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Abstract

Dormant pruning is a necessary procedure in the field

of specialty crop production. In order to mitigate the need

of huge labor, automation of this pruning process has be-

come a topic of utmost importance in the field of horticul-

ture. 3D modeling and reconstruction is a major step in

such robotics precision agriculture. In this paper, we in-

troduce a new public dataset which can be used for recon-

structing dormant apple trees. Our dataset comprises of 9

different apple trees in both indoor and outdoor evironment.

The images are collected using a portable Kinect2 sensor.

To the best of our knowledge, this is the first publicly avail-

able dataset for the application like 3D modeling of dor-

mant trees. We hope that the dataset will provide the entire

research community working towards mechanizing dormant

pruning a baseline benchmark for evaluating different 3D

reconstruction and modeling algorithms.

1. Introduction

Dormant pruning is a mandatory procedure in specialty

crop production. This process is necessary for healthy

growth of the trees and quality fruit production. In win-

ter, when the trees have no foliage, trained pruners are em-

ployed to carefully remove certain primary branches (i.e.,

branches that are connected directly to the trunk) of the fruit

trees based on some predefined rules by the horticulture

community. This entire process requires huge manpower,

and thus, turns out to be an extremely expensive as well as

time consuming process.

In the past few decades, researchers have conducted ex-

tensive research on mechanization of fruit tree pruning.

Their main focus has been on accurate representation of ob-

jects and scenes in 3D to support the development of au-

tomatic pruning machines. Thus, 3D reconstruction and

modeling of the trees with accurately measured trunk and

branch diameters has emerged to be an essential stage of

this pruning process. Accurate information about the trunk

and the primary branches of the concerned tree is required

to precisely identify the potential pruning points, the final

goal being supplying all these information to an intelligent

robotic agent for automatic pruning.

Automation in such robotics precision agricultural activ-

ities require detailed and accurate information about differ-

ent kinds of tree structures. An increase in the available

datasets would allow researchers to conduct their experi-

ments in more detailed, holistic and accurate fashion. One

main bottleneck in the research community performing 3D

reconstruction of trees is the lack of available dataset. In this

paper, we introduce a new dataset 1 consisting of images of

several dormant apple trees from different orchards of var-

ied tree structure and varied complexity level. We expect

that this dataset will also serve as a benchmark dataset pro-

viding a platform for an objective performance comparison

of different reconstruction algorithms on real-world data.

The remainder of this paper is organized as follows. An

overview of the current state-of-the-art is presented in Sec-

tion 2. A detailed description of our new dataset and its

acquisition process is given in Section 3. We provide qual-

itative results for some of the trees in the dataset in Section

4. In Section 5, we explain how we have processed the data

for reconstructing its 3D structure. The metrics that can be

used for performance evaluation are described in Section 6.

Experimental results are discussed in Section 7. Finally, in

Section 8 the content of the paper is summarized and poten-

tial future works are highlighted.

2. Related Works

Existing literature on geometric reconstruction and 3D

scene modeling is vast. This section first provides a brief

overview of the state-of-the-art of 3D reconstruction and

modeling techniques in the field of automatic pruning of

trees. We also mention few approaches that use Kinect sen-

sor for this purpose. The section ends with a list of publicly

available datasets in the computer vision community.

1https://engineering.purdue.edu/RVL/

CVPRW Dataset
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Researchers have investigated 3D technologies such as

stereo vision, laser scanners and structured light for 3D

sensing and object reconstruction. However, only limited

studies have been reported which aim at detecting 3D ap-

pearance of trees. Moreover, the literature mostly focused

on reconstructing trees with foliage [29, 19]. In [36], a

shape-from-silhouette is employed for reconstructing the

dormant tree structure. However, the experiments were con-

ducted in a indoor setup; thus, still has open questions about

its performance in actual high density modern orchards.

Wang et al. propose a RGB-D sensor based scheme for 3D

reconstruction of dormant trees for robotic pruning purpose

in [37]. Their reconstruction results look promising in a

laboratory setup; however, the results deteriorate in outdoor

orchard environment in presence of direct sunlight. Some

other methods [4, 17] employ generative branching rules

without taking into account the fact that the trees are pre-

dominantly cylindrical in structure, and using this informa-

tion may lead to simplification of the tree structure. Thus,

these methods may result in inaccurate reconstruction for

complex tree structures in the absence of large number of

hypotheses. Another method [20] focus on reconstructing

complex unfoliaged trees from a sparse set of images by in-

tegrating 2D/3D tree topology as shape priors into the mod-

eling process. The authors of [11] and [5, 8] have aimed

at modeling dormant trees using stacked circles and semi-

circle fitted 3D reconstruction schemes, and have achieved

promising results.

