
   

 

 

 

Abstract 

The family of real-time face representations is obtained 

via Convolutional Network with Hashing Forest (CNHF). 

We learn the CNN, then transform CNN to the multiple 

convolution architecture and finally learn the output 

hashing transform via new Boosted Hashing Forest (BHF) 

technique. This BHF generalizes the Boosted SSC 

approach for hashing learning with joint optimization of 

face verification and identification. CNHF is trained on 

CASIA-WebFace dataset and evaluated on LFW dataset. 

We code the output of single CNN with 97% on LFW. For 

Hamming embedding we get CBHF-200 bit (25 byte) code 

with 96.3% and 2000-bit code with 98.14% on LFW. 

CNHF with 2000×7-bit hashing trees achieves 93% rank-

1 on LFW relative to basic CNN 89.9% rank-1. CNHF 

generates templates at the rate of 40+ fps with CPU Core 

i7 and 120+ fps with GPU GeForce GTX 650. 
 

1. Introduction 
 

Various face recognition applications presume different 

priorities of template size, template generation speed, 

template matching speed and recognition rates. So, the 

unified real-time face identification task requires 

constructing the family of face representations, which 

provides the flexible balancing of these main properties. 

We know that the fastest search in a base is provided by 

binary templates with Hamming distance ([1, 7-10, 12, 14, 

18, 20, 21, 30, 34]). On the other hand, the best face 

recognition rates are achieved by deep convolutional 

neural networks (CNN) with non-binary face 

representations ([3, 5, 23-25, 27, 29, 31, 35]). These 

approaches can be fused in the special CNN architecture 

with binary output layer, which we refer as Convolutional 

Network with Hashing Layer (CNHL). The most 

promising CNHL is described in [6], where CNN and 

hashing layer are learned together via back propagation 

technique. But now we need the family of face 

representations, which continuously varies from small 

Hamming codes to coded features with larger size, better 

metrics and higher recognition rates. So, in this paper we 

propose to combine the CNN and additional hashing 

transform based on Hashing Forest (HF). Our HF forms 

the vector of features coded by binary trees. HF with 

different depth of trees and different coding objectives 

allows obtaining the family of face representations based 

on the same CNN. We refer such CNN+HF architecture as 

Convolutional Network with Hashing Forrest (CNHF). In 

case of 1-bit coding trees CNHF degrades to CNHL and 

provides the Hamming embedding. 

The architecture of our CNHF is based on the Max-

Feature-Map (MFM) CNN architecture proposed by Xiang 

Wu [31]. For real-time implementation we accelerate our 

CNN via transforming to the multiple convolution 

architecture. 

We propose the new Boosted Hashing Forest (BHF) 

technique, which generalizes the Boosted Similarity 

Sensitive Coding (Boosted SSC) [20, 21] for 

discriminative data coding by forest hashing with direct 

optimization of objective function and given properties of 

coded feature space. We also introduce and implement the 

new biometric-specific objective function for joint 

optimization of face verification and identification. 

Proposed CNHF face representations are trained on 

CASIA-WebFace dataset and evaluated on LFW dataset. 

Our experiments demonstrate both compact binary face 

representations and increasing of face verification and 

identification rates. In the Hamming embedding task BHF 

essentially outperforms the original Boosted SSC. Our 

CNHF 200 bit (25 byte) hash achieves 96.3% on LFW 

with 70-time gain in a matching speed. CNHF 2000 bit 

hash provides 98.14% on LFW. CNHF with 2000×7-bit 

hashing trees achieves 93% rank-1 on LFW relative to 

basic CNN 89.9% rank-1. 

The remainder of this paper is organized as follows. 

Section 2 briefly describes the related work. Section 3 

describes the architecture and learning of our CNHF with 

multiple convolution layers. Section 4 contains the outline 

of proposed BHF technique and its implementation for 

face hashing. Experimental results are presented in Section 

5. Conclusion and discussion are presented in Section 6. 

 

2. Related work 
 

A lot of face representation techniques were proposed 

([4, 15, 26]), but all state-of-the-art results are obtained 

now via deep CNN. One can learn CNN for multi-class 
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face identification with classes corresponding to persons 

([27, 35]), or learn the similarity metric by training two 

identical CNNs (Siamese Architecture ([5, 29]), or 

combine these approaches ([23, 24]). Best modern results 

on LFW are obtained by ensembles of deep nets learned 

on different parts (patches) of face ([13, 23, 24]). 

