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Abstract

Remote physiological measurement has widespread im-

plications in healthcare and affective computing. This pa-

per presents an efficient system for remotely measuring

heart rate and heart rate variability using multiple low-cost

digital cameras in real-time. We combine an RGB camera,

monochrome camera with color filter and a thermal camera

to recover the blood volume pulse (BVP). We show that us-

ing multiple cameras in synchrony yields the most accurate

recovery of the BVP signal. The RGB combination is not

optimal. We show that the thermal camera improves per-

formance of measurement under dynamic ambient lighting

but the thermal camera alone is not enough and accuracy

can be improved by adding more spectral channels. We

present a real-time prototype that allows accurate physio-

logical measurement combined with a novel user interface

to visualize changes in heart rate and heart rate variabil-

ity. Finally, we propose how this system might be used for

applications such as patient monitoring.

1. Introduction

Non-contact measurement of physiological parameters

(such as heart rate and heart rate variability) has much po-

tential for healthcare (e.g telemedicine) and affective com-

puting applications. The inter-beat intervals (IBI) of the

heart are influenced by both the sympathetic and parasym-

pathetic branches of the autonomic nervous system (ANS)

activity. Heart rate variability (HRV) is typically calculated

by performing time domain and/or frequency domain analy-

sis of the IBIs [1]. The HRV low frequency (LF) component

is modulated by baroreflex activity and contains both sym-

pathetic and parasympathetic activity. The high frequency

(HF) component reflects parasympathetic influence on the

heart, it is connected to respiratory sinus arrhythmia (RSA).

HRV can used as a measure of stress (caused by physical

activity, cognitive activity and/or emotions). Traditionally

physiological measurement has been performed using ded-

icated contact sensors and sticky electrodes. These sensors

can be expensive and uncomfortable to wear.

Photoplethysmography (PPG) is the process of measur-

ing blood flow from light transmitted through, or reflected

from, the skin [2]. PPG allows for unobtrusive recovery of

the cardiac signals via the blood volume pulse (BVP). Typ-

ically BVP is measured using a custom sensor in contact

with the skin and a dedicated light-source (such as a light

emitting diode (LED)). Recently, it has been shown that re-

mote physiological measurement can be performed using

ambient light and digital cameras [23]. Heart rate, breath-

ing rate and heart rate variability can all be measured using

this approach [17, 18]. Preliminary results on the measure-

ment of blood oxygenation have also been shown [20]. In

previous work the green color channel from the camera was

found to have the strongest signal from the three RGB color

channels. However, the RGB channel combination is not

optimal for this problem and such techniques can fail un-

der illumination variation. McDuff et al. [14] showed that

other color bands (cyan and orange) yielded more accurate

results. In this work we use a flexible camera array and

capture multiple spectra by combing color filters on com-

mercially available monochrome cameras.

Most remote PPG measurement methods involve cap-

turing the color changes across a region of skin (typically

on the face) by spatially averaging pixel values, forming

temporal color channel signals and applying a combination

of source separation and filtering steps to recover the BVP.

There still remain a number of open questions with respect

to optimizing this approach [13]. The impact of motion of

the subject and changes in illumination are two important

factors that would influence a practical system. Estepp et
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Figure 1. We present a novel system for real-time physiological measurement and visualization. 1) A synchronized multi-camera apparatus

including an RGB camera, a monochrome camera with color filter and a thermal camera. 2) Real-time recovery of blood volume pulse,

heart rate and heart rate variability. 3) A novel user interface for visualizing heart rate and heart rate variability.

al. [8] use a multi-imager array for remote pulse rate mea-

surement and show that the increased number of observa-

tions can improve the accuracy in the presence of head mo-

tions. A hybrid approach using a visual spectrum and ther-

mal camera for measuring physiological parameters from

the hand was presented by Blanik et al. [4]. However, this

was not a low-cost solution due to the thermal camera used.

Cardiovascular parameters (particularly HRV) can be

useful in predicting cognitive load [15, 16]. Bousefsaf et

al. [5] showed that remotely measured physiological param-

eters can be used to capture changes in workload when par-

ticipants completed a Stroop task. However, in neither case

was this performed in real-time or with information from

more than one camera. The experiments until now have

relied mostly on visible spectrum light and off-line process-

ing. We show that a multi-spectral and thermal approach

can improve measurements, especially in the presence of il-

lumination changes. Furthermore, we present a real-time

implementation and novel visualization of the data. Fig-

ure 1 shows a high-level overview of our approach. Table 1

presents a comparison of our work against others.

