimal splitting the projections of negative pairs and non-

splitting the projections of positive pairs. Boosted SSC

algorithm collects the embedding dimensions greedily

with adaptive weighting of samples and dimensions in the

manner of AdaBoost. BoostPro algorithm uses a soft

thresholding for gradient-based learning of projections.

The differences of proposed BHF w.r.t. Boosted SSC

are the following:

1) BHF performs the binary coding of output feature

space, which is not binary in general, but can be binary

Hamming, if required.

2) BHF performs the direct optimization of any given

objective function of output features.

3) BHF learns the objective-driven data projections via

RANSAC algorithm without gradient-based optimization.

4) BHF performs the recursive coding by binary trees

and forms the hashing forest, while Boosted SSC performs

the iterative feature coding and forms hashing vector.

5) BHF performs the adaptive reweighting of training

pairs based on their contribution to the objective function,

unlike the AdaBoost-style reweighting of Boosted SSC.

6) Boosted SSC forms the weighted Hamming space.

Our BHF forms the any given metric space, including non-

weighted Hamming space for fastest data search.

80

The main differences of proposed BHF w.r.t. other

forest hashing techniques: we obtain the hashing forest via

RANSAC projections and boosting process in the manner

of Boosted SSC; we optimize the task-specific objective

function in the coded feature space, but not the similarity

in the binary code space.

BHF implementation for face recognition has some

additional original features: new biometric-specific

objective function with joint optimization of face

verification and identification; selection and processing of

subvectors of the input feature vector; creation of

ensemble of independent hash codes for overcoming the

limitations of greedy learning. In the next subsections we

describe our BHF algorithms in detail.

4.2. BHF: Objective-driven Recurrent Coding

Let the training set X= {xi∈Rm}i=1,…,N contains N

objects described by m-dimensional feature vectors. Map

X to the n-dimensional binary space: X= {xi∈Rm}i=1,…,N

→ B = {bi∈{0,1}n}i=1,…,N. This mapping is an n-bit coder:

h(x): x∈Rm → b∈{0,1}n (1)

The elementary coder is called the 1-bit hashing function:

h(x): x∈Rm → b∈{0,1} (2)

Let some objective function (coding criterion) is given and

required to be minimized:

J(X,h) → min(h). (3)

Denote h(k)(x) = (h(1)(x),…,h(k)(x)). The operation of

coders concatenation is h(k)(x) := (h(k-1)(x), h(k)(x)). The

Greedy Objective-driven Recurrent Coding (Greedy ORC)

algorithm (Algorithm 1) sequentially forms the bits of our

coder in a recurrent manner: h(k)(x) = h(k)(x, h(k-1)). The

proper procedure for learning the each k-th bit is described

in the next subsections.

4.3. BHF: Learning elementary projection via

RANSAC algorithm

At the k-th step of coder growing

J(X,h(k)) = J(X,h(k-1),h(k)) → min{h(k) ∈ H}, (4)

where H is a class of coders. Consider the class of

elementary coders based on thresholded linear projections

h(w, t, x) = sgn(k=1,…,m wk xk + t), (5)

where w – vector of weights, t – threshold of hashing

function, sgn(u) = {1, if u > 0; 0 - otherwise}. In case of

(5) function (4) takes the form

Algorithm 1: Greedy ORC

Input data: X, J, nORC.

Output data: h(x): x∈Rm → y∈{0,1}nORC, h(x)∈H.

Initialization:

Step 0. k:=0; h(k) := ().

Repeat iterations:

k:= k+1;

Learn k-th elementary coder:

h(k)(x, h(k-1)):= Learn1BitHash(J, X, h(k-1));

Add k-th elementary coder to the hashing function:

h(k)(x) := (h(k-1)(x), h(k)(x, h(k-1)));

while k<nORC. // stop if the given size of coder is got

Algorithm 2: RANSAC Learn1ProjectionHash

Input data: J, X, h(k-1), kRANSAC.

Output data: h(w, t, x).

Initialization:

Step 0. k:=0; Jmax:=-∞.

Repeat iterations:

k:= k+1;

Step 1. Take the random dissimilar pair (xi ,xj) in X.

Step 2. Get vector ሺܠଙ, ଚሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ as a vector of hyperplaneܠ

direction: wk:=xj – xi.

Step 3. Calculate the threshold tk minimizing J (6) by t

with w=wk: tk:=argmint J(X, h(k-1), wk, t).

