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Abstract

We present an improved version of the Simple Linear It-

erative Clustering (SLIC) superpixel segmentation. Unlike

SLIC, our algorithm is non-iterative, enforces connectivity

from the start, requires lesser memory, and is faster. Rely-

ing on the superpixel boundaries obtained using our algo-

rithm, we also present a polygonal partitioning algorithm.

We demonstrate that our superpixels as well as the polygo-

nal partitioning are superior to the respective state-of-the-

art algorithms on quantitative benchmarks.

1. Introduction

Image segmentation continues to be a challenge that at-

tracts both domain specific and generic solutions. To avoid

the struggle with semantics when using traditional segmen-

tation algorithms, researchers lately diverted their attention

to a much simpler and achievable task, namely that of sim-

plifying an image into small clusters of connected pixels

called superpixels. Superpixel segmentation has quickly be-

come a potent pre-processing tool that simplifies an image

from, potentially, millions of pixels to about two orders of

magnitude fewer, clusters of similar pixels.

After their introduction [27], several applications such

as object localization [14], multi-class segmentation [15],

optical flow [22], body model estimation [24], object track-

ing [35], and depth estimation [37] took advantage of super-

pixels. For these applications, superpixels are commonly

expected to have the following properties [7, 18]:

• Tight region boundary adherence.

• Containing a small cluster of similar pixels.

• Uniformity; roughly equally sized clusters.

• Compactness; limiting the degree of adjacency.

• Computational efficiency.

One of the most promiment superpixel segmentation al-

gorithms is the Simple Linear Iterative Clustering algorithm

Figure 1. Images on the left show SNIC segmentation for three

different superpixel sizes. Images on the right show the corre-

sponding SNICPOLY polygonal partitioning.

(SLIC) [7], which satisfies these criteria and is very efficient

in terms of computation and memory requirements. Despite

its widespread use, SLIC suffers from a few shortcomings.

It requires several iterations for the centroids to converge. It

uses a distance map of the same size as the number of input

pixels, which amounts to significant memory consumption

for image stacks or video volumes. Lastly, SLIC enforces

connectivity only as a post-processing step.

In this paper, we first present an improved version of the

SLIC algorithm that overcomes the above-mentioned lim-

itations: (1) our algorithm runs in a single iteration; (2)

it does not use a distance map and therefore requires less

memory; and, (3) our algorithm enforces connectivity ex-

plicitly from the start. In addition, our algorithm improves

(4) the computational efficiency, (5) memory consumption,
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and (6) segmentation quality. Since our algorithm is a non-

iterative version of the SLIC algorithm, we call it Simple

Non-Iterative Clustering (SNIC).

Second, we propose a polygonal segmentation algorithm

called SNICPOLY, which uses SNIC superpixel segmenta-

tion as the basis. Polygonal segmentation of images has

been shown [12] to be especially suited for applications

that deal with images containing geometric or man-made

structures [9]. An example of SNIC segmentation and

SNICPOLY polygonal partitioning is presented in Fig. 1.

We compare SNIC to the state-of-the-art in superpixel

segmentation [13, 16, 17, 18, 28, 30] and the polygonal par-

titioning to the corresponding state-of-the-art [12]. In both

cases, our algorithms perform better quantitatively as well

as in terms of computational efficiency.

The rest of the paper is as follows. We review other seg-

mentation algorithms in Section 2, describe the SNIC algo-

rithm in Section 3, and explain how we obtain polygonal

partitioning of the image using SNIC in Section 4. In Sec-

tion 5, we compare SNIC and our polygonal segmentation

with the existing algorithms, and conclude the paper with

Section 6.

2. Background

In this section, we review SLIC [7] and related algo-

rithms. For the sake of completeness we also review other

state-of-the-art techniques. More reviews of superpixel

techniques can be found in [7, 25].

2.1. SLIC

The Simple Linear Iterative Clustering Algorithm [7], or

SLIC, is one of the most prominent superpixel segmenta-

tion algorithms. It owes its success as a pre-processing al-

gorithm to its simplicity, its computational efficiency, and

its ability to generate superpixels that satisfy the require-

ments of good boundary adherence and limited adjacency.

