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Abstract

We propose to jointly learn a Discriminative Bayesian

dictionary along a linear classifier using coupled Beta-

Bernoulli Processes. Our representation model uses sepa-

rate base measures for the dictionary and the classifier, but

associates them to the class-specific training data using the

same Bernoulli distributions. The Bernoulli distributions

control the frequency with which the factors (e.g. dictionary

atoms) are used in data representations, and they are in-

ferred while accounting for the class labels in our approach.

To further encourage discrimination in the dictionary, our

model uses separate (sets of) Bernoulli distributions to rep-

resent data from different classes. Our approach adaptively

learns the association between the dictionary atoms and the

class labels while tailoring the classifier to this relation with

a joint inference over the dictionary and the classifier. Once

a test sample is represented over the dictionary, its repre-

sentation is accurately labeled by the classifier due to the

strong coupling between the dictionary and the classifier.

We derive the Gibbs Sampling equations for our joint rep-

resentation model and test our approach for face, object,

scene and action recognition to establish its effectiveness.

1. Introduction

Dictionary Learning [25] is a well-established signal

representation technique, employed in compressive sens-

ing [4], image restoration [5] and morphological component

analysis [3]. A dictionary is a set of basis vectors (a.k.a.

atoms), learned to represent training data. More recently,

this technique has also shown great potential for multiple

classification tasks [9], [10], [13], [30], [31], [32]. Dictio-

naries learned for classification (a.k.a. discriminative dic-

tionaries) not only represent the training data from different

classes accurately, but they also render their representations

easily classifiable by a suitable classifier.

Generally, discriminative dictionary learning approaches

either restrict subsets of the dictionary atoms to represent

training data of specific classes only [15], [19], [24], [28];

or they force the representations of the data over the entire

dictionary to become discriminative [10], [13], [29], [32].

In some instances, a dictionary is also learned as a concate-

nation of class-specific atoms and atoms to jointly represent

the training data from all classes [19], [26]. In any case,

the relationship between the dictionary atoms and the class

labels remains the key for effective discriminative dictio-

naries [11]. Nevertheless, adaptive learning of this relation

is still a largely open research problem [2], [30]. Subse-

quently, tailoring a classifier to the adaptively learned rela-

tion generally remains unaddressed.

In this work, we present a Bayesian approach1 to ad-

dress the above problems. We propose a Beta-Bernoulli

process [17] based representation model that relates the dic-

tionary atoms with the class labels using Bernoulli distribu-

tions, learned adaptively in our approach. The same distri-

butions also associate parameters of a classifier to the class

label vectors of the training data. The dictionary and the

classifier are inferred simultaneously under a joint inference

process, however using separate base measures. This gives

our approach the flexibility to learn both the dictionary and

the classifier accurately while keeping them strongly cou-

pled under the Bernoulli distributions. For the underlying

Beta-Bernoulli processes, the Bernoulli distributions sig-

nify the frequency of the factor (e.g. dictionary atoms) us-

age in data representation. We use separate sets of Bernoulli

distributions for representing data from different classes,

promoting frequent use of its own popular factors for each

class. This further improves the discriminability of the dic-

tionary learned under a Beta-Bernoulli process [2].

When test samples are encoded over the dictionary, they

use the popular atoms for their correct class more fre-

quently. Since the classifier has a strong coupling with

the dictionary and it is already tailored to the popularity

of the atoms, it accurately predicts the class labels of the

test representations. We derive Gibbs Sampling equations

for our model and test our approach on benchmark datasets

for face [8], [16], object [6], scene [12] and action recog-

nition [20]. Experiments show that our approach consis-

tently improves the classification accuracy over the exist-

ing state-of-the-art dictionary learning and sparse represen-

tation based classification approaches.

1Download Matlab code from http://staffhome.ecm.uwa.

edu.au/˜00053650/code.html
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2. Problem settings and preliminaries

Let the ith training sample of the cth class be expressed

as yci = Φαci +
yǫi, where Φ ∈ R

L×|K| is an unknown dic-

tionary, αci ∈ R
|K| is the representation of the sample over

the dictionary and yǫi ∈ R
L denotes noise. The kth atom

ϕk of the dictionary is indexed in the set K = {1, ...,K},

whose cardinality |K| is also not known beforehand. Note

that, |K| defines the dictionary size. The training samples

of the cth class are indexed in a set Ic; and
∑C
c=1 |Ic| = N ,

where C denotes the total number of classes. We follow the

convention that absence of the superscript ‘c’ implies that

no distinction is being made between different classes for

the variable under consideration. For instance, yǫi is not an-

notated with ‘c’ because the training samples from all the

classes are considered to have the same noise statistics2.