1.1. Contributions

To our knowledge this is the first work to propose a

real-time system using a thermal camera with multi-spectral

imaging to deduce heart rate under illumination variation.

The main contributions of this paper are to present:

1. A novel multi-camera setup to capture physiological

measurements using multi-spectral techniques.

2. A low-cost real-time system that can accurately cap-

ture heart rate and HRV measurements.

3. A demonstration of how to combine a thermal cam-

era with multi-spectral camera(s) to further improve

Multi- Multi- Illum. Real-

Paper Cam Spectral Invari. Time

Poh et al. [17, 18] ✗ ✗ ✗ ✗

Estepp et al. [8] ✓ ✗ ✗ ✗

Blanik et al. [4] ✓ ✗ ✗ ✗

McDuff et al. [14] ✗ ✓ ✗ ✗

Our Paper ✓ ✓ ✓ ✓

Table 1. Our paper proposes a multi-camera, multi-spectral, real-

time system for measuring and visualizing physiological responses

robustly under illumination variation.

performance and potentially present a more robust ap-

proach under dynamic ambient light.

4. A technique for visualizing changes in stress (linked

to autonomic nervous system activation) and heart rate

in real-time. A user interface to show vital signs of

multiple patients in a hospital using the data captured

from the cameras.

2. Related Works

The remote measurement of physiological parameters

has been demonstrated using laser Doppler [22], microwave

Doppler [7] and thermal cameras [9]. Recently, it has been

shown that the blood volume pulse can be recovered using

visible light and a digital camera [23]. Furthermore, this can

be performed using a low-cost webcam [17]. Accurate mea-

surement of heart rate, respiration rate and heart rate vari-

ability parameters is possible for stationary individuals un-

der stable ambient lighting [18]. The sensitivity of the cam-

era sensor was not explored. In subsequent work the red,

green and blue (RGB) color bands were found to not be the

optimal combination. McDuff et al. [14] tested five color

bands, RGB, cyan and orange. The combination of cyan,
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green and orange was found to outperform RGB. The color

sensitivity of the sensor was not further optimized. Mo-

tion and dynamic illumination can impact the performance

of remote physiological measurement using ambient light

and a digital camera. A number of approaches have been

presented to help mediate the performance impact. Sun et

al. [19] presented a method for motion-compensation ac-

counting for planar motion.

Tarassenko et al. [20] presented initial results of oxygen

saturation measurements from a digital camera in a clinical

study. Population-based calibration was required to fix two

parameters. Balakrishnan et al. [3] showed that the human

pulse could be captured from subtle head motions. How-

ever, this approach is very sensitive to gross head motions.

Wu et al. presented a novel method to amplify the PPG sig-

nal in videos using Eulerian magnification [24]. However,

this approach does not provide a way of finding the pulse

frequency automatically.

3. Approach

Figure 2 provides an overview of our approach. Our

setup takes synchronized video of a person’s face through

a combination of: a color (RGB) camera, a monochrome

camera and a thermal sensor array. We apply a filter at

the aperture of the monochrome camera to capture images

from another color channel. In this analysis we used a ma-

genta filter. However, the filter could be optimized for the

specific application considered. The video is processed in

an uncompressed raw format to prevent signal loss due to

video compression (the BVP measurement involves pick-

ing up sub-pixel level variations in color channel signals).

We first localize the face and facial features, using the facial

segmentation described below, and define a region of inter-

est (ROI) on the face. We aggregate the camera channel

values for each frame and represent each as a time vary-

ing series xn(t), where n represents the channel. The ROI

ignores pixels around the eyes and mouth to prevent noise

from blinking and speaking. We capture the raw readout

from the 8x8 thermal sensor array connected to computer in

parallel with the RGB camera using a separate thread.

For comparison with the current gold-standard in BVP

measurement we simultaneously capture a raw PPG signal

from a contact finger PPG sensor on the index finger of the

participant.