Step 4. If J(X, h(k-1), wk, tk) > Jmax, then

 Jmax:= J(X, h(k-1), wk, tk); w:= wk; t:= tk.

while k<kRANSAC. // stop if the given number of RANSAC

iterations is achieved

Algorithm 3: Boosted Hashing Forest

Input data: X, J, nORC, nBHF.

Output data: h(x): x∈Rm → y∈{0,1}n.

Initialization:

l:=0; h[1,0]:= ().

Repeat iterations:

l:= l+1;

Form the objective as a function of l-th coding tree:

J[l](X, h[l,l]) = J(X, h[1,l-1], h[l,l]);

Learn l-th coding tree:

h[l,l] := GreedyORC(J[l], X, nORC);

Add l-th coding tree to the hashing forest:

h[1,l](x) := (h[1,l-1](x), h[l,l](x));

while l<nORC. // stop if the given size of coder is got

J(X,h(k-1),h(k)) = J(X, h(k-1), w, t) → min{w∈Rm, t∈R}. (6)

We use the RANSAC algorithm for approximate

solving (6). RANSAC hypotheses about w parameters are

generated based on the random choice of dissimilar pairs

in a training set (Algorithm 2). The selection of threshold

at the step 3 is performed in the manner of Boosted SSC

81

“ThresholdRate” algorithm [20]. For the fixed hypothesis

w=wk, we arrange the projections t(k)
i = (xi,wk) and test

them (in a linear time) as possible threshold values via

calculating the J(X, h(k-1), wk, t(k)
i).

4.4. BHF: Boosted Hashing Forest

Our Learn1BitHash procedure (see Algorithm 1)

contains the recursive call of Learn1ProjectionHash

procedure (Algorithm 2). Consider the tessellation of X by

n-bit coder: XB = {Xb, b∈{0,1}n}, Xb = {x∈X: h(x)=b},

X = ∪b∈{0,1}n X b. The process of recursive coding is a

dichotomy splitting of training set with finding the

optimized elementary coder for each subset at each level

of tessellation. So, the recursive coder for k-th bit

h(k)(x, h(k-1)) = h(w(h(k-1)(x)), t(h(k-1)(x)), x),

is a combination of 2(k-1) thresholded projections:

h(k)(x, h(k-1)) = Learn1BitHash(J, X, h(k-1)) =

{Learn1ProjectionHash(J, X(h(k-1),b), h(k-1)), b∈{0,1}(k-1)}.

Such recursive n-bit coder h(x) is a tree of thresholded

projections, which has much more recognition power

relative to the n-bit sequence of thresholded projections.

We know that one coding tree cannot provide the fine

recognition rate. Besides, the number of projections in a

tree grows exponentially with tree depth. So, the training

set of some fixed size allows learning the trees with some

limited depth only. Due to this, we form the hashing forest

via the boosting of hashing trees with optimization of joint

objective function for all trees. We call such approach as

Boosted Hashing Forest (BHF) (Algorithm 3).

Here we use the following notation: nORC = p is a depth

of coding tree; nBHF = n/p is a number of trees;

h[1,l] = (h(1)(x),…,h(lp)(x)), h[1,l-1] = (h(1)(x),…,h(lp-p)(x)),

h[l,l] = (h(lp-p+1)(x),…,h(lp)(x)).

4.5. BHF: Hashing forest as a metric space

We call the metric space (Y, dY) with dY: Y×Y →R+ as n-bit

binary coded, if the each y∈Y corresponds to unique

b∈{0,1}n, and two decoding functions are given: feature

decoder fy(b): {0,1}n → Y and distance decoder fd(b1,b2):

{0,1}n×{0,1}n → R+, fd(b1,b2) = dY(fy(b1), fy(b2)). This

allows define the distance-based objective function

(DBOF) for coder h(x) of the form:

J(X,h) → min(h) ⇔ J(DY) → min(DY), (7)

DY ={dij = fd(h(xi), h(xj)), xi,xj∈X, h(x)∈H}i,j=1,…,N.

Such objective function depends on the set of coded

distances dij only. In our current implementation of BHF

we match p-bit binary trees via the search index distance.

It is a geodesic distance between codes as corresponding

leaves on a coding tree:

dT(y1,y2) = fdT(b1,b2) =

= 2  k=1,…,p (1 – ∏ l=1,…,k (1 – |b1
(l) – b2

(l)|)).