Nevertheless, some single nets can be efficient enough 

with essentially lower computational cost [3, 31]. Most 

frequently the CNN-based face representation is formed as 

an output of top hidden layer [5, 23, 27, 29, 31, 35]. 

Sometimes the PCA is applied for size reduction [23, 25]. 

The L2-distance [4, 29] or cosine similarity [23, 27, 31] 

are of use for matching of face representations. 

Binary hashing means the assigning of binary code to 

each input feature vector. The review of classical hashing 

techniques is presented in [9]. The simplest binary hashing 

idea is to use some dimensionality reduction transform and 

then apply some quantization technique. The optimization-

based hashing approach presumes the similarity-driven 

data embedding into the Hamming space. In [7] the 

similarity search is proposed based on linear binary coders 

and vectors of weights obtained by random rotations. The 

Iterative Quantization (ITQ) technique [8] considers the 

hashing problem as a search of rotation, which minimizes 

the quantization error. Kernel-Based Supervised Hashing 

(KSH) [14] utilizes a kernel formulation for the target 

hash functions. The affinity-preserving algorithm [10] 

performs k-means clustering and learns the binary indices 

of the quantized cells. The manifold hashing techniques 

follow the ideas of manifold learning. The Spectral 

Hashing [30] relaxes the hashing problem in the manner of 

Laplacian Eigenmaps [1]. Topology Preserving Hashing 

(TPH) [34] perfroms the Hamming embedding with 

additional preserving the neighbor ranks. Locally Linear 

Hashing (LLH) [12] presumes both preserving distances 

and reconstructing the locally linear structures. The 

Semantic Hashing (SH) [18] solves the hashing problem 

with the use of Restricted Boltzmann Machines (RBM). 

Boosted Similarity Sensitive Coding (Boosted SSC) 

proposed by Shaknarovich, Voila and Darrell [20, 21] 

performs the sequential bit-by-bit growing of the hash 

code with reweighting of samples in the manner of 

AdaBoost and forming the weighted Hamming space. 

The idea of binary face coding based on deep learning 

is well implemented in [6]. The CNN and hashing layer 

are learned together via back propagation technique, and 

32-bit binary face representation is generated with 91% 

verification on LFW. Unfortunately, the direct 

optimization of more complex face coding criterions is not 

available in this one-step CNHL learning framework. In 

particular, it cannot provide the immediate optimization of 

Cumulative Matching Curve (CMC). Due to this we 

implement the two-step CNHF learning procedure: 

learning basic CNN first and hashing transform second. 
 

Fig.1. Architecture of CNHF: CNN + Hashing Transform based 

on Hashing Forest. 

 

 
Fig.2. Architecture of source MFM deep net [24] 

 

Our hashing transform is based on hashing forest. Look 

at some previous forest hashing techniques. Qiu, Sapiro, 

and Bronstein [17] propose the random forest semantic 

hashing scheme with information-theoretic code 

aggregation for large-scale data retrieval. The feature 

induction based on random forest for learning regression 

and multi-label classification is proposed by Vens and 

Costa [28]. Yu and Yuan [33] implement a forest hashing 

with special order-sensitive Hamming distance. The forest 

hashing by Springer et al. [22] combines kd-trees with 

hashing technique. The Boosted Random Forest algorithm 

proposed by Mishina, Tsuchiya and Fujiyoshi [16] is out 

of the binary hashing topic. Our approach performs the 

feature space coding via boosted forest hashing in the 

manner of Boosted SSC with optimizing of task-specific 

objective function. So, we mainly consider our BHF 

technique as a generalization of Boosted SSC. 
 

3. CNHF with multiple convolution CNN 
 

Our CNHF contains the basic deep CNN and additional 

hashing transform based on Hashing Forrest (HF). This 

hashing forest forms the output CNHF binary face 

representation, which semantically corresponds to some 

objective vector of features coded by these binary trees 

(Fig.1). For obtaining the family of optimized face 

representations based on the same CNN we use the two-

step CNHF learning procedure. At the first step the CNN  
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Fig.3. Architecture of CNHF based on MFM net with multiple convolutions. 

 

is formed and trained for multi-class face identification. 

At the second step the hashing transform is trained for 

combined face verification and identification. 