3.1. Facial Segmentation

We use conditional regression forests (CRF) [6] to per-

form facial landmark detection in real-time. The lip cor-

ners, lip top and bottom, and outer eye corners are used to

isolate the region of interest (ROI). Real-time tracking of

facial features allows us to accommodate subject head mo-

tions and mitigate small changes in face orientation. We

select the ROI from the cheeks and forehead as these re-

W

D1

D2

D3

Figure 3. Left) Facial landmark points identified on the face.

Right) The facial region of interest (ROI) used for calculating the

BVP signal. W, D1, D2, and D3 are defined in Section 3.1.

gions of the face have been shown to contain the strongest

PPG signal [12]. As shown in Figure 3, we set the width

of the ROI (W) equal to the distance between outer eye cor-

ners. We set the height of the forehead ROI to be one third

of the distance between eye corners (W/3). We leave mar-

gins (W/4) above and below the eye corners for both the

forehead and nose ROIs. The nose ROI height (D1) is se-

lected from the nose tip to the lip top. The cheek ROIs

extend from extreme eye corners to lip corners (D3). The

height of the cheek (D1 + D2) ROI is measured from the

nose tip to the bottom lip. We extend the ROI selection to

multiple cameras by applying the same facial segmentation

algorithms described above. To optimize for camera arrays

with cameras placed at small offset x, we calculate the off-

set x in the image features from the landmark points and

apply that to offset the bounding boxes. See Section 4 for

detailed discussion on how the cameras were synchronized

to acquire frames. These dimensions were not optimized

but were found to yield good results.

3.2. Signal Acquisition

Once we have acquired the ROI for each camera we cal-

culate the spatial average of the pixel values within the ROI

for each camera channel (RGBMT). The signal acquired for

each spectral range can be represented as a time varying sig-

nal xn(t) where n is number of spectral groups and t is the

timestamp of each individual frame. The signal acquired

can have sudden jumps due to variation in illumination con-

ditions, which can be removed by taking a derivative and

thresholding the values above 99% of one standard devi-

ation and reintegrating. This removes any high frequency

noise (for example, due to someone switching on a light

in the room). We remove very low frequency trends in the

signal by applying a detrending approach discussed in [21].

We can model the blood volume pulse signal being con-

veyed in the observed spectral channels as a blind source

separation (BSS) problem. The BSS problem is modeled as

a linear system as given below:

48



0 20 40 60 80 100
90

100

110

0 20 40 60 80 100
55

60

65

0 20 40 60 80 100
20

30

40

0 20 40 60 80 100
70

80

90

0 20 40 60 80 100
−10

0

10
Source Signals

0 20 40 60 80 100
−5

0

5

0 20 40 60 80 100
−20

0

20

0 20 40 60 80 100
−5

0

5

Time (s)

0 20 40 60 80 100
−5

0

5

Time (s)

A
m

p
lit

u
d
e

Blood Volume Pulse with Peaks Detected

0 0.1 0.2 0.3 0.4
0

0.01

Frequency(Hz)

A
m

p
lit

u
d
e

Heart Rate Variability Power Spectrum

Source Separation using ICACamera Signals Over Time WindowFace Segmentation

in Camera Images

Heart Rate and HRV Parameter

Calculation

Synchronized

Cameras

Observation Signals

Time (s)

.

.

.

.

.

.

RGB Camera

Monchrome Camera w/ Filter

Thermal Camera

Figure 2. Overview of the remote physiological parameter estimation. 1) Multiple synchronized cameras are used to capture simultaneous

video streams. 2) The face region of interest (ROI) within the video streams is detected and a spatial average of the pixels taken for each

channel (red, green, blue, magenta, thermal). 3) Spatial time series signals are collected over a window. 4) ICA is used to recover the

underlying source signals and the selected source bandpass filtered. 5) Peak detection is performed on the selected BVP. Heart rate and

heart rate variability parameters are calculated. Calculations are performed with a moving window to continuously update estimations.
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Figure 4. The multi-camera set-up used in our experiments. We

combine an RGB camera, a monochrome camera with color filter

and a thermal camera. The combination of multiple observations

yields the best results, especially under dynamic illumination.

x(t) = As(t) (1)