Finally, we form a matching distance for total n-

dimensional forest containing q = n/p trees as a sum of

distances between individual p-bit trees:

dij =  l=1,…,q fdT(h[l,l](xi), h[l,l](xj)).

4.6. BHF: Objective function for face verification

and identification

Let the similarity function s describes positive

(authentic) and negative (imposter) pairs:
௜௝ݏ = ቊͳ, if	classሺ࢏ܠሻ = 	class൫࢐ܠ൯,Ͳ, otherwise.																									 									ሺͺሻ

The “ideal” distance for k-bit binary code, is
 ݃ሺ௞ሻ௜௝ = ൜ Ͳ, if	ݏ௜௝ = 	ͳ,	݀௠௔௫ሺ݇ሻ, otherwise,																		ሺͻሻ

where dmax(k) is a maximal possible distance. So, the

distance supervision objective function can be formed as

JDist(DY) = i=1,…,N j=1,…,N vij (dij – gij)2 →

 →min(DY = {dij}i,j=1,…,N), (10)

where vij are the different weights for authentic and

imposter pairs. This objective function (10) controls the

verification performance (FAR and FRR).

In the identification-targeted biometric applications we

need to control both distances and ordering of distances.

Let d1
k = maxl{dkl: skl = 1} is a distance to the most far

authentic and d0
k = minl{dkl: skl = 0} is a distance to the

closest imposter for the query h(xk). Then the ordering

error eij for a pair (xi,xj) can be expressed as
 ݁௜௝ = ቐ ͳ,			if	ሺݏ௜௝ 	 = Ͳ	ܽ݊݀	ℎ௜௝ < max	ሺ݀௜ଵ , ݀௝ଵሻሻ							or	ሺݏ௜௝ 	 = ͳ	ܽ݊݀	ℎ௜௝ > min	ሺ݀௜଴ , ݀௝଴ሻሻͲ,			otherwise ,											ሺͳͳሻ			

The ordering error occurs if imposter is closer than

authentic or authentic is more far than imposter. So, the

82

 (a) (b) (c)
Fig.4. ROC curves (a), CMC curves (b) and identification performance (rank 1) (c) on LFW relative to the size of biometric template in

bits for proposed BHF(CNN+BHF) and original Boosted SSC(CNN +BoostSSC) and best basic CNN solution without hashing - CNN +

Last hidden layer + cosine similarity (CNN+CS)

distance order supervision objective function can be

formed as

JOrd(DY) = i=1,…,N j=1,…,N vij (dij – gij)2 eij →

 → min(DY = {dij}i,j=1,…,N). (12)

Here we penalize the difference between dij and objective

distance gij like in (10), but only in case that the ordering

error (11) occurs for this pair. So, criterion (12) directly

controls the face identification characteristics (CMC).

Finally, for obtaining both verification and

identification we combine the (10) and (12) resulting in

J(DY) = α JDist(DY) + (1 – α) JOrd(DY) =

= i=1,…,N j=1,…,N vij (dij – gij)2 (eij + α(1 – eij)) →

→ min(DY = {dij}i,j=1,…,N), (13)

where α∈[0,1] is a tuning parameter.

4.5. BHF implementation for learning face

representation

For enhancement of our face representation learning

we use some additional semi-heuristic modifications of

described scheme. The goal distance (9) is modified:

 ݃ሺ௞ሻ௜௝ = ቊ Ͳ,			if	ݏ௜௝ = 	ͳ,	݉ሺ௞ିଵሻଵ 	+ 	͵ሺ௞ିଵሻଵ,			otherwise,					ሺͳͶሻ

where m(k-1)
1 and σ(k-1)

1 are the mean value and standard

deviation of authentic coded distances. Such goal distance

(14) excludes the penalizing of imposter pairs, which

could not be treated as authentic. In (13) we use the

adaptive weighting of pairs at each k-th step of boosting:

ሺ௞ሻ௜௝ݒ = ቊ /ܽሺ௞ሻ, if	ݏ௜௝ = 	ͳ,	ͳ/ܾሺ௞ሻ, otherwise,																										ሺͳͷሻ

a(k) = i=1,…,N j=1,…,N sij (dij – gij)2 (eij + α(1 – eij)),

b(k) = i=1,…,N j=1,…,N (1 –sij) (dij – gij)2 (eij + α(1 – eij)),

where a(k) and b(k) provide the basic equal weight for all

authentic and imposter pairs, and tuning parameter γ>1

gives the slightly larger weights to authentic pairs.