All the images listed in our proposed dataset are acquired

with a Kinect2 sensor. Although other laser scanners like

LIDAR provide images of better quality, they come along

with side-effects of being expensive and heavyweight. We

chose Kinect2 sensor due its low cost and easy portability. It

is observed that Kinect provided us with comparable quality

depth images (at a very high frame rate of 30 fps) as of other

expensive sensors. Several other traditional approaches [24,

31, 21, 22, 15] have used Kinect to capture data because of

these benefits.

In scientific domains like computer vision, robotics, soft-

ware engineering, agriculture and many other, publicly

available datasets play an important role. Open databases

pose challenging questions to a wider community and al-

low direct comparisons of the state-of-the-art. In computer

vision and machine learning communities, there exists a

wide variety of public datasets addressed towards different

kinds of applications. Few such datasets include —- the

RGB-D datasets for evaluation of visual SLAM and odom-

etry systems [35, 34], the KITTI dataset for the purpose

of autonomous driving based on stereo imaging [13], the

VAIS dataset for recognizing maritime images in the vis-

ible and infrared spectra [40], etc. There is a huge collec-

tion of databases and benchmarks for applications related to

stereo vision and optical flow — such as the Malaga urban

Figure 1: Data Collection Procedure: Images are captured

from front side top section, front side bottom section, back

side top section, and back side bottom section while moving

Kinect sensor as illustrated using arrows.

dataset [7], Middlebury datasets [27, 14, 28], the Cityscapes

dataset for semantic understanding of urban scenes through

visul perception [9], benchmarks for evaluating optical flow

algorithms [6], pedestrian detection benchmarks [10] and

many more. There are several other publicly available

databases for purposes like recognition [18, 25], classifica-

tion [39, 26, 12] and image retrieval [23]. Several other

datasets exists in these fields. However, we have noticed

that no open benchmarks are available for applications re-

lated to automatics pruning of dormant trees. The goal of

this paper is to provide a real world field image dataset to

the computer vision, robotics and horticulture communities

who are dealing with 3D reconstruction and modeling of

dormant apple trees for pruning purposes.

3. Dataset and Acquisition

In this section, we describe the information contained in

our apple tree dataset, the format of the dataset, and the data

acquisition procedure along with the hardware and software

details of the sensor.

3.1. Dataset Details

The apple tree dataset contains information about nine

trees. Out of these nine trees, three are present indoor while

six are located in the outdoor environment. The trees belong

to two states of the USA: Indiana and Pennsylvania.

For data acquistion, each tree is divided into two sec-

tions: top and bottom. And for each section, data is col-

lected from both front and back sides of the tree. Conse-

quently, data collection precedure is performed four times

for each side and section of a tree. Figure 1 illustrates the

data acquisition procedure for each section and side of tree.

There are fives types of information that are collected for

building the dataset: the depth images of the tree, the color

images corresponding to the depth images, ground truth im-

ages, diameter values of primary branches, and distances
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between consecutive branches. In Table 1, we summarize

all the information about each individual tree.

The depth images of the tree are stored in a binary file

format. The reason for choosing this format is because stor-

ing binary files is very time-efficient. The binary file con-

tains an array of floating point numbers which correspond

to the depth values. This array of numbers can be reshaped

to form a matrix of size 424 x 512, which is the resolution

of the depth image.

Apart from depth images, their corresponding color im-

ages are also captured and stored in PNG file format. The

resolution of these images is 1920 x 1080.

The branches of the tree are labeled from bottom to top

and ground truth images of the tree are captured from dif-

ferent angles using a regular camera.

Apart from images, ground truth diameter measurements

and distance measurements between consecutive branches

are also noted using caliper. The diameter measurements

are taken at approximately 2.5 inches from the origin of the

branch from the trunk as recommended by horticulturists.

And distance between two consecutive primary branches is

the distance between origin of the first primary branch from

the trunk to the origin of second primary branch from the

trunk. The ground truth images and measurements assist

in the evaluation procedure in which the 3D model is com-

pared with the actual tree.

3.2. Dataset Acquisition

The depth images and their corresponding color images

are captured using Kinect2 sensor in the form of a contin-

uous stream while moving the sensor around the tree. To

capture depth images, the Kinect2 sensor uses the Time-

of-Flight principle in which the phase delay between emit-

ted and reflected IR signals are measured to calculate the

distance from sensor to the target object. The lightweight

Kinect2 sensors are inexpensive and easily available.