Here A is an unknown mixing matrix, x(t) is the ob-

served spectral channel and s(t) are the sources responsible

for observations. One of the sources originates from light

reflected back to camera after subsurface scattering. Oxy-

genated blood has a different light absorption coefficient

at different frequencies compared to de-oxygenated blood

which leads to periodic variation in intensity of scattered

light. Transmitted light (I) is linked to the concentration

of oxygen in the blood (Σ) and the light path length (l) as

given by the Beer-Lambert law:

T =
I

Io
= e−Σl (2)

There are many ways to solve s(t) but they all rely

on making assumptions about sources and estimating the

demixing matrix W ≈ A−1. In ICA we assume that all

sources are independent and compute the demixing matrix

which maximizes the non-gaussianity of sources. We use

the Fast ICA algorithm [10] to run blind source separation.

We choose to use Fast ICA, rather than the JADE based im-

plementation, because it provides similar quality results at

much faster speeds. While conventional algorithms rely on

kurtosis or 4th order moment (E{s(t)4}−3∗ (E{s(t)2})2)

as a measure of non-gaussianity, Fast ICA uses negentropy

and maximizes that for the sources using the following fixed

point algorithm (simplified for a one source case):

Algorithm 1 Generating the demixing vector w.

f(z)← tanh(z)

g(z)← ue−u2/2

w ← random(t)
while !converged do

w
+ ← E(xf(wT

x))− E(g(wT
x))w

w ← (w+)/(‖w+‖)
end while

We apply a bandpass filter with low and high frequency

cut-offs at 0.8 and 2.2 Hz respectively to remove noise.

The source signal with the greatest frequency power com-

ponent between 0.8 and 2.2 Hz is selected as the BVP sig-

nal. The cut-off frequencies are chosen as reasonable upper

and lower bounds for human heart rates. In our real-time

demo we ran ICA over 2 minute windows (approximately

2500 frames) of xn(t). Since FastICA computation time

can vary we run it in a separate thread every 5 seconds (110
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(a) Camera Measurement (b) Contact Measurement

Figure 5. Calculation of the HRV spectrum from the BVP signal.

Left) Camera measurements. Right) Contact measurements. Top)

BVP signal recovered from cameras. Middle) Inter-beat intervals

(IBIs) calculated from the BVP signal. Bottom) Heart rate vari-

ability spectrum calculated from the IBIs. Our HRV measure that

is visualized is the ratio of the normalized low (0.04-0.15Hz) and

high (0.15-0.4Hz) frequency powers.

frames) and display the PPG waveform of the person offset

by 5 seconds.

3.3. Signal Analysis

Sources computed using ICA suffer from two inherent

ambiguities: (1) Permutation ambiguity and (2) Scale and

magnitude ambiguity as explained by following equations:

x = As = AP−1Ps = A′s′ (3)

x = As =

n∑

j=1

ajsj =

n∑

j=1

(aj/αj)(αjsj) = A′s′ (4)

We use the technique adopted by Poh et al. [17]

and select the source by normalizing the FFT of each

source and selecting the source with highest peak

(argmax{max(FFT{sn(t)})}). To rectify any flipped

signals (caused by scaling with a negative number) we use

the mean absolute values of peak and trough amplitudes dis-

cussed in [14]. Distance between individual peaks gives us

the separation interval between heart beats and gives us the

current heart rate. Figure 5 shows a plot of inter-beat in-

tervals (IBIs) with respect to time and the corresponding

frequency domain analysis which is a standard measure of

Heart Rate Variability (HRV). Our HRV measure that is vi-

sualized (as described below) is the ratio of the normalized

low (0.04-0.15Hz) and high (0.15-0.4Hz) frequency powers

of the HRV spectrum.

Figure 6. Visualizing the stress level of a subject. Our visualization

makes the face color more red with greater HRV low frequency

(LF) versus high frequency (HF) power. The HRV LF/HF ratios

from right to left are 0.31, 0.62 and 0.48 respectively.

Figure 7. Our system gives accurate readouts of heart rate and

HRV LF/HF ratio in real-time. Graphical User Interface (GUI)

showing simultaneous measurements for multiple people.