We split the input m-dimensional feature vector to the

set of independently coded subvectors with fixed sizes

from the set m = {mmin,…,mmax}. At the each step of

boosting we get the subvector with corresponding BHF

elementary coder providing the best contribution to the

objective function. The output binary vector of size n

consists of some independently grown parts of size

nBHF<n. Such learning strategy prevents the premature

saturation of objective function.

So, our binary face hashing is implemented with the

following set of free parameters: m, nORC, nBHF, kRANSAC, α

and γ. The type of coded metrics is a free parameter of our

approach too.

5. Experiments

In this section we describe our methodology for

learning and testing CNHF, report our results in Hamming

embedding task, compare proposed BHF to original

Boosted SSC, explore the CNHF performance w.r.t. depth

of coding trees and compare CNHL and CNHF to best

methods on LFW. We test the verification accuracy by the

standard LFW unrestricted with outside labeled data

protocol. Our CMC and rank-1 tests follow the

methodology described in [2].

0.9

0.92

0.94

0.96

0.98

1

0 0.05 0.1
tr

u
e

 p
o

si
ti

v
e

 r
a

te

false positive rate

CNN+BoostSSC 2000 bit

CNN+BHF 2000 bit

CNN+BoostSSC 200 bit

CNN+BHF 200 bit

CNN+CS

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1 2 3 4 5 6 7 8 9 10

CNN+CS

CNN+BHF 2000 bit

CNN+BHF 200 bit

CNN+BoostSSC 2000 bit

CNN+BoostSSC 200 bit

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

CCN+BoostSSC

CCN+GBH

CCN+CS

CCN+BoostSSC

CCN+BHF

CCN+CS

83

 (a) (b) (c)

Fig.5. ROC (a) and CMC (b) curves for CNN+CS, CNHF-2000×1 and CNHF-2000×7; ROC curves for CNHF-1000×p-bit trees

Table 1. Verification accuracy on LFW, code size and matching

speed of CNN and CNHL

Solution Accuracy
Template

 size

Matches

 in sec

CNN+L2 0.947 8192 bit 2713222

CNN+BHF-200×1 0.963 200 bit 194986071

CNN+CS 0.975 8192 bit 2787632

CNN+BHF-2000×1 0.9814 2000 bit 27855153

Table 2. Verification accuracy on LFW.

Method Accuracy

WebFace [25] 0.9613

CNHL-200×1 0.963±0.00494

DeepFace-ensemble[21] 0.9730±0.0025

DeepID[19] 0.9745± 0.0026

MFM Net[24] 0.9777

CNHL-2000×1 0.9814

CNHF-2000×7 0.9859

DeepID2[17] 0.9915 ± 0.0013

DeepID3[18] 0.9953 ± 0.0010

Baidu[11] 0.9977 ± 0.0006

5.1 Methodology: learning and testing CNHF

The basic CNN is trained on CASIA-WebFace dataset.

Face images are aligned by rotation of eye points to

horizontal position with fixed eye-to-eye distance and crop

to 128х128 size. The open source deep learning

framework Caffe (http://caffe.berkeleyvision.org/) is used

for training the basic CNN for multi-class face

identification in the manner [25, 31]. The hashing forest is

trained on the dataset containing 1000 authentic pairs and

correspondingly 999000 imposter pairs of Faces in the

Wild images (not from the testing LFW set). Finally, the

family of CNHF coders is formed by proposed BHF:

Hamming embedding coders 2000×1 bit (250 byte), 200×1

bit (25 byte) and 32×1 bit (4 byte) of size; Hashing forest

coders containing 2000 trees with 2-7 bits depth (0.5 –

1.75 Kbyte of size). We used the common setting of BHF

parameters: m = {8, 16, 32}, kRANSAC = 0, α = 0.25, γ = 1.1.

But we set nBHF=200 for CNN+BHF-200×1, nBHF=500 for

CNN+BHF-2000×1 and nBHF=100 for CNHF-2000×7.

Such parameter values are determined experimentally

based on the analysis of the speed of identification rate

growing w.r.t. number of code bits in the hashing process.

The evaluation is performed on the Labeled Faces in the

Wild (LFW) dataset. All the images in LFW dataset are

processed by the same pipeline as in [11] and normalized

to 128х128.