We start from learning the source CNN with softmax 

output layer for face identification. Then we transform its 

convolution layers to the multiple convolution form. 

Finally we cut the output softmax layer and use the 

activations of top hidden layer as a basic face 

representation for further hashing. In this paper we use the 

Max-Feature-Map (MFM) CNN architecture proposed by 

Xiang Wu [31]. It is based on the Max-Feature-Map 

activation function instead of ReLU. [31] demonstrates 

that Max-Feature-Map can get the compact and 

discriminative feature vectors. The source network 

architecture contains 4 convolutional layers, 4 layers of 

pooling + MFM pooling, 1 fully connected layer and the 

sofmax layer (Fig.2). Following the approach of Xiang 

Wu [31] we start from learning this source MFM deep net 

for multi-class face identification with classes 

corresponding to persons in the manner [25, 31] using the 

back-propagation technique. We accelerate our basic CNN 

via transforming to the multiple convolution architecture. 

The each convolutional layer is substituted by the 

superposition of some (2-4) simpler convolutional layers. 

Such structure allows essentially decreasing the number of 

multiplication operations in calculation of network output 

values. 

After these simplifying substitutions, the transformed 

CNN is trained again for multi-class face identification 

with classes corresponding to persons in the manner [25, 

31] using the back-propagation technique. Finally the 

output soft-max layer of transformed MFM net is replaced 

by hashing forest, and we obtain the CNHF based on 

MFM with multiple convolution layers (Fig.3). In result 

our CNHF contains 10 convolutional layers, 4 layers of 

MFM+pooling, fully-connected layer and hashing forest. 

This CNHF generates face templates at the rate of 40+ fps 

with CPU Core i7 and 120+ fps with GPU GeForce GTX 

650. 
 

 

4. Learning face representation via boosted 

hashing forest 
 

4.1. Boosted SSC, Forest Hashing and Boosted 

Hashing Forest 
 

We learn our hashing transform via the new Boosted 

Hashing Forest (BHF) technique, which combines the 

algorithmic structure of Boosted SSC [20, 21] and the 

binary code structure of forest hashing [16, 17, 22, 28, 33]. 

Boosted SSC algorithms optimize the performance of 

L1 distance in the embedding space as a proxy for the 

pairwise similarity function, which is conveyed by a set of 

examples of positive (similar) and negative (dissimilar) 

pairs. The SSC algorithm takes pairs labeled by similarity 

and produces a binary embedding space. The embedding 

is learned by independent collecting thresholded 

projections of the input data. The threshold is selected by 

optimal splitting the projections of negative pairs and non-

splitting the projections of positive pairs. Boosted SSC 

algorithm collects the embedding dimensions greedily 

with adaptive weighting of samples and dimensions in the 

manner of AdaBoost. BoostPro algorithm uses a soft 

thresholding for gradient-based learning of projections. 

The differences of proposed BHF w.r.t. Boosted SSC 

are the following: 

1) BHF performs the binary coding of output feature 

space, which is not binary in general, but can be binary 

Hamming, if required. 

2) BHF performs the direct optimization of any given 

objective function of output features. 

3) BHF learns the objective-driven data projections via 

RANSAC algorithm without gradient-based optimization. 

4) BHF performs the recursive coding by binary trees 

and forms the hashing forest, while Boosted SSC performs 

the iterative feature coding and forms hashing vector. 

5) BHF performs the adaptive reweighting of training 

pairs based on their contribution to the objective function, 

unlike the AdaBoost-style reweighting of Boosted SSC. 

6) Boosted SSC forms the weighted Hamming space. 

Our BHF forms the any given metric space, including non-

weighted Hamming space for fastest data search. 
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The main differences of proposed BHF w.r.t. other 

forest hashing techniques: we obtain the hashing forest via 

RANSAC projections and boosting process in the manner 

of Boosted SSC; we optimize the task-specific objective 

function in the coded feature space, but not the similarity 

in the binary code space. 

BHF implementation for face recognition has some 

additional original features: new biometric-specific 

objective function with joint optimization of face 

verification and identification; selection and processing of 

subvectors of the input feature vector; creation of 

ensemble of independent hash codes for overcoming the 

limitations of greedy learning. In the next subsections we 

describe our BHF algorithms in detail. 
 