3.4. Visualization

Detected HR and HRV can be visualized in multiple

ways. For visualizing HRV we change the face color of

the subject in real-time. As the low frequency component

of their HRV increases in dominance we make the face ap-

pear more red (Figure 6). In a separate mode heart rate is

visualized by changing the face color at the same frequency

as the HR. Please refer to video provided as supplementary

material for examples of the visualizations. The visualiza-

tion can be further extended to a multi-subject setup and

can be used to monitor multiple people at the same time us-

ing multi-camera arrays (Figure 7) (also see supplementary

video). The visualization algorithm uses the facial bound-

ing boxes obtained from the previous steps and applies sim-

ple pixel by pixel segmentation in YCbCr space over the

ROI to get an accurate mask overlaying face.
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4. Experiments

Our setup uses a combination of RGB, monochrome and

thermal cameras. For the visual spectrum images we used

off the shelf cameras: a SONY ICX445 1/3” Global Shut-

ter CCD capable of capturing 1288 x 964 RGB images at

30FPS and a Fujinon YV28x28SA-2 HD Vari-Focal Lens

designed for 1/3” sensors. Figure 4 shows the layout of

cameras and placement of masks. The cameras are ca-

pable of acquiring synchronized video by using external

trigger on GPIO pins or internal synchronization over i394

FireWire. For thermal images we use GridEYE sensor con-

nected via I2C to PIC24F04KA200 micro-controller. The

64 2 byte values read from PIC24 are conveyed through

FTDI to linux USB. The baseline PPG signal is acquired

using an Arduino Pulse Sensor connected to computer

through serial over USB. While multi-spectral data acqui-

sition can require very specialized and expensive hardware,

we demonstrate how to build this setup with total budget of

a few hundred US dollars which can be further reduced to

less than $100 by using cheaper imaging hardware.

4.1. Camera Synchronization

For the initial setup, due to bandwidth constraints in our

USB 2.0 connection, the cameras were synchronously ac-

quired over the network. We used a TCP handshake to syn-

chronize client-server processes on the machines. We no-

ticed that there could be up to 20 ms of drift for every 30

frames if the acquisition was synchronized every second.

Linux kernel modification (reconfiguration of USBFS) al-

lowed us to capture two cameras together on the same ma-

chine over USB 3.0. We were able to synchronize the cam-

eras using GPIO triggering but experiments showed that re-

sults were fairly accurate without the low level synchroniza-

tion. GPIO synchronization over the network allows an easy

approach for high resolution, high FPS camera arrays and a

modest method to circumvent system bus bandwidth issues

(since even with 2 cameras raw data readout can be of order

of 600Mbps).

4.2. Data acquisition

We acquired raw intensity values using the camera SDK

and OpenCV. We set the focus and f-stop of the manual lens

to get maximum light and good signal. Most modern cam-

eras come with on-board white balance, gain and auto expo-

sure. We also programmed the camera to turn off the auto

exposure and white balance algorithms to provide us with

the most accurate raw data.

The gold-standard data was acquired by using an FDA

approved pulse-oximeter (Drive Medical Design and Man-

ufacturing) and an Arduino Pulse Sensor (for continuous

PPG measurement). Subjects were tested at rest and under

stress to test accuracy over a range of heart rates. Subjects
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Figure 8. (a) Scatter plot and (b) Bland-Altman plot of the contact

and camera measurements for 20 second windows using our multi-

camera set-up.

were first recorded for two minutes to give resting heart rate

measurements and were later given a mental arithmetic task

to induce stress and recorded for a further two minutes. For

the validation of our approach we collected data from nine

subjects between the ages of 25-40 years. We also made

sure to collect data for a wide variation in baseline heart

rates and ethnicities (including Caucasian, Asian and South

East Asian).

5. Results and Discussion

We collected data from the contact PPG sensor in paral-

lel with the thermal sensor, RGB camera and monochrome

camera. Two minutes of data were collected for each sub-

ject twice and subjects were asked to engage in a men-

tal arithmetic task to induce stress during the second two-
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Input Channels vs Heart Rate Measurement Error

GRT 4.62% BGRM 4.72%

GR 4.77% GRM 4.86%

GRMT 4.92% BGR 4.97%

BGRT 5.01% BGRMT 5.18%

BGMT 5.56% BGM 5.94%

BGM 5.94% GM 6.76%

BGT 6.98% BG 7.42%

BR 7.43% BRM 7.47%

BRMT 7.80% GT 8.22%

BMT 8.57% BM 8.62%

BRT 9.34% MT 9.49%

BT 10.09% RM 10.92%

RT 11.65% RMT 11.68%
Table 2. Measurement error for heart rate estimation within a 20

second window for all combinations of the input channels. R =

Red, G = Green, B = Blue, M = Magenta, T = Thermal.

minute period. In order to validate the accuracy of our ap-

proach we calculated heart rate estimates from the camera

array and the contact sensor within subsequent 20 second

windows (no overlap) and compared the measurements.