SLIC performs a localized k-means optimization in the five-

dimensional CIELAB color and image space to cluster pix-

els, starting from seeds chosen on a regular grid. SLIC has

only two input parameters in practice - the required number

of superpixels and a compactness factor, which determines

how compact the superpixels are. The authors of SLIC also

introduce a version that does not require the compactness

parameter as input because it automatically sets its value to

the maximum color distance within a superpixel.

Owing to its widespread use, variants of SLIC have been

introduced. Li and Chen [17] present Linear Spectral Clus-

tering (LSC) that projects the five-dimensional space of spa-

tial and color coordinates to a ten-dimensional space before

performing the k-means clustering. Liu et al. [19] on the

other hand present manifold-SLIC (MSLIC) that projects

the same five-dimensional space to a two-dimensional space

before performing clustering. The authors of both these

methods show quantitative improvements in segmentation

quality, but the underlying limitations of the SLIC algo-

rithm, such as multiple iterations and lack of explicit con-

nectivity, remain unchanged.

2.2. Graph-based algorithms

Some of the other prominent approaches for image seg-

menation rely on pixel graphs. The Normalized cuts al-

gorithm (NCUTS) [28] creates superpixels by recursively

computing normalized cuts for the pixel graph. Felzen-

szwalb and Huttenlocher [13] propose a minimum spanning

tree based segmentation approach (MST). Their algorithm

progressively joins components until a stopping criterion is

met, which prevents the spannning tree from covering the

whole image, is met. Moore et al. [23] generate superpixels

(SLAT) by finding the shortest paths that split an image into

vertical and horizontal strips. Similarly, Zhang et al. [36]

create superpixels (SPBO) by applying horizontal and ver-

tical graph-cuts to overlapping strips of an image. Instead

of finding cuts on an image, Veskler et al. [32], generate su-

perpixels by stitching together overlapping image patches.

More recently, Liu et al. [18] present another graph-based

approach (ERS) that connects subgraphs by maximizing the

entropy rate of a random walk.

2.3. Non-graph-based algorithms

There are several other algorithms that are not graph-

based. The watershed algorithm (WSHED) [33] accumu-

lates similar pixels starting from local minima to find wa-

tersheds, i.e., lines that separate segments. The mean shift

algorithm (MSHIFT) [10] iteratively locates local maxima

of a density function in color and image plane space. Pixels

that lead to the same local maximum belong to the same

segment. Quick shift (QSHIFT) [31] creates superpixels

by seeking local maxima like MSHIFT but is more effi-

cient in terms of computation. The Turbopixels algorithm

(TURBO) [16] generates superpixels by progressively di-

lating pixel seeds located at regular grid centers using a

level-set approach. SEEDS [30] generates superpixels by it-

eratively improving an initial rectangular approximation of

superpixels using coarse to fine pixel exchanges with neigh-

boring superpixels.

2.4. Summary

MST, MSHIFT, and WSHED are traditional segmenta-

tion algorithms, they do not aim for uniformly-sized com-

pact segments. The rest are considered superpixel algo-

rithms - they aim to generate clusters of segments that have

uniform sizes and a small number of adjacent segments. Of

these, NCUTS, SLAT, TURBO, SLIC, and SPBO exhibit

more compactness, i.e., a higher ratio of the area of a super-

pixel to its perimeter. MST, SLIC, SEEDS, and LSC are the

fastest in computation. TURBO, SLIC, ERS, and SEEDS
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allow the user control over the number of output segments.

This last property of superpixels has become important be-

cause it lets the user choose the size of the superpixels based

on the needs of the application.

2.5. Polygonal partitioning

In a small deviation from the theme of superpixels, Duan

and Lafarge [12] present a method (CONPOLY), which par-

titions the image into uniformly-sized convex polygons in-

stead of creating superpixels of arbitrary shape. Such parti-

tioning finds use in applications such as surface reconstruc-

tion [9] and object localization [29]. The authors of CON-

POLY detect preliminary line segments using Line Segment

Detector [34]. They build a Voronoi tessellation that con-

forms to these line segments, and then homogenize the gen-

erated polygons with additional partitions. The resulting al-

gorithm is computationally efficient and shows good bound-

ary adherence properties.