5.2 Hamming embedding: CNHL vs. CNN, BHF

vs. Boosted SSC

In this subsection we test our approach in Hamming

embedding task, so, CNHF degrades to CNHL. We

compare CNHL to basic CNN on LFW via verification

accuracy and ROC curve (Table 1 and Fig.4a). The CNN

face representation is formed like in [34] as a vector of

activations of 256 top hidden layer neurons. The cosine

similarity (CNN+CS) and L2-distance (CNN+L2) are

applied for matching. CNHL coders 2000 and 200 bit of

size are trained by BHF and matched by Hamming

distance (CNN+BHF-2000×1 and CNN+BHF-200×1

correspondingly). Our solution CNN+BHF-2000×1

achieves verification accuracy 98.14% on LFW, which

outperforms all other CNN-based solutions. Moreover, our

25-byte length solution CNN+BHF-200×1 outperforms

CNN+L2. Table 1 additionally demonstrates the gain in

template size and matching speed.

We compare CNHL trained by BHF to CNHL trained

by original Boosted SSC. Fig.4c demonstrates that

proposed BHF essentially outperforms Boosted SSC in

identification (rank-1) on LFW for all binary template

0.9

0.92

0.94

0.96

0.98

1

0 0.02 0.04 0.06 0.08 0.1
tr

u
e

 p
o

si
ti

v
e

 r
a

te

false positive rate

CNN+BHF 2000x1

CNN+CS

CNN+CNHF 2000x7

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

1 2 3 4 5 6 7 8 9 10

CNN+CNHF 2000x7

CNN+CS

CNN+BHF 2000x1

0.9

0.92

0.94

0.96

0.98

1

0 0.02 0.04 0.06 0.08 0.1

tr
u

e
p

o
si

ti
v
e

ra
te

false positive rate

CNN+CNHF 1000x1 CNN+CNHF 1000x2

CNN+CNHF 1000x3 CNN+CNHF 1000x5

CNN+CNHF 1000x7

CNHF 2000x7

CNN+CS

CNHF 2000x1

CNHF 2000x1

CNN+CS

CNHF 2000x7

84

sizes. The maximal rank-1 is 0.91 for BHF-2000×1 and

0.865 for BoostSSC-2000×1 (relative to 0,899 for

CNN+CS). The ROC graph for CNN+BHF is

monotonously better than for CNN+BoostSSC with same

template size (Fig.4a). Fig.4b contains the CMC graphs

(ranks 1-10), which demonstrate that BHF outperforms

BoostSSC with same template size (additionally note that

CNN+BHF-2000×1 outperforms CNN+CS).

5.3 CNHF: performance w.r.t. depth of trees

CNHF with 2000 output features formed by 7-bit

coding trees (CNHF-2000×7) achieves 98.59% on LFW.

The identification result of CNHF-2000×7 is 93% rank-1

on LFW relative to 89.9% rank-1 for CNN+CS. Fig.5c

presents the ROC curves for CNHF with different depth

coding trees. The forest with 7-bit coding trees is the best

by ROC, but 6-bit and 5-bit depth solutions are very close.

We suppose that the reason of this result is a limited

amount of hashing forest training set. Fig.5a,b

demonstrates that CNHF-2000×7 outperforms basic

CNN+CS and CNHF-2000×1 both in verification (ROC)

and in identification (CMC). So, we can conclude that the

adding of hashing forest on the top of CNN allows both

generating the compact binary face representation and

increasing the face verification and especially

identification rates.

5.4 CNHL and CNHF vs. best methods on LFW

We compare our CNHF solutions to state-of-the-art

methods (best on LFW) via verification accuracy (Table

2). CNHF-2000×1 outperforms DeepFace-ensemble [30],

DeepID [27], WebFace [35] and MFM Net [34]. The

DeepID2 [25], DeepID3 [26] and Baidu [14] multi-patch

CNNs outperform our CNHF-2000×1 based on single net.

 Note that our CNHF-200×1 (25 byte) hash

demonstrates 96.3% on LFW. Compare this result to

previous best CNHL result [7]. On the one hand, the

extreme-short 32-bit binary face representation [7]

achieves 91% verification on LFW. Our CNHF 32×1

provides 90% only. On the other hand, face representation

[6] requires 1000 bit for achieving the 96% verification on

LFW. So, our CNHF-200×1 solution improves this face

packing result in 5 times.