4.2. BHF: Objective-driven Recurrent Coding 
 

Let the training set X= {xi∈Rm}i=1,…,N contains N 

objects described by m-dimensional feature vectors. Map 

X to the n-dimensional binary space: X= {xi∈Rm}i=1,…,N 

→ B = {bi∈{0,1}n}i=1,…,N. This mapping is an n-bit coder: 
 

h(x): x∈Rm → b∈{0,1}n      (1) 
 

The elementary coder is called the 1-bit hashing function: 
 

h(x): x∈Rm → b∈{0,1}      (2) 
 

Let some objective function (coding criterion) is given and 

required to be minimized: 
 

J(X,h) → min(h).        (3) 
 

Denote h(k)(x) = (h(1)(x),…,h(k)(x)). The operation of 

coders concatenation is h(k)(x) := (h(k-1)(x), h(k)(x)). The 

Greedy Objective-driven Recurrent Coding (Greedy ORC) 

algorithm (Algorithm 1) sequentially forms the bits of our 

coder in a recurrent manner: h(k)(x) = h(k)(x, h(k-1)). The 

proper procedure for learning the each k-th bit is described 

in the next subsections. 
 

4.3. BHF: Learning elementary projection via 

RANSAC algorithm 
 

At the k-th step of coder growing 
 

J(X,h(k)) = J(X,h(k-1),h(k)) → min{h(k) ∈ H},  (4) 
 

where H is a class of coders. Consider the class of 

elementary coders based on thresholded linear projections 
 

h(w, t, x) = sgn(k=1,…,m wk xk + t),      (5) 

where w – vector of weights, t – threshold of hashing 

function, sgn(u) = {1, if u > 0; 0 - otherwise}. In case of 

(5) function (4) takes the form 

 

Algorithm 1: Greedy ORC 

Input data: X, J, nORC. 

Output data: h(x): x∈Rm → y∈{0,1}nORC, h(x)∈H. 

Initialization: 

Step 0. k:=0; h(k) := ( ). 

Repeat iterations: 

k:= k+1; 

Learn k-th elementary coder: 

h(k)(x, h(k-1)):= Learn1BitHash(J, X, h(k-1)); 

Add k-th elementary coder to the hashing function: 

h(k)(x) := (h(k-1)(x), h(k)(x, h(k-1))); 

while k<nORC. // stop if the given size of coder is got 

 

Algorithm 2: RANSAC Learn1ProjectionHash 

Input data: J, X, h(k-1), kRANSAC. 

Output data: h(w, t, x). 

Initialization: 

Step 0. k:=0; Jmax:=-∞. 

Repeat iterations: 

k:= k+1; 

Step 1. Take the random dissimilar pair (xi ,xj) in X. 

Step 2. Get vector ሺܠଙ,  ଚሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ as a vector of hyperplaneܠ

direction: wk:=xj –  xi. 

Step 3. Calculate the threshold tk minimizing J (6) by t 

with w=wk: tk:=argmint J(X, h(k-1), wk, t). 

Step 4. If J(X, h(k-1), wk, tk) > Jmax, then 

              Jmax:= J(X, h(k-1), wk, tk); w:= wk; t:= tk. 

while k<kRANSAC. // stop if the given number of RANSAC 

iterations is achieved 

 

Algorithm 3: Boosted Hashing Forest 

Input data: X, J, nORC, nBHF. 

Output data: h(x): x∈Rm → y∈{0,1}n. 

Initialization: 

l:=0; h[1,0]:= ( ). 

Repeat iterations: 

l:= l+1; 

Form the objective as a function of l-th coding tree: 

J[l](X, h[l,l]) = J(X, h[1,l-1], h[l,l]); 

Learn l-th coding tree: 

h[l,l] := GreedyORC(J[l], X, nORC); 

Add l-th coding tree to the hashing forest: 

h[1,l](x) := (h[1,l-1](x), h[l,l](x)); 

while l<nORC. // stop if the given size of coder is got 

 

J(X,h(k-1),h(k)) = J(X, h(k-1), w, t) → min{w∈Rm, t∈R}. (6) 

 

We use the RANSAC algorithm for approximate 

solving (6). RANSAC hypotheses about w parameters are 

generated based on the random choice of dissimilar pairs 

in a training set (Algorithm 2). The selection of threshold 

at the step 3 is performed in the manner of Boosted SSC 
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“ThresholdRate” algorithm [20]. For the fixed hypothesis 

w=wk, we arrange the projections t(k)
i = (xi,wk) and test 

them (in a linear time) as possible threshold values via 

calculating the J(X, h(k-1), wk, t(k)
i). 