In this paper, we describe a method to perform polyg-

onal partitioning of images using SNIC segmentation as

the starting point. Our polygonal partitioning method

SNICPOLY outperforms CONPOLY on standard bench-

marks as well as in computational efficiency.

3. Simple non-iterative clustering (SNIC)

Our algorithm clusters pixels without the use of the k-

means iterations, while explicitly enforcing connectivity

from the start. In this section, we describe our algorithm

in relation to SLIC [7].

3.1. Distance measure

Like SLIC, we also initialize our centroids with pixels

chosen on a regular grid in the image plane. The affinity

of a pixel to a centroid is measured using a distance in the

five-dimensional space of color and spatial coordinates. Our

algorithm uses the same distance measure as SLIC. This

distance combines normalized spatial and color distances.

With spatial position x = [x y]T and CIELAB color c =
[l a b]T , the distance of the kth superpixel centroid C[k] to

the jth candidate pixel is given by:

dj,k =

s

kxj − xkk
2
2

s
+
kcj − ckk

2
2

m
, (1)

where s and m are the normalizing factors for spatial and

color distances, respectively. For an image of N pixels,

each of the K superpixels is expected to contain N/K pix-

els. Assuming a square shape of a superpixel, the value of s
in Eq. 1 is set to be

p

N/K. The value of m, also called the

compactness factor, is user-provided. A higher value results

in more compact superpixels at the cost of poorer boundary

adherence, and vice versa.

3.2. Evolution of centroids

In each k-means iteration, SLIC evolves a centroid by

computing the average of all pixels that are closest to it in

terms of d and, therefore, have the same label as the cen-

troid. In this manner, SLIC requires several iterations for

the centroids to converge.

Starting from the initial centroids, our algorithm uses a

priority queue to choose the next pixel to add to a cluster.

The priority queue is populated with candidate pixels that

are 4 or 8-connected to a currently growing superpixel clus-

ter. Popping the queue provides the pixel candidate that has

the smallest distance d from a centroid.

Each new pixel that is added to a superpixel is used

to perform an online update of the corresponding centroid

value. Thus, unlike SLIC, which requires multiple k-means

iterations to update the centroids, we update the centroids

in a single iteration.

The online updating of the centroids is quite effective be-

cause redundancies in natural images usually result in ad-

jacent pixels being quite similar. The centroids therefore

converge quickly, as demonstrated in Fig. 2.

3.3. Efficient distance computation

SLIC achieves computational efficiency by restricting

the distance computations within square regions of area

2s ⇥ 2s that are centered around the K centroids. The size

of the square regions is conservatively chosen to ensure that

there is some overlap between the squares of neighboring

centroids on the image plane. So, each pixel is reachable by

the nearest centroids even after the centroids get displaced

from their original position on the image plane during the

k-means iterations.

Since pixel connectivity is not explicitly enforced in such

k-means based clustering, pixels that may not belong to

the final superpixel but lie in the 2s ⇥ 2s regions are vis-

ited nonetheless and the distance d is computed for them.

Although the overlapping square restriction drastically re-

duces the number of distances to be computed, redundant

computations are unavoidable.

We only compute distances to pixels that are 4 or 8-

connected to the currently growing cluster in order to create

elements to populate the queue. Therefore, even compared

to a single iteration of SLIC, our algorithm computes fewer

distances. A natural consequence of enforcing connectivity

is also that we do not need to impose any spatial restric-

tions on distance computation like SLIC does. The queue

contains far fewer elements than N , so it uses less mem-

ory than SLIC that requires a memory of size N to store

distances.

Through the use of a priority queue and online averaging

for updating the centroids, we thus obtain SNIC, which has

the following advantages over SLIC:

4653



0 50 100 150 200 250 300 350 400 450 500

Number of pixels added to a superpixel

0

0.05

0.1

0.15

0.2

0.25

C
e

n
tr

o
id

 c
o

n
v
e

rg
e

n
c
e

 e
rr

o
r

x
y
l

Figure 2. Effectiveness of the online update. The left image shows 100 spatial centroids that start at the position shown by green squares and

drift during convergence to the position shown by red squares. The intermediate positions occupied are shown in white. The right image

shows the plot of the average change, i.e., residual error, of the x, y, and l centroids w.r.t their previous values over the 100 superpixels. As

seen, within adding the first 50 pixels to a superpixel, the errors sufficiently drop down, i.e., the centroids converge.