Kinect SDK 2.0 [1] is used to develop the data acquisi-

tion software. There are several methods available in the

.NET Framework to store data in a file. Since writing im-

ages to a file at such high frame rate is time consuming,

BufferedStream class of .NET framework is used for stor-

age. As mentioned in [3], this method of storage is more

time efficient than the other methods. All five types of in-

formation mentioned in the previous Section are stored in a

single directory for each individual tree.

4. Qualitative Result

In this section, we provide qualtitative results for five

trees in the dataset. Specifically, we show a labeled ground

truth image, a sample depth image, its corresponding color

image, and 3D point cloud obtained using Meshlab [2] for

each tree in Fig. 2.

Specfically, columns 1, 2, 3, 4, and 5 provide results for

trees having tree IDs Tree1, Tree3, Tree6, Tree7, and Tree9,

respectively.

Note that the red color labels for branch numbers are

shown in the ground truth images (first row of the Fig. 2).

The labels are marked from bottom to top near the origi-

nation of the primary branch at trunk. Also, note that the

depth images and their corresponding color images belong

to the same camera viewpoint.

The 2D depth images are converted to 3D point cloud

format using the intrinsic camera matrix K as follows:

V(u) = D(u)K−1u (1)

Where u represents the pixel coordinate of depth image,

D(u) represents depth value at locate u, and V(u) represent

the 3D coordinates corresponding to the pixel in depth im-

age. The point clouds for five depth images of the trees are

visualized using MeshLab software and a snapshot of the

visualization is shown in the last row of the Fig. 2 for each

tree.

5. Data Processing

This section provides a detailed discussion about how

images of our dataset can be processed for final 3D recon-

struction. In Section 5.1, we discuss how to remove lens

distortion from the captured images. Then, in Section 5.2

we present the preprocessing operations used to denoise the

images, and technique applied for filling in the internal gaps

present in our data is described in Section 5.3. Finally, Sec-

tion 5.4 demonstrates how we perform reconstruction of the

dormant tree structures.

5.1. Sensor Calibration

The first step in our processing framework involves cali-

bration of the Kinect2 depth sensor to remove the lens dis-

tortion from our raw depth images. Our application thus

requires a perfect knowledge of the intrinsic calibration pa-

rameters (focal length, principal point, radial, and tangen-

tial distortion coefficients) of the Kinect depth sensor for

an accurate 3D reconstruction [16]. For this purpose, we

have used a sphere based calibration technique for RGB-D

sensors proposed by Staranowicz et al. in [32, 33]. The

process involves moving a spherical object in front of the

sensor for a few seconds and a robust feature extraction

pipeline is used to automatically detect and track the object

in the images. The calibration algorithm is based on a novel

least squares method that provides initial and robust esti-

mate of the sensor parameters. Popular ellipse and sphere

fitting techniques like Hough transform and RANSAC are

employed to minimize the measurement noise and presence

of outliers.
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Table 1: Information about dataset: The first column specifies the ID of the tree. There are nine trees in the dataset with IDs

Tree1 to Tree9. The state of the USA to which the tree belongs is given in the second column. IN denotes Indiana, while PA

indicates Pennsylvania. In the third and fourth columns, checkmarks are made based on whether the tree is present indoor

or outdoor. The fifth, sixth, seventh, and eighth columns specify the number of depth images and their corresponding color

images in front side top section, back side top section, front side bottom section, and back side bottom sections of the tree,

respectively. Ninth and tenth columns mention the number of branches present in the top and bottom sections of the tree.

Note that there are no entries for Top portion of Tree7 because no branches were found on the top portion of the tree.

Tree ID Tree Location Number of images Number of branches

State Indoor Outdoor Front Top Back Top Front Bottom Back Bottom Top Bottom

Tree1 IN X 80 60 30 75 5 12

Tree2 IN X 100 70 70 80 9 11

Tree3 PA X 80 70 60 65 11 12

Tree4 PA X 77 220 148 250 5 10

Tree5 PA X 175 195 240 195 6 13

Tree6 PA X 130 120 115 110 15 18

Tree7 PA X - - 160 200 - 16

Tree8 PA X 180 175 175 180 7 9

Tree9 IN X 170 150 230 240 3 3

The intrinsic parameter vector k is obtained by calibrat-

ing the sensor. Subsequently, the undistorted depth map can

be obtained as follows:

Xt =

[

2k3xy + k4(r
2 + 2x2)

k3(r
2 + 2y2) + 2k4xy

]

(2)

Xu = (1 + k1r
2 + k2r

4 + k5r
6)X + Xt (3)

Where X = (x, y) is the input depth map, Xt is the tangen-

tially undistorted map, Xu is the radially and tangentially

undistorted map, r2 = x2+ y2, and k = (k1, k2, k3, k4, k5)
is the parameter vector, where k1, k2 and k5 are the radial

distortion parameters; while k3 and k4 are the tangential

distortion parameters.