A dictionary learning approach generally solves the fol-

lowing optimization problem to learn sparse representation:

< Φ,αi >= min
Φ,α

||yi −Φαi||
2
2 s.t. ∀i, ||αi||p ≤ t, (1)

where, ||.||p denotes the ℓp-norm and ‘t’ is a predefined con-

stant. Using thus computed αi, it is also possible to learn a

linear classifier Ψ ∈ R
C×|K| by solving:

< Ψ >= min
Ψ

N∑

i=1

L{hi, f(αi,Ψ)}+ λ||Ψ||2F , (2)

where L is the loss function, λ is the regularizer, hi ∈ R
C

denotes the class label for yi and f(.) results in the pre-

dicted label. In these settings, a test sample can be classified

by first computing its representation α̂ over the learned dic-

tionary and then classifying α̂ using Ψ. However, since the

dictionary is learned in an unsupervised manner, the clas-

sification performance is expected to remain sub-optimal.

To overcome this issue, Zhang and Li [32], followed by

Jiang et al. [10], proposed to learn the classifier jointly with

the dictionary in a supervised fashion. However, the per-

formance of their approaches strongly depend on the used

dictionary size, because the accuracy of data representation

actively depends on this parameter [27]. Moreover, those

approaches must prefix the relationship between the dictio-

nary atoms and the class labels, which is not an attractive

machine learning strategy.

Paisley and Carin [17] proposed a Beta-Bernoulli pro-

cess that can be used to learn a dictionary in a non-

parametric manner, thereby automatically inferring the ap-

propriate dictionary size. With its base measure ~0 and pa-

rameters a, b > 0, a finite representation of Beta Process is

2We also tested the approach for different noise statistics for each class

but the performance generally remained very similar. We avoid unneces-

sary modeling complexity by assuming the same noise statistics.

given as follows [17]:

~ =
∑

k∈K

πkδϕk(ϕ); (3)

πk ∼ Beta

(
πk

∣∣∣ a
K

,
b(K − 1)

K

)
; ϕk ∼ ~0,

where δϕk(ϕ) = 1 when ϕ = ϕk and 0 otherwise. A draw

~ from the process is a set of K probabilities πk∈K, each

associated with a ϕk∈K that is drawn i.i.d. from the base

measure ~0. Considering πk to be a Bernoulli distribution

parameter, we can use ~ to draw a binary vector z ∈ R
|K|

such that its kth coefficient follows Bernoulli(πk).
Drawing N binary vectors zi∈{1,...,N} under B =

{Bernoulli(πk) : k ∈ K} using the Beta-Bernoulli Pro-

cess, the training data may be factorized as: yi ≈ Φzi, ∀i,
where the atoms ϕk of the dictionary Φ are the base mea-

sure draws. In the limit |K| → ∞, the number of the non-

zero elements in zi is itself a draw from Poisson(a
b
) [17]

that controls the dictionary size. Notice that the vectors zi
relate the dictionary atoms to the training data following the

set B, such that, the kth distribution in this set signifies the

frequency of the kth atom usage in the data expansion. Re-

cently, this relation was exploited to induce discriminabil-

ity in a Bayesian dictionary [2]. In that approach, for each

class, zi was sampled under a separate B for the factoriza-

tion, that encouraged the dictionary atoms to become more

discriminative. However, in that work, the classifier to be

used with the dictionary must be learned separately because

the model does not support the joint learning of the two.

This weakens the coupling between the dictionary and the

classifier. The separately learned classifier also fails to in-

fluence the adaptively learned association between the dic-

tionary atoms and the class labels. Moreover, the inference

process is unable to benefit from the class label vectors,

thereby falling short on exploiting the full potential of a su-

pervised learning process.