• Connectivity enforced explicitly from the start.

• No need for multiple k-means iterations.

• Fewer pixel visits and distance computations.

• Lower memory requirements.

The pseudo-code for the algorithm is presented in Algo-

rithm 1 and is explained below.

Algorithm 1 SNIC segmentation algorithm

Input: Input image I , K initial centroids C[k] = {xk, ck}
sampled on a regular grid, color normalization factor m

Output: Assigned label map L
1: Initialize L[:] 0
2: for k 2 [1, 2, ...K] do

3: Element e {xk, ck, k, 0}
4: Push e on priority queue Q
5: end for

6: while Q is not empty do

7: Pop Q to get ei
8: if L[xi] is 0 then

9: L[xi] = ki
10: Update centroid C[ki] online with xi and ci

11: for Each connected neighbor xj of xi do

12: Create element ej = {xj , cj , ki, dj,ki
}

13: if L[xj ] is 0 then

14: Push ej on Q
15: end if

16: end for

17: end if

18: end while

19: return L

3.4. Algorithm

The initial K seeds C[k] = {xk, ck} are obtained as

for SLIC on a regular grid over the image. Using these

seed pixels, K elements ei = {xi, ci, k, di,k} are created,

wherein each label k is set to one unique superpixel label

from 1 to K, and each distance value di,k, representing the

distance of the pixel from the kth centroid, is set to zero.

A priority queue Q is initialized with these K elements.

When popped, Q always returns the element ei whose dis-

tance value di,k to the kth centroid is the smallest.

While Q is not empty, the top-most element is popped.

If the pixel position on the label map L pointed to by the

element is unlabeled, it is given the label of the centroid.

The centroid value, which is the average of all the pixels in

the superpixel, is updated with this pixel. In addition, for

each of its 4 or 8 neighbors that have not been labeled yet,

a new element is created, assigning to it the distance from

the connected centroid and the label of the centroid. These

new elements are pushed on the queue.

As the algorithm executes, the priority queue is emptied

to assign labels at one end and populated with new candi-

dates at the other. When there are no remaining unlabeled

pixels to add new elements to the queue and the queue has

been emptied, the algorithm terminates.

4. SNIC-based polygonal partitioning

The polygonal partitioning we perform relies on the

boundaries generated by the SNIC superpixel segmentation.

Each superpixel results in one polygon. The polygons are

created taking care that adjacent superpixels share the same

polygon edges. To create polygons from the initial segmen-
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(a) SNIC segmentation (b) Choosing vertices (c) Polygon partitioning
Figure 3. A visual explanation of the polygon formation steps. (a) Initial segmentation using SNIC. (b) Initial vertices, in red, are chosen

to be pixels that touch at least three different segments, at least two segments and the borders of the image, or, are image corners. The

additional vertices, in green, are obtained by the Douglas-Peucker algorithm [11] algorithm. (c) After merging vertices that are too close,

we obtain polygons by joining the remaining vertices with line segments.

tation, we take the following steps:

1. Contour tracing: The closed path along the boundary

of each superpixel is traced using a standard contour

tracing algorithm [26]. This generates an ordered se-

quence of pixel positions along superpixel boundaries.

2. Initial vertices: Since adjacent superpixels share

boundaries, some common vertices are chosen. All

pixel positions along the boundary paths that touch at

least three superpixels or at least two superpixels and

the image borders are taken as initial shared vertices

(Fig. 3b). In addition these, the corners of the image

are taken to be vertices.

3. Additional vertices: Now we simplify the path seg-

ment between two vertices. For each path segment

between two vertices, we add new vertices using the

Douglas–Peucker algorithm [11]. This simplifies the

path segment from several pixel positions to a few

polygon vertices.

4. Vertex merging: Depending on the superpixel size,

vertices that are deemed to be very close to each other

according to a threshold (one-tenth of the expected su-

perpixel radius) are assigned a common vertex. This

common vertex is chosen to be the one with the high-

est image gradient magnitude.

5. Polygon generation: Finally, polygons are obtained

by joining the vertices obtained so far with straight line

segments (Fig. 3c).