As of now, we have only used depth images for recon-

struction. Our next plan is to incorporate the color infor-

mation in our framework. To obtain the intrinsic calibration

matrix and distortion parameters of the color sensor, and the

extrinsic parameters i.e. the relative position and orientation

between the color and depth sensors, we would be calibrat-

ing the RGB sensor as well using the method stated above

[32, 33].

5.2. Filtering Noise from Raw Depth Images

A substantial portion of any raw RGB-D frame is occu-

pied by the background. Once sensor calibration is done,

the next step in reconstruction process is to remove most

of the background by taking only the points within a 2D

bounding box where we expect to find the object. Moreover,

the background contains a lot of clutter, specially around

the boundary pixels of the trees, which needs to be removed

before further processing. In our approach, we segment the

background from the foreground object by setting a value

of 0 to the pixel values of the depth image which are greater

than a certain threshold. We call this threshold the Depth

Threshold, and represent it by the symbol τ . We use τ

to define the maximum depth beyond which all the depth

values in the depth image are set to zero. The value of τ

should be altered depending upon the position of the object

from the sensor. In our experiments, we set the value of τ

between 1m and 2m for different trees.

5.3. Filling up the Gaps in the Depth Images

Another challenge in accurate 3D reconstruction of the

dormant apple trees is the missing data i.e. the presence of

gaps and holes in the depth images. As a solution to this

problem, we apply grayscale morphological operations to

fill up the internal gaps present in the images. We perform a

closing operation, where the depth image A is first dilated,

and then eroded with an all-one 3 × 3 structuring element

B as follows:

A •B = (A⊕B)⊖B (4)

Where ⊕ and ⊖ denote the morphological operations, dila-

tion and erosion, respectively. These operations also help

in elimination of the bays along the boundaries and getting

smoother edges.

5.4. Application of Dataset for 3D Reconstruction

The purpose of this section is to demonstrate the usabil-

ity of the proposed dataset and provide baseline results by

applying it to one of the most challenging computer vi-

sion problems i.e. 3D reconstruction. In particular, we ex-

plain one of the previously proposed 3D reconstruction ap-
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Figure 2: Qualitative results for five trees. The first row shows the labeled ground truth images of the five trees. The second

and third rows show the depth images and their corresponding color images of the trees. The final row shows the point clouds

obtained from the depth images of the trees.

proaches [8] which can be applied on our dataset. However,

the users can also employ their own pipeline on the images

of our dataset for modeling.

The method begins by filtering the depth images as ex-

plained in Sections 5.1, 5.2, and 5.3. Once we have a fil-

tered clean depth image, we extract the tree skeleton from

the depth image, as proposed by Yohai et al. in [30]. The

centers and radii of the semicircles are estimated using the

skeleton nodes and their interconnections. Then, depth im-

ages are converted to point clouds which are aligned to pro-

vide transformation matrices. ICP algorithm [38] is used for

the purpose of aligning pairs of 3D point clouds. The trans-

formation is applied on the 3D semicircle fit models to form

the final 3D reconstruction. Please refer to [8] for details.

We will use Incremental Approach algorithm mentioned in

their paper.

6. Benchmark Evaluation Methodology

A critical point with any dataset is how to measure the

performance of the algorithms. To provide a common base-

line for comparing different dormant tree reconstruction al-

gorithms, in this section we have provided few methodolo-

gies that can be used for the purpose of performance eval-

uation. To quantitatively measure the performance of the

proposed approach in [8, 5], three different metrics, namely,

Branch Identification Accuracy, Estimation Error and Con-

fidence Value are used.

• Branch Identification Accuracy (BIA) : BIA basi-

cally gives the accuracy of modeling primary branches.