 

4.4. BHF: Boosted Hashing Forest 
 

Our Learn1BitHash procedure (see Algorithm 1) 

contains the recursive call of Learn1ProjectionHash 

procedure (Algorithm 2). Consider the tessellation of X by 

n-bit coder: XB = {Xb, b∈{0,1}n}, Xb = {x∈X: h(x)=b}, 

X = ∪b∈{0,1}n X b. The process of recursive coding is a 

dichotomy splitting of training set with finding the 

optimized elementary coder for each subset at each level 

of tessellation. So, the recursive coder for k-th bit 
 

h(k)(x, h(k-1)) = h(w(h(k-1)(x)), t(h(k-1)(x)), x), 
 

is a combination of 2(k-1) thresholded projections: 
 

h(k)(x, h(k-1)) = Learn1BitHash(J, X, h(k-1)) = 

{Learn1ProjectionHash(J, X(h(k-1),b), h(k-1)), b∈{0,1}(k-1)}. 
 

Such recursive n-bit coder h(x) is a tree of thresholded 

projections, which has much more recognition power 

relative to the n-bit sequence of thresholded projections. 

We know that one coding tree cannot provide the fine 

recognition rate. Besides, the number of projections in a 

tree grows exponentially with tree depth. So, the training 

set of some fixed size allows learning the trees with some 

limited depth only. Due to this, we form the hashing forest 

via the boosting of hashing trees with optimization of joint 

objective function for all trees. We call such approach as 

Boosted Hashing Forest (BHF) (Algorithm 3). 

Here we use the following notation: nORC = p is a depth 

of coding tree; nBHF = n/p is a number of trees; 

h[1,l] = (h(1)(x),…,h(lp)(x)), h[1,l-1] = (h(1)(x),…,h(lp-p)(x)), 

h[l,l] = (h(lp-p+1)(x),…,h(lp)(x)). 
 

4.5. BHF: Hashing forest as a metric space 
 

We call the metric space (Y, dY) with dY: Y×Y →R+ as n-bit 

binary coded, if the each y∈Y corresponds to unique 

b∈{0,1}n, and two decoding functions are given: feature 

decoder fy(b): {0,1}n → Y and distance decoder fd(b1,b2): 

{0,1}n×{0,1}n → R+, fd(b1,b2) = dY(fy(b1), fy(b2)). This 

allows define the distance-based objective function 

(DBOF) for coder h(x) of the form: 
 

J(X,h) → min(h) ⇔ J(DY) → min(DY),     (7) 

DY ={dij = fd(h(xi), h(xj)), xi,xj∈X, h(x)∈H}i,j=1,…,N. 
 

Such objective function depends on the set of coded 

distances dij only. In our current implementation of BHF 

we match p-bit binary trees via the search index distance. 

It is a geodesic distance between codes as corresponding 

leaves on a coding tree: 
 

dT(y1,y2) = fdT(b1,b2) = 

= 2  k=1,…,p (1 – ∏ l=1,…,k (1 – |b1
(l) – b2

(l)|)). 
 

Finally, we form a matching distance for total n-

dimensional forest containing q = n/p trees as a sum of 

distances between individual p-bit trees: 
 

dij =  l=1,…,q fdT(h[l,l](xi), h[l,l](xj)). 
 

4.6. BHF: Objective function for face verification 

and identification 
 

Let the similarity function s describes positive 

(authentic) and negative (imposter) pairs: 
ݏ  = ቊͳ, if	classሺܠሻ = 	class൫ܠ൯,Ͳ, otherwise.																									 									ሺͺሻ 

 

The “ideal” distance for k-bit binary code, is 
 ݃ሺሻ = ൜ Ͳ, if	ݏ = 	ͳ,	݀௫ሺ݇ሻ, otherwise,																		ሺͻሻ 

 

where dmax(k) is a maximal possible distance. So, the 

distance supervision objective function can be formed as 
 

JDist(DY) = i=1,…,N j=1,…,N vij (dij – gij)2 → 

                 →min(DY = {dij}i,j=1,…,N),      (10) 
 

where vij are the different weights for authentic and 

imposter pairs. This objective function (10) controls the 

verification performance (FAR and FRR). 