After creating the polygons, we relabel the pixels based

on the polygonal borders. The entire process of creat-

ing polygons and assigning new labels takes only 20%

more time than the initial SNIC segmentation. This makes

our polygonal partitioning process SNICPOLY faster then

CONPOLY [12]. As a note, although we rely on SNIC su-

perpixels, the polygonal partioning algorithm presented in

this section can also generate polygons for superpixels ob-

tained using a different algorithm.

Unlike CONPOLY [12] though, some of our polygons

can be non-convex, especially for natural images. If convex

polygons or triangles are necessary for an application [9], it

is possible to add edges inside the non-convex polygons to

make them convex.

5. Experiments

We compare SNIC1 to SLIC [7] as well as several state-

of-the-art superpixel methods: NCUTS [28], MST [13],

TURBO [16], SEEDS [30], ERS [18], and LSC [17]. We

use the implementations available online for all methods [1,

2, 3, 4, 5, 6]. Simultaneously, we compare SNICPOLY

against the state-of-the-art CONPOLY [12].

The benchmarking is done on the Berkeley 300

dataset [21] taking into consideration both the color and

grayscale groundtruth images for the range of 50 to 2000 su-

perpixels. The quantitative comparisons can be viewed

in Fig. 5 and Fig. 6. A visual comparison of SNIC and

SNICPOLY with the state-of-the-art is provide in Fig. 4.

5.1. Under-segmentation error

Under-segmentation error measures the overlap error

that occurs when a superpixel is compared with the

ground truth segment occupying the same location. Neu-

bert and Protzel [25] observed that the computation of

under-segmentation error as presented in TURBO [16] and

SLIC [7] penalizes the overlapping on both sides when a

superpixel straddles a ground truth boundary.

They propose the Corrected Under-Segmentation Error

(CUSE), which corrects for this error. Its value is computed

for each superpixel Sk as:

CUSE =
1

N

K
X

k=1

|Gmax(Sk) [ Sk −Gmax(Sk)|, (2)

where Gmax(Sk) returns the ground truth segment with

which superpixel Sk overlaps the most and |.| is the abso-

1Our source code can be found at: http://ivrl.epfl.ch/

research/snic_superpixels
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Figure 4. Visual comparison of SNIC superpixels and polygonal partitioning against state-of-the-art algorithms. In the zoomed-in regions,

note how SNIC adapts well to each region of the image according to its local structure. SNIC results are generated with m = 10. Note:

the polygon boundaries of CONPOLY [12] and SNICPOLY appear aliased because discrete pixel labels are used to draw them.
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Figure 5. Comparison of SNIC and SNICPOLY with state-of-the-

art methods. (Top) The under-segmentation error (CUSE) of SNIC

is one of the lowest of all algorithms. (Middle) SNIC shows a

better precision-versus recall performance, as well as (Bottom) a

better F-measure than the state-of-the-art. Likewise, SNICPOLY

significantly outperforms the state-of-the-art polygonal partition-

ing method CONPOLY [12].

lute value operator. CUSE is plotted against the number of

superpixels in Fig. 5 (top plot).

5.2. Boundary recall and precision

To assess the performance of any detection technique,

the two values of recall and precision are considered to-

gether [8, 20]. Recall is the ratio of the true positives to

the sum of true positives and false negatives, while preci-

sion is the ratio of true positives to the sum of true and false

positives. Recall or precision considered alone can be mis-

leading since it is possible to have a very high recall with

extremely poor precision and vice versa.

Let BS [i] and BG[i] be, respectively, the superpixel and

ground truth boundary maps of the same dimensions as the

input image. In these maps, the value at a pixel position xi

is 1 if it is a boundary pixel and 0 otherwise. We compute

the number of true positives as:

TP =
N
X

i=1

1j∈N (i,✏)(B
G[i]⇥BS [j]), (3)

whereN is the ✏⇥✏ neighborhood around pixel position xi.

The function 1 returns 1 if a superpixel boundary overlaps

with the ground truth boundary pixel within the neighbor-

hood N and 0 otherwise. We use ✏ = 2 for our evaluations

like the state-of-the-art [7, 18, 30, 25].