3. Proposed approach

In this paper, we propose to jointly learn a discrimina-

tive Bayesian dictionary with a linear classifier in a fully

supervised manner, using two coupled Beta-Bernoulli Pro-

cesses [17]. To learn the dictionary, we use separate draws

of a finite Beta-Bernoulli Process for each class but use the

same base measure. To jointly learn the classifier with the

dictionary, we employ a second Beta-Bernoulli Process that

uses the same sets of the Bernoulli distributions as used by

the dictionary learning process, but its own base measure

to draw the classifier parameters. The Bernoulli distribu-

tions are adaptively learned in our approach while account-

ing for the class labels of the training data. Moreover, they

directly influence the dictionary and the classifier parame-

ters alike during the joint inference, which results in learn-
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ing of an accurate dictionary coupled with an effective clas-

sifier. We use Gibbs Sampling3 to perform the Bayesian

inference. This work addresses the problem of joint dictio-

nary and classifier learning for Beta-Bernoulli Process for

the first time.

3.1. The model

Representing data only as binary combinations of the

basis vectors is restrictive. Therefore, we factorize the ith

training sample of the cth class as: yci = Φ(zci ⊙ sci ) +
yǫi,

where sci ∈ R
|K| denotes a weight vector such that zci⊙sci =

αci , here, ⊙ represents the Kronecker product. This fac-

torization is possible under a weighted Beta-Bernoulli Pro-

cess, as shown below. For each training sample, we also

factorize the corresponding class label vector hci as follows:

hci = Ψ(zci ⊙ tci ) +
hǫi. We propose the following joint hi-

erarchical Bayesian model for simultaneous dictionary and

classifier learning:

∀i ∈ Ic and ∀k ∈ K = {1, ...,K}:

yci = Φ(zci ⊙ sci ) +
yǫi hci = Ψ(zci ⊙ tci ) +

hǫi (4)
zcik ∼ Bernoulli(zcik|π

c
ko
)

πck ∼ Beta(πck|ao/K, bo(K − 1)/K)
scik ∼ N (scik|0, 1/λ

c
so
) tcik ∼ N (tcik|0, 1/λ

c
to
)

ϕk ∼ N (ϕk|0,Λ
−1
ϕo

) ψk ∼ N (ψk|0,Λ
−1
ψo

)
yǫi ∼ N (yǫi|0, 1/λyoIL)

hǫi ∼ N (hǫi|0, 1/λhoIC).

In Eq. (4), λ and Λ represent the Gaussian distribution pre-

cision parameters, ψk ∈ R
C is the kth column of Ψ, IQ

denotes an identity matrix in R
Q×Q, 0 represents a vector

of zeros with an appropriate dimension and the subscript

‘o’ indicates that the associated parameter belongs to a prior

distribution.

In the proposed model, both yci and hci use the same zci ,

whose kth coefficient zcik is drawn from a Bernoulli distri-

bution, with a conjugate Beta prior. On the other hand, the

coefficients of the weight vectors sci , t
c
i ∈ R

|K| are drawn

from separate Gaussian distributions. Similarly, the dic-

tionary atoms and the classifier parameters are also drawn

from distinct multivariate Gaussians. This allows the fac-

torization of yci and hci to remain accurate while being

strongly coupled. The model is also flexible to allow the

additive noise/modeling error for yci and hci to be the sam-

ples of different distributions. We further place the follow-

ing non-informative Gamma hyper-priors over the precision

parameters of the distributions: λcs, λ
c
t ∼ Gam(co, do) and

λy, λh ∼ Gam(eo, fo). The graphical representation of the

proposed model is given in Fig. 1. We also provide the ana-

lytical expression for the joint probability distribution of the

model in the supplementary material of the paper.

3A variational algorithm was developed for the Beta-Bernoulli Process

in [17]. Later, Zhou et al. [33] showed Gibbs Sampling to be equally ef-

fective for Bayesian dictionary learning. As the latter is intuitively more

related to the optimization based algorithms for learning discriminative

dictionaries, we developed a Gibbs Sampler for our model in this paper.

Figure 1. Factor graph representation of the proposed Bayesian

model for joint learning of a classifier with a dictionary.

According to the proposed model, the covariances of

yci and hci are given as E[yciy
c⊺
i ] = aK

a+b(K−1)

Λ
−1

ϕ

λs
+ IL

λy

and E[hcih
c⊺
i ] = aK

a+b(K−1)

Λ
−1

ψ

λt
+ IC

λh
, respectively. Re-

call, that K signifies the number of factors ϕk or ψk in our

settings. By letting K → ∞, E[yciy
c⊺
i ] → a

b

Λ
−1

ϕ

λs
+ IL

λy

and E[hcih
c⊺
i ] → a

b

Λ
−1

ψ

λt
+ IC

λh
; which shows that the joint

model remains well defined in the infinite limit. However,

when K is truly infinite, the model would naturally use dif-

ferent sets of basis vectors to factorize data from different

classes. Whereas atom sharing between different classes is

not a necessary requirement for discriminative dictionaries,

for practically large values of K, our model results in dic-

tionaries that share atoms among different classes. We note

that it is a common practice to use large values of K (instead

of true infinity) in practical applications of Beta-Bernoulli

process [1], [2], [33].