In the identification-targeted biometric applications we 

need to control both distances and ordering of distances. 

Let d1
k = maxl{dkl: skl = 1} is a distance to the most far 

authentic and d0
k = minl{dkl: skl = 0} is a distance to the 

closest imposter for the query h(xk). Then the ordering 

error eij for a pair (xi,xj) can be expressed as 
 ݁ = ቐ ͳ,			if	ሺݏ 	 = Ͳ	ܽ݊݀	ℎ < max	ሺ݀ଵ , ݀ଵሻሻ							or	ሺݏ 	 = ͳ	ܽ݊݀	ℎ > min	ሺ݀ , ݀ሻሻͲ,			otherwise ,											ሺͳͳሻ			 

 

The ordering error occurs if imposter is closer than 

authentic or authentic is more far than imposter. So, the 
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        (a)                (b)              (c) 
Fig.4. ROC curves (a), CMC curves (b) and identification performance (rank 1) (c) on LFW relative to the size of biometric template in 

bits for proposed BHF(CNN+BHF) and original Boosted SSC(CNN +BoostSSC) and best basic CNN solution without hashing - CNN + 

Last hidden layer + cosine similarity (CNN+CS) 
 

distance order supervision objective function can be 

formed as 

JOrd(DY) = i=1,…,N j=1,…,N vij (dij – gij)2 eij →    

                    → min(DY = {dij}i,j=1,…,N).    (12) 
 

Here we penalize the difference between dij and objective 

distance gij like in (10), but only in case that the ordering 

error (11) occurs for this pair. So, criterion (12) directly 

controls the face identification characteristics (CMC). 

Finally, for obtaining both verification and 

identification we combine the (10) and (12) resulting in 
 

J(DY) = α JDist(DY) + (1 – α) JOrd(DY) = 

= i=1,…,N j=1,…,N vij (dij – gij)2 (eij + α(1 – eij)) → 

→ min(DY = {dij}i,j=1,…,N),    (13) 
 

where α∈[0,1] is a tuning parameter. 
 

4.5. BHF implementation for learning face 

representation 
 

For enhancement of our face representation learning 

we use some additional semi-heuristic modifications of 

described scheme. The goal distance (9) is modified: 

 ݃ሺሻ = ቊ Ͳ,			if	ݏ = 	ͳ,	݉ሺିଵሻଵ 	+ 	͵ሺିଵሻଵ,			otherwise,					ሺͳͶሻ 

 

where m(k-1)
1 and σ(k-1)

1 are the mean value and standard 

deviation of authentic coded distances. Such goal distance 

(14) excludes the penalizing of imposter pairs, which 

could not be treated as authentic. In (13) we use the 

adaptive weighting of pairs at each k-th step of boosting: 
 

ሺሻݒ = ቊ /ܽሺሻ, if	ݏ = 	ͳ,	ͳ/ܾሺሻ, otherwise,																										ሺͳͷሻ 

a(k) = i=1,…,N j=1,…,N sij (dij – gij)2 (eij + α(1 – eij)), 

b(k) = i=1,…,N j=1,…,N (1 –sij) (dij – gij)2 (eij + α(1 – eij)), 
 

where a(k) and b(k) provide the basic equal weight for all 

authentic and imposter pairs, and tuning parameter γ>1 

gives the slightly larger weights to authentic pairs. 

We split the input m-dimensional feature vector to the 

set of independently coded subvectors with fixed sizes 

from the set m = {mmin,…,mmax}. At the each step of 

boosting we get the subvector with corresponding BHF 

elementary coder providing the best contribution to the 

objective function. The output binary vector of size n 

consists of some independently grown parts of size 

nBHF<n. Such learning strategy prevents the premature 

saturation of objective function. 

So, our binary face hashing is implemented with the 

following set of free parameters: m, nORC, nBHF, kRANSAC, α 

and γ. The type of coded metrics is a free parameter of our 

approach too. 
 