It is computed as the percentage of the detected

branches verified to be true over the actual number of

ground truth branches of the tree. For example, a 100%

BIA means if there exists 10 branches in the actual

tree, our proposed method could reconstruct all 10 of

those branches; whereas, 50% BIA indicates that our

algorithms could reconstruct only 5 out of 10 branches.
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• Estimation Error : This is calculated based on the

absolute difference between the ground truth diameter

(measured using caliper) and the estimated diameter

(obtained using the reconstruction approach). Lesser

estimation error indicates a better reconstruction re-

sult.

• Confidence Value : This indicates the percentage

of the primary branches whose Estimation Error are

within a certain threshold value ǫ and is given as fol-

lows:

Confidence Value =
P

Q
∗ 100 (5)

Where P is the number of branches with Estimation

Error less than ǫ and Q is the total number of recon-

structed branches.

These three metrics together can provide us with a thor-

ough quantitative understanding of different reconstruction

algorithms. However, we believe that some metric indicat-

ing the presence of false positives and false negatives in our

system would make the evaluation process even more ro-

bust. In the future, we plan to design a metric which would

take care of the false alarms.

7. Experimental Results and Analysis

As stated previously, goal of this paper is to provide a

set of baseline results to define the state of the art on the

database and allow researchers to get a sense of what is

good performance on the data.

3D reconstruction and modeling is an important step to-

wards robotic pruning. Once we have the accurate informa-

tion about the trunk and primary branches of a tree, further

developments can be made towards automation of dormant

pruning.

In this section, we provide initial results of 3D recon-

struction of apple trees on our new dataset using the novel

method explained in Section 5.4. We have tested and ana-

lyzed the method qualitatively and quantitatively on all the

trees present in our dataset. Few of those results are illus-

trated in this paper. From Fig. 3, it can be observed that

the reconstructed trees look very similar to the ground truth

data.

To quantitatively analyze the performance of these algo-

rithms on our dataset, we have used the evaluation method-

ologies described in Section 6. Some performance evalu-

ation statistics are displayed in Table 2 and Fig. 4 to de-

pict the usage of our dataset. Table 2 summarizes the per-

formance of the stated algorithm for 3 test trees. Figure 4

provides a comparison between the ground truth diameters

and estimated diameters of the primary branches of these

3 trees in the dataset. It can be seen that the diameters es-

timated using our methods are very close to the actual di-

ameter values; thus, the corresponding estimation errors are

(a) Tree1 (b) 3D reconstruction

Figure 3: The groundtruth image of the tree ‘Tree1’ is

shown in (a) and its 3D reconstruction using Incremental

Mean algorithm mentioned in [8] is displayed in (b).

very small. Specifically, the mean estimation errors are 3.6

mm, 2.7 mm, and 3.3 mm for Tree1, Tree3, and Tree6, re-

spectively.

8. Conclusion and Future Work

This paper introduces a new database comprising of im-

ages of dormant apple trees. The images were collected

using a lightweight, portable Kinect2 sensor. Our dataset

contains five different information for 9 different dormant

apple trees which can be used for the reconstruction pur-

pose —- labeled groundtruth images, color as well as depth

images, groundtruth diameter measurements of the primary

branches, and the relative distance between a consecutive

pair of primary branches. The database can be useful for

different research communities that deal with 3D recon-

struction and modeling of dormant trees for automatic prun-

ing purpose, and can also serve as a common baseline for

evaluation of different algorithms designed for such appli-

cations. To the best of our knowledge, this is the first open

dataset available for automatic pruning purpose. In the fu-

ture, we plan to include more trees in this database.

Acknowledgment

This research is funded by the United State Department

of Agriculture. We would like to thank Prof. Peter Hirst’s

group at Purdue University, Prof. James Schupp’s group at

Pennsylvania State University, and the Bear Mountain Or-

chards at Aspers, PA, for their help in the tree scanning pro-

cess.

References

[1] Developing with Kinect for Windows. https://

dev.windows.com/en-us/kinect/develop. [On-

line; accessed 17-Feb-2016].

86



(Tree ID, NI) Confidence Values (%) Mean Estimation

Error (mm)

BIA (%)

ǫ = 3

mm

ǫ = 5

mm

ǫ = 7

mm

(Tree1, 30) 55.5 77.8 77.8 3.6 100.0

(Tree3, 60) 54.5 72.3 81.82 2.7 81.82

(Tree6, 115) 38.9 66.6 66.6 3.3 72.20

Table 2: The first column represents the tree ID with number of depth images (NI) used to form reconstruction using Incre-

mental Mean approach. The next three columns indicate the confidence values in estimating the diameters of each tree with

a tolerance less than ǫ = 3, 5, and 7mm, respectively. Note that the reconstructions are obtained using depth images of front

side bottom section of the tree. Mean Estimation Error and BIA for each tree are given in the last two columns of the table,

respectively.