The identification result (rank-1) of our real-time coder

CNHF-2000×7 is 0.93 on LFW. It is close enough to best

reported identification result of essentially deeper and

slower multi-patch DeepID3 CNN [24] (0.96 rank-1 on

LFW). Baidu [13] declares even better result (0.98 rank-1

on LFW), but they use the training set 1.2 million images

of size w.r.t. 400 thousand images in our case.

6. Conclusion and Discussion

We develop the family of CNN-based binary face

representations for real-time face identification. Our

Convolutional Network with Hashing Forest (CNHF)

generates binary face templates at the rate of 40+ fps with

CPU Core i7 and 120+ fps with GPU GeForce GTX 650.

Our 2000×1-bit face coder provides the compact face

coding (250 byte) with simultaneous increasing of

verification (98.14%) and identification (91% rank-1) on

LFW. Our 200×1-bit face coder provides the 40-time gain

in template size and 70-time gain in a matching speed with

1% decreasing of verification accuracy relative to basic

CNN (96.3% on LFW). Our CNHF with 2000 output 7-bit

coding trees (CNHF-2000×7) achieves 98.59%

verification accuracy and 93% rank-1 on LFW (add 3% to

rank-1 of basic CNN).

We use the multiple convolution deep network

architecture for acceleration of source Max-Feature-Map

(MFM) CNN architecture [31]. We propose and

implement the new binary hashing technique, which forms

the output feature space with given metric properties via

joint optimization of face verification and identification.

This Boosted Hashing Forest (BHF) technique combines

the algorithmic structure of Boosted SSC approach and the

binary code structure of forest hashing. Our experiments

demonstrate that BHF essentially outperforms the original

Boosted SSC in face identification test.

In the future we will try to achieve the better

recognition rates via CNHF based on multi-patch CNN,

which we can use for non-real-time applications. We will

evolve and apply the proposed BHF technique for

different data coding and dimension reduction problems

(supervised, semi-supervised and unsupervised).

Additionally, we will investigate the influence of the

output metric space properties in the process of hashing

forest learning.

Acknowledgement

This work is supported by grant from Russian Science

Foundation (Project No. 16-11-00082).

References

[1] M. Belkin and P. Niyogi, “Laplacian eigenmaps and

spectral techniques for embedding and clustering,” Proc.

NIPS 14, pp. 585– 591, 2001.

[2] L. Best-Rowden, H. Han, C. Otto, B. Klare and A. K. Jain,

“Unconstrained face recognition: Identifying a person of

interest from a media collection,” IEEE Trans. Inf. Forens.

Security, vol. 9, no. 12, pp. 2144-2157, 2014.

85

[3] Z. Cao, Q. Yin, X. Tang and J. Sun. “Face Recognition with

Learning-based Descriptor,” Proc. CVPR, pp. 2707-2714,

2010.

[4] D. Chen, X. Cao, F. Wen and J. Sun, “Blessing of

dimensionality: High-dimensional feature and its efficient

compression for face verification,” Proc. CVPR, pp. 3025-

3032, 2013.

[5] H. Fan, Z. Cao, Y. Jiang, Q. Yin and C. Doudou, “Learning

deep face representation,” arXiv preprint arXiv:1403.2802,

2014.

[6] H. Fan, M. Yang, Z. Cao, Y. Jiang and Q. Yin, “Learning

Compact Face Representation: Packing a Face into an

int32,” Proc. ACM Int. Conf. Multimedia, pp. 933-936,

2014.

[7] A. Gionis, P. Indyk and R. Motwani, “Similarity search in

high dimensions via hashing,” Proc. VLDB, pp. 518-529,

1999.

[8] Y. Gong, S. Lazebnik and A. Gordo, Florent Perronnin,

“Iterative quantization: A procrustean approach to learning

binary codes for large-scale image retrieval,” IEEE Trans.

Pattern Anal. Mach. Intell, vol. 35, no. 12, pp. 2916 - 2929,

2012.

[9] K. Grauman and R. Fergus, “Learning binary hash codes for

large-scale image search,” in Machine Learning for

Computer Vision, pp. 49-87, Springer, 2013.

[10] K. He, F. Wen and J. Sun, “K-means Hashing: An affinity-

preserving quantization method for learning binary compact

codes,” Proc. CVPR, pp. 2938-2945, 2013.

[11] G.-B. Huang, M. Mattar, H. Lee and E. Learned-Miller,

“Learning to align from scratch,” Proc. NIPS 25, 2012.