5. Experiments 
 

In this section we describe our methodology for 

learning and testing CNHF, report our results in Hamming 

embedding task, compare proposed BHF to original 

Boosted SSC, explore the CNHF performance w.r.t. depth 

of coding trees and compare CNHL and CNHF to best 

methods on LFW. We test the verification accuracy by the 

standard LFW unrestricted with outside labeled data 

protocol. Our CMC and rank-1 tests follow the 

methodology described in [2]. 
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        (a)                (b)               (c) 

Fig.5. ROC (a) and CMC (b) curves for CNN+CS, CNHF-2000×1 and CNHF-2000×7; ROC curves for CNHF-1000×p-bit trees 

 
Table 1. Verification accuracy on LFW, code size and matching 

speed of CNN and CNHL 

Solution Accuracy 
Template 

 size 

Matches 

 in sec 

CNN+L2 0.947 8192 bit 2713222 

CNN+BHF-200×1 0.963 200 bit 194986071 

CNN+CS 0.975 8192 bit 2787632 

CNN+BHF-2000×1 0.9814 2000 bit 27855153 

 

Table 2. Verification accuracy on LFW. 

Method Accuracy 

WebFace [25] 0.9613 

CNHL-200×1 0.963±0.00494 

DeepFace-ensemble[21] 0.9730±0.0025 

DeepID[19] 0.9745± 0.0026 

MFM Net[24] 0.9777 

CNHL-2000×1 0.9814 

CNHF-2000×7 0.9859 

DeepID2[17] 0.9915 ± 0.0013 

DeepID3[18] 0.9953 ± 0.0010 

Baidu[11] 0.9977 ± 0.0006 

 

5.1 Methodology: learning and testing CNHF 

The basic CNN is trained on CASIA-WebFace dataset. 

Face images are aligned by rotation of eye points to 

horizontal position with fixed eye-to-eye distance and crop 

to 128х128 size. The open source deep learning 

framework Caffe (http://caffe.berkeleyvision.org/) is used 

for training the basic CNN for multi-class face 

identification in the manner [25, 31]. The hashing forest is 

trained on the dataset containing 1000 authentic pairs and 

correspondingly 999000 imposter pairs of Faces in the 

Wild images (not from the testing LFW set). Finally, the 

family of CNHF coders is formed by proposed BHF: 

Hamming embedding coders 2000×1 bit (250 byte), 200×1 

bit (25 byte) and 32×1 bit (4 byte) of size; Hashing forest 

coders containing 2000 trees with 2-7 bits depth (0.5 – 

1.75 Kbyte of size). We used the common setting of BHF 

parameters: m = {8, 16, 32}, kRANSAC = 0, α = 0.25, γ = 1.1. 

But we set nBHF=200 for CNN+BHF-200×1, nBHF=500 for 

CNN+BHF-2000×1 and nBHF=100 for CNHF-2000×7. 

Such parameter values are determined experimentally 

based on the analysis of the speed of identification rate 

growing w.r.t. number of code bits in the hashing process. 

The evaluation is performed on the Labeled Faces in the 

Wild (LFW) dataset. All the images in LFW dataset are 

processed by the same pipeline as in [11] and normalized 

to 128х128. 

 

5.2 Hamming embedding: CNHL vs. CNN, BHF 

vs. Boosted SSC 

 
In this subsection we test our approach in Hamming 

embedding task, so, CNHF degrades to CNHL. We 

compare CNHL to basic CNN on LFW via verification 

accuracy and ROC curve (Table 1 and Fig.4a). The CNN 

face representation is formed like in [34] as a vector of 

activations of 256 top hidden layer neurons. The cosine 

similarity (CNN+CS) and L2-distance (CNN+L2) are 

applied for matching. CNHL coders 2000 and 200 bit of 

size are trained by BHF and matched by Hamming 

distance (CNN+BHF-2000×1 and CNN+BHF-200×1 

correspondingly). Our solution CNN+BHF-2000×1 

achieves verification accuracy 98.14% on LFW, which 

outperforms all other CNN-based solutions. Moreover, our 

25-byte length solution CNN+BHF-200×1 outperforms 

CNN+L2. Table 1 additionally demonstrates the gain in 

template size and matching speed. 

We compare CNHL trained by BHF to CNHL trained 

by original Boosted SSC. Fig.4c demonstrates that 

proposed BHF essentially outperforms Boosted SSC in 

identification  (rank-1)  on  LFW  for all binary  template 
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sizes. The maximal rank-1 is 0.91 for BHF-2000×1 and 

0.865 for BoostSSC-2000×1 (relative to 0,899 for 

CNN+CS). The ROC graph for CNN+BHF is 

monotonously better than for CNN+BoostSSC with same 

template size (Fig.4a). Fig.4b contains the CMC graphs 

(ranks 1-10), which demonstrate that BHF outperforms 

BoostSSC with same template size (additionally note that 

CNN+BHF-2000×1 outperforms CNN+CS). 