Tree1 Tree3 Tree6

Figure 4: The groundtruth diameters (shown in blue color) and the estimated diameters (shown in yellow color) of the primary

branches of the Tree1, Tree3, and Tree6, using Incremental Mean approach are shown. Note that we have not shown the bars

for branches that are not reconstructed by the algorithm. For example, branches 3 and 4 are not reconstructed in Tree3.

[2] MeshLab. http://meshlab.sourceforge.net/.

[Online; accessed 17-Feb-2016].

[3] C# .Net: Fastest Way to Read Text Files. http:

//cc.davelozinski.com/c-sharp/fastest-

way-to-read-text-files, 2013. [Online; accessed

17-Feb-2016].

[4] B. Adhikari and M. Karee. 3d reconstruction of appletrees

for mechanical pruning. 2012.

[5] S. Akbar, N. Elfiky, and A. Kak. A novel framework for

modeling dormant apple trees using single depth image for

robotic pruning application. In Proceedings of the IEEE In-

ternational Conference on Robotics and Automation (ICRA),

2016.

[6] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and

R. Szeliski. A database and evaluation methodology for opti-

cal flow. International Journal of Computer Vision, 92(1):1–

31, 2011.

[7] J.-L. Blanco-Claraco, F.-Á. Moreno-Dueñas, and
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N. Nešić, X. Wang, and P. Westling. High-resolution stereo

datasets with subpixel-accurate ground truth. In Pattern

Recognition, pages 31–42. Springer, 2014.

[28] D. Scharstein and C. Pal. Learning conditional random

fields for stereo. In Computer Vision and Pattern Recogni-

tion, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE,

2007.

[29] I. Shlyakhter, M. Rozenoer, J. Dorsey, and S. Teller. Re-

constructing 3d tree models from instrumented photographs.

IEEE Computer Graphics and Applications, (3):53–61,

2001.

[30] Y. B. Sinai. Skeletonization using voronoi.

http://www.mathworks.com/matlabcentral/

fileexchange/27543-skeletonization-

using-voronoi, 2010 (accessed October, 2015).

[31] J. Smisek, M. Jancosek, and T. Pajdla. 3d with kinect. In

Consumer Depth Cameras for Computer Vision, pages 3–25.

Springer, 2013.

[32] A. Staranowicz, G. R. Brown, F. Morbidi, and G. L. Mariot-

tini. Easy-to-use and accurate calibration of rgb-d cameras

from spheres. In Image and Video Technology, pages 265–

278. Springer, 2014.

[33] A. N. Staranowicz, G. R. Brown, F. Morbidi, and G.-L. Mar-

iottini. Practical and accurate calibration of rgb-d cameras

using spheres. Computer Vision and Image Understanding,

137:102–114, 2015.

[34] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-

mers. A benchmark for the evaluation of rgb-d slam systems.

In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ In-

ternational Conference on, pages 573–580. IEEE, 2012.

[35] J. Sturm, S. Magnenat, N. Engelhard, F. Pomerleau, F. Co-

las, D. Cremers, R. Siegwart, and W. Burgard. Towards a

benchmark for rgb-d slam evaluation. In RGB-D Workshop

on Advanced Reasoning with Depth Cameras at Robotics:

Science and Systems Conf.(RSS), 2011.

[36] A. Tabb. Three-dimensional reconstruction of fruit trees by

a shape from silhouette method. In 2009 Reno, Nevada, June

21-June 24, 2009, page 1. American Society of Agricultural

and Biological Engineers, 2009.

[37] Q. Wang and Q. Zhang. Three-dimensional reconstruction

of a dormant tree using rgb-d cameras. In 2013 Kansas City,

Missouri, July 21-July 24, 2013, page 1. American Society

of Agricultural and Biological Engineers, 2013.

[38] J. Wilm. Iterative closest point. http:

//www.mathworks.com/matlabcentral/

fileexchange/27804-iterative-closest-

point, 2013 (accessed October, 2015).

[39] L. Yang, P. Luo, C. Change Loy, and X. Tang. A large-scale

car dataset for fine-grained categorization and verification.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3973–3981, 2015.

[40] M. Zhang, J. Choi, K. Daniilidis, M. Wolf, and C. Kanan.

Vais: A dataset for recognizing maritime imagery in the visi-

ble and infrared spectrums. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 10–16, 2015.

88