In our approach, the dictionary atom sharing among the

classes is such that besides a group of popular atoms for a

given class, few other atoms also have non-zero probability

of selection for representing the data of that class. Fig. 2

illustrates this phenomenon with a representative example

of an object recognition task. The figure plots the inferred

Bernoulli distribution parameters π
c∈{10,50,90}
k∈K for an ar-

ranged dictionary learned using the proposed approach. For

each class, a cluster of large πck values is observable at a

distinct location, emphasizing the discriminative nature of

the dictionary. However, few non-zero values can also be

observed far from each cluster. These values are indicative

of the atom sharing between different classes.

In the aforementioned covariances of yci and hci , the frac-

tion a
a+b(K−1) appeared due to the presence of zci in Eq. (4).

Ignoring this fraction and comparing the remaining expres-

sions with those when K → ∞ shows that the value a
b

sig-

nifies the expected number of factors required to represent

yci and hci according to the proposed model. This result

is similar to the original model of the Beta-Bernoulli pro-

cess [17], except that the data under consideration is class-
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Figure 2. Dictionary atom usage for the data representation of three classes of Caltech-101 [6]: For classes 10, 50 and 90, the Bernoulli

distribution parameters πc
k are plotted against the indices of the arranged dictionary atoms. A larger πc

k indicates a more frequent use of the

atom in data representation. Due to the discriminative nature of the dictionary, distinct clusters of popular atoms appear. Due to sharing of

the atoms by different classes, non-zero values also appear far from the main clusters. The shown relationships between the atoms and the

class labels are learned adaptively by our approach.

specific in our approach. We use this result to automatically

infer the desired dictionary size for our approach during

Bayesian inference. Further details in this regard are pro-

vided below. We apply our model with K = 1.25 ×N for

the initialization and the dictionary is pruned to the desired

size during the Bayesian inference.

3.2. Inference

We perform Gibbs Sampling for inference over the pro-

posed model. Due to the conjugacy of the used distribu-

tions, we are able to derive all the sampling equations an-

alytically. Below, we briefly present the derivations in the

sequence followed by the sampling process to sample the

respective parameters. Please refer to the supplementary

material of the paper for the detailed derivations. In these

derivations, we let Λϕo = IL/λϕo and Λψo = IC/λψo .

In our experiments, this simplification lead to consider-

able computational advantage, without significantly affect-

ing the classification performance.

Sample ϕk: According to the proposed model, we can
write the following regarding the posterior probability dis-
tribution p(ϕk|−) over the kth dictionary atom:

p(ϕk|−) ∝
N∏

i=1

N (yiϕk
|ϕk(zik.sik), λ

−1

yo IL) N (ϕk|0, λ
−1

ϕo IL),

where, yiϕk = yi −Φ(zi ⊙ si) + ϕk(zik ⊙ sik) denotes

the contribution of the kth atom in representing yi. Note

the absence of the superscript ‘c’ that indicates the atom be-

ing treated alike for all the classes and being updated using

the complete training data. Exploiting the conjugacy be-

tween the Gaussian distributions, ϕk can be sampled from

N (ϕk|µk, λ
−1
ϕ IL), where:

λϕ=λϕo+ λyo

N∑

i=1

(zik.sik)
2, µk=λyoλ

−1
ϕ

N∑

i=1

(zik.sik)yiϕk .

Sample ψk: Similarly, we can sample ψk from

N (ψk|µk, λ
−1
ψ IC), such that:

λψ=λψo+ λho

N∑

i=1

(zik.tik)
2, µk=λhoλ

−1
ψ

N∑

i=1

(zik.tik)hiψk .

Sample zcik: Once the dictionary and the classifier have

been sampled, we sample zcik using their updated versions.