 

5.3 CNHF: performance w.r.t. depth of trees 
 

CNHF with 2000 output features formed by 7-bit 

coding trees (CNHF-2000×7) achieves 98.59% on LFW. 

The identification result of CNHF-2000×7 is 93% rank-1 

on LFW relative to 89.9% rank-1 for CNN+CS. Fig.5c 

presents the ROC curves for CNHF with different depth 

coding trees. The forest with 7-bit coding trees is the best 

by ROC, but 6-bit and 5-bit depth solutions are very close. 

We suppose that the reason of this result is a limited 

amount of hashing forest training set. Fig.5a,b 

demonstrates that CNHF-2000×7 outperforms basic 

CNN+CS and CNHF-2000×1 both in verification (ROC) 

and in identification (CMC). So, we can conclude that the 

adding of hashing forest on the top of CNN allows both 

generating the compact binary face representation and 

increasing the face verification and especially 

identification rates. 

5.4 CNHL and CNHF vs. best methods on LFW 

We compare our CNHF solutions to state-of-the-art 

methods (best on LFW) via verification accuracy (Table 

2). CNHF-2000×1 outperforms DeepFace-ensemble [30], 

DeepID [27], WebFace [35] and MFM Net [34]. The 

DeepID2 [25], DeepID3 [26] and Baidu [14] multi-patch 

CNNs outperform our CNHF-2000×1 based on single net. 

 Note that our CNHF-200×1 (25 byte) hash 

demonstrates 96.3% on LFW. Compare this result to 

previous best CNHL result [7]. On the one hand, the 

extreme-short 32-bit binary face representation [7] 

achieves 91% verification on LFW. Our CNHF 32×1 

provides 90% only. On the other hand, face representation 

[6] requires 1000 bit for achieving the 96% verification on 

LFW. So, our CNHF-200×1 solution improves this face 

packing result in 5 times. 

The identification result (rank-1) of our real-time coder 

CNHF-2000×7 is 0.93 on LFW. It is close enough to best 

reported identification result of essentially deeper and 

slower multi-patch DeepID3 CNN [24] (0.96 rank-1 on 

LFW). Baidu [13] declares even better result (0.98 rank-1 

on LFW), but they use the training set 1.2 million images 

of size w.r.t. 400 thousand images in our case. 

 

 

6. Conclusion and Discussion 

 
We develop the family of CNN-based binary face 

representations for real-time face identification. Our 

Convolutional Network with Hashing Forest (CNHF) 

generates binary face templates at the rate of 40+ fps with 

CPU Core i7 and 120+ fps with GPU GeForce GTX 650. 

Our 2000×1-bit face coder provides the compact face 

coding (250 byte) with simultaneous increasing of 

verification (98.14%) and identification (91% rank-1) on 

LFW. Our 200×1-bit face coder provides the 40-time gain 

in template size and 70-time gain in a matching speed with 

1% decreasing of verification accuracy relative to basic 

CNN (96.3% on LFW). Our CNHF with 2000 output 7-bit 

coding trees (CNHF-2000×7) achieves 98.59% 

verification accuracy and 93% rank-1 on LFW (add 3% to 

rank-1 of basic CNN). 

We use the multiple convolution deep network 

architecture for acceleration of source Max-Feature-Map 

(MFM) CNN architecture [31]. We propose and 

implement the new binary hashing technique, which forms 

the output feature space with given metric properties via 

joint optimization of face verification and identification. 

This Boosted Hashing Forest (BHF) technique combines 

the algorithmic structure of Boosted SSC approach and the 

binary code structure of forest hashing. Our experiments 

demonstrate that BHF essentially outperforms the original 

Boosted SSC in face identification test. 

In the future we will try to achieve the better 

recognition rates via CNHF based on multi-patch CNN, 

which we can use for non-real-time applications. We will 

evolve and apply the proposed BHF technique for 

different data coding and dimension reduction problems 

(supervised, semi-supervised and unsupervised). 

Additionally, we will investigate the influence of the 

output metric space properties in the process of hashing 

forest learning. 
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