Figure 8 (a) shows the correlation between the heart rate

estimates from our real-time camera set-up and the contact

PPG sensor within each 20 second window. Figure 8 (b)

shows a Bland-Altman plot of the same data. Table 2 shows

the percentage error using all combinations of the possible

camera channels. We found a GRT (green, red and thermal)

channel combination gave most accurate results (4.62% er-

ror) with BGRM and GR coming close second (4.72% and

4.77% error respectively) demonstrating how adding more

channels can improve accuracy. As in previous work [14],

we observed that simply adding all channels does not pro-

vide the best results. There is an optimal selection of fre-

quency filters which can lead to best results and the RGB

color channel combination is not optimal (see Table 2). This

is explained by the fact that not all spectral channels carry

relevant information and adding these channels leads to an

increase in signal noise.

Furthermore, we gathered additional data from nine sub-

jects using the camera array and calculated heart rate with

or without varying illumination. We observed that using the

thermal sensor gave more robust measurements of HR in the

presence of illumination changes, as predicted since visible

light does not carry long wave infra-red radiation (see Table

3). Our method using a thermal sensor is completely pas-

sive and can be used in the dark. This is a considerable im-

provement over other methods which require the presence

of ambient illumination.

Our experiments show how we can use multi-camera ar-

rays in real-time to capture heart rate and heart rate vari-

ability. We also demonstrate how to use low cost thermal

sensors to capture heart rate in real-time, paving the way

Heart Rate Measurement Error w/ Illumination Variation

Without Illumination Variation 12.63%

With Illumination Variation 9.88%
Table 3. Measurement error for heart rate estimation within a 20

second window for thermal sensor with or without illumination

variation.

for capturing heart rate in the absence of illumination. Such

a technology could have applications in areas such as night

time infant monitoring. We demonstrate how to use the in-

formation from the BVP to visualize a person’s stress level

in real-time. The user interface we designed can be used

to monitor multiple patients in a hospital non-invasively, re-

ducing cognitive overhead of practitioners observing multi-

ple patients overnight. Sudden variations in lighting or ab-

sence of lighting can render the conventional camera based

heart rate measurement methods useless. However our sys-

tem is robust under such changes, using thermal sensor to

get reliable measurement as shown in Table 3.

6. Conclusions and Future Work

We have presented a novel real-time multi-camera sys-

tem that allows the measurement and visualization of phys-

iological signals. We combine low-cost visual and thermal

cameras to create a practical system. We show how we can

extend techniques discussed in [14] to use any spectral fil-

ter cheaply and effectively. Our multi-camera setup can be

used to mimic any color filter array pattern, which otherwise

would require expensive equipment and photo-lithography

based techniques to fabricate. Furthermore, the addition of

a thermal sensor allows for operation under varying ambi-

ent illumination. Previous work [14] has shown the advan-

tage of capturing additional color channels for accurate PPG

measurement, but used industrial prototypes, limited to the

visual range, which are not available commercially.

We have presented a technique to measure heart rate and
HRV. HRV is influenced by the autonomic nervous system
and lower frequency values for heart rate variability imply
higher arousal levels [11]. Our system could be deployed
in areas such as hospital patient intake rooms, above the
patient bed and in the ICU (and NICU) to monitor the pa-
tients’ vital signs non-invasively. We can also use such a
camera to monitor health and stress levels for people dur-
ing daily life and we can design interactive applications to
intervene in high stress situations. We have shown that our
algorithm is more robust to varying lighting conditions that
an RGB camera array. Our method can also be extended to
acquire physiological signals of a group of people by run-
ning regression forest based facial segmentation for multi-
ple faces and applying ICA on components obtained from
the faces. The thermal sensor allows for physiological mea-
surement in the dark, for example when someone is sleep-
ing.
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