[12] G. Irie, L. Zhenguo, W. Xiao-Ming and C. Shih-Fu,

“Locally linear hashing for extracting non-linear

manifolds,” Proc. CVPR, pp. 2115-2122, 2014.

[13] J. Liu, Y. Deng, T. Bai, Z. Wei and C. Huang, “Targeting

ultimate accuracy: face recognition via deep embedding,”

arXiv preprint arXiv:1506.07310, 2015.

[14] W. Liu, J. Wang, R. Ji, Y.-G. Jiang and S.-F. Chang,

“Supervised hashing with kernels,” Proc. CVPR, pp. 2074-

2081, 2012.

[15] H.-V. Nguyen and L. Bai, “Cosine similarity metric

learning for face verification,” Proc. ACCV, pp. 709-720,

2010.

[16] Y. Mishina, M. Tsuchiya and H. Fujiyoshi, “Boosted

Random Forest,” IEICE Trans., vol. E98-D, no. 9, pp.

1630-1636, 2015.

[17] Q. Qiu, G. Sapiro and A. Bronstein, “Random Forests Can

Hash,” arXiv preprint arXiv:1412.5083, 2014.

[18] R. Salakhutdinov and G. Hinton, “Semantic hashing,”

International Journal of Approximate Reasoning, vol. 50,

no. 7, Pages 969–978, 2009.

[19] F. Schroff, D. Kalenichenko and James Philbin, “FaceNet:

A unified embedding for face recognition and clustering,”

Proc. CVPR, pp. 815-823, 2015.

[20] G. Shakhnarovich, “Learning task-specific similarity,” PhD

thesis, Dept. of Elect. Eng. and Comput. Sci., MIT,

Cambridge, MA, 2005.

[21] G. Shakhnarovich, P. Viola and T. Darrell, “Fast pose

estimation with parameter sensitive hashing,” Proc.

Comput. Vision, vol. 2, pp. 750-757, Oct. 2003.

[22] J. Springer, X. Xin, Z. Li, J. Watt and A. Katsaggelos,

“Forest hashing: Expediting large scale image retrieval,”

Proc. ICASSP, pp. 1681-1684, May 2013.

[23] Y. Sun, X. Wang and X. Tang, “Deep learning face

representation by joint identification-verification,” Proc.

NIPS 27, 2014.

[24] Y. Sun, X. Wang and X. Tang, “DeepID3: Face recognition

with very deep neural networks,” arXiv preprint

arXiv:1502.00873, 2015.

[25] Y. Sun, X. Wang and X. Tang, “Deep learning face

representation from predicting 10,000 classes,” Proc.

CVPR, pp. 1891-1898, 2014.

[26] Y. Taigman, L. Wolf and T. Hassner, “Multiple one-shots

for utilizing class label information,” Proc. BMVC, 2009.

[27] Y. Taigman, M. Yang, M. Ranzato and L. Wolf,

“DeepFace: closing the gap to human-level performance in

face verification,” Proc. CVPR, pp. 1701-1708, 2014.

[28] C. Vens, F. Costa, “Random Forest Based Feature

Induction,” Proc. ICDM, pp. 744-753, 2011.

[29] W. Wang, J. Yang, J. Xiao, S. Li and D. Zhou, “Face

recognition based on deep learning,” Proc. HCC, vol. 8944,

pp. 812-820, Mar. 2015.

[30] Y. Weiss, A. Torralba and R. Fergus, “Spectral Hashing”,

Proc. NIPS 21, 2008.

[31] X. Wu, “Learning robust deep face representation,” arXiv

preprint arXiv:1507.04844, 2015.

[32] D. Yi, Z. Lei, S. Liao and S. Z. Li, “Learning face

representation from scratch,” arXiv preprint

arXiv:1411.7923, 2014.

[33] G. Yu, J. Yuan, “Scalable forest hashing for fast similarity

search,” Proc. ICME, pp. 1-6, 2014.

[34] L. Zhang, Y. Zhang, X. Gu, J. Tang and Q. Tian, “Topology

preserving hashing for similarity search,” Proc. ACM Int.

Conf. Multimedia, pp. 123-132, 2013.

[35] E. Zhou, Z. Cao and Q. Yin, “Naive-deep face recognition:

Touching the limit of LFW benchmark or not?” arXiv

preprint arXiv:1501.04690, 2015.

86