False positives is the number of superpixel boundary pix-

els in the ✏ neighborhood that are not true positives, i.e., do

not have a groundtruth pixel in the vicinity. We compute its

value as:

FP =

N
X

i=1

⇥

1− 1j∈N (i,✏)(B
G[i]⇥BS [j])

⇤

(4)

The sum of true positives and false negatives is the num-

ber of all boundary pixels, i.e.,

TP + FN =

N
X

i=1

(BG[i]) (5)

following the definition of BG[i]. Therefore, using Eq. 3

and Eq. 4, we can compute Recall = TP/(TP +FN) and

Precision = TP/(TP +FP ). In Fig. 5 we show plots for

Precision versus Recall (center plot), and F-measure versus

the number of superpixels (bottom plot).

5.3. Computational efficiency

SNIC visits all pixels only once, except for those at the

borders of the superpixels. Thus, the number of visits is N
plus a value that is dependent on the number of desired su-

perpixels K. The priority queue, when implemented using

a heap data structure, is known to have logarithmic com-

plexity for pushing and popping elements.
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Figure 6. Comparison of speed in seconds. The top plot com-

pares computation times against different number of superpixels

averaged over a 100 images of size 321 × 481. The bottom plot

compares the average computational time against linearly increas-

ing image sizes. Both the plots show that SNIC exhibits linear

complexity in practice and is also the fastest method after SEEDS.

Note: SNICPOLY and CONPOLY speed curves (not plotted) lie

quite close to the curves of SNIC and SLIC, respectively.

.

In our case, the size of the priority queue starts at K, in-

creases while more elements are pushed than popped, and

then reduces to zero. Since the number of elements on the

queue is much smaller than the total number of pixels N , the

influence of the priority queue on the computational com-

plexity is not very pronounced. To test this, we compare

the speed of the SNIC and the fastest of the other methods

(see Fig. 6). All the algorithms tested are using C or C++

code provided by the authors [2, 3, 4, 6] and run on the

same machine with 16 GB RAM and 2.6 GHz Intel Core i7

processor.

In the upper plot of Fig. 6, we compare average com-

putation time taken by the algorithms against change in the

number of superpixels. In the lower plot of Fig. 6, we com-

pare the average computation time taken by the algorithm

as the image size increases. Both these plots show that, the

computational time is nearly linear in the number of pix-

els N in the image, i.e. SNIC exhibits O(N) complexity

in practice, which is similar in complexity to SLIC [7] and

LSC [17].

5.4. Discussion of results

Referring to the plots in Fig. 5, the under-segmentation

error (CUSE) of SNIC is low and compares with the best.

In the precision-recall curve, SNIC shows the best perfor-

mance, convincingly proving that SNIC adheres best to all

object boundaries in the ground truth (high recall) but at

the same time to only the true object boundaries (high pre-

cision). This fact is also confirmed by the F-measure plot,

where SNIC clearly outperforms all the other methods com-

pared with including SLIC. Interestingly, even though there

are more recent algorithms, Fig. 5 and Fig. 6 show that

SLIC continues to remain competitive in terms of quality

and efficiency.

SNICPOLY polygon partitioning shows similarly en-

couraging performance. The CUSE values for SNICPOLY

are significantly lower than CONPOLY [12]. In both

the precision-recall and F-measure plots, the curves of

SNICPOLY are significantly better than those of CON-

POLY. In terms of computational efficiency, SNIC is the

fastest algorithm after SEEDS. SNIC is faster than SLIC

and LSC, the variant of SLIC we compared with (Fig. 6).

6. Conclusion

We introduce SNIC, an improved version of the well-

known SLIC superpixel segmentation algorithm. Our al-

gorithm retains the desirable properties of SLIC, namely

computational efficiency, simplicity of implementation and

use, and control over the number and compactness of su-

perpixels. At the same time it overcomes the limitations

of SLIC: our algorithm SNIC is non-iterative, explicitly en-

forces connectivity, is computationally cheaper, uses lesser

memory, and yet outperforms SLIC on quantitative bench-

marks. The resulting algorithm is a simplification of the

original SLIC algorithm. We also present a polygonal par-

titioning algorithm that relies on SNIC superpixel bound-

aries. Like SNIC, the polygonal partitioning algorithm

SNICPOLY also outperforms the state-of-the-art in terms

of segmentation quality and speed.
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