The posterior probability distribution over zcik can be writ-

ten as, ∀i ∈ Ic, ∀k ∈ K:

p(zcik|−) ∝ N (yciϕk
|ϕk(z

c
ik.s

c
ik), λ

−1
yo

IL)

N (hciϕk
|ψk(z

c
ik.t

c
ik), λ

−1
ho

IC) Bernoulli(zcik|π
c
ko
).

Based on the above expression, it can be shown that zcik
should be sampled from the following:

zcik ∼ Bernoulli
( πckoξ1ξ2

1− πcko + ξ1ξ2πcko

)
,where

ξ1 = exp
(
− λyo

2 (ϕ⊺

kϕks
c 2
ik − 2sciky

c⊺
iϕk
ϕk)

)
and ξ2 =

exp
(
−

λho
2 (ψ⊺

kψkt
c 2
ik − 2tikh

c⊺
iψk
ψk)

)
.

Sample scik: We can write the following regarding the

posterior probability distribution over scik:

p(scik|−) ∝ N (yciϕk
|ϕk(z

c
ik.s

c
ik), λ

−1
yo

IL)N (scik|0, λ
−1
so

).

Exploiting the conjugacy between the distributions, scik can

be sampled from N (scik|µs, λ
−1
s ), where:

λs = λso + λyoz
c 2
ik ϕ

⊺

kϕk, µs = λ−1
s λyoz

c
ikϕ

⊺

ky
c
iϕk

.

Sample tcik: Correspondingly, we can sample tcik from

N (tcik|µt, λ
−1
t ), where:

λt = λto + λhoz
c 2
ik ψ

⊺

kψk, µt = λ−1
t λhoz

c
ikψ

⊺

kh
c
iψk

.
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Sample πck: According to our model, the posterior proba-

bility distribution over πck can be written as follows:

p(πck|−)∝
∏

i∈Ic

Bernoulli(zcik|π
c
ko
)Beta

(
πcko|

ao
K

,
bo(K − 1)

K

)
,

∝ Beta


ao

K
+

|Ic|∑

i=1

zcik,
bo(K − 1)

K
+ |Ic| −

|Ic|∑

i=1

zcik


 .

Hence, we sample πck from the above mentioned Beta dis-

tribution.

Lemma 3.1 When
C∑
c=1

πck → 0 in a sampling iteration, the

kth factors become unlikely to contribute to the final data

representations, given ao, bo< |Ic|≪ K.

Proof: Once
∑C
c=1 π

c
k → 0 in a given sampling it-

eration,
∑|Ic|
i=1 z

c
ik → 0, ∀c in the next iteration. This

results in approximating the posterior distribution

over πck as Beta
(
πck|

ao
K
, bo(K−1)

K
+ |Ic|

)
, for which,

E[πck] = ao
ao+bo(K−1)+K|Ic|

. Under the condition

0 < ao, bo < |Ic| ≪ K, E[πck] → 0. This further results

in
C∑
c=1

πck → 0 in the subsequent iteration. Since πk

represents the probability of selection of the kth factors

in data representations, the kth factors become unlikely to

contribute to the final representations.

In our approach, the desired dictionary size |K| is de-

termined by monitoring the sampled values of πck, ∀c. Ac-

cording to Lemma 3.1, the kth factors ϕk and ψk can be

ignored in the subsequent iterations of the sampling process

if
∑C
c=1 π

c
k → 0 in the current iteration. It happens because

when the probability of using a particular factor in repre-

senting the data of all classes becomes extremely small in

an iteration, that factor also becomes unlikely to contribute

in the subsequent iterations of the sampling process. Thus,

such factors can be safely ignored in the final representa-

tion. Our inference process keeps monitoring such factors

and drops them off during the iterative sampling, resulting

in an automatic adjustment of the dictionary/classifier size

according to the available training data.

Sample λcs: To compute λcs, we treat scik for all the dictio-

nary atoms simultaneously (we do the same for λct below).

We consider sci ∈ R
|K| to be drawn from a multivariate

Gaussian with isotropic precision. This allows us to effi-

ciently infer the posterior distribution over λcs. The poste-

rior over λcs can be given as:

p(λcs|−) ∝
∏

i∈Ic

N (sci |0, 1/λ
c
so
I|K|)Gam(λcs|co, do).

Exploiting the conjugacy between the Gaussian and the

Gamma distributions, we sample λcs as:

λcs ∼ Gam


 |Ic||K|

2
+ co,

1

2

|Ic|∑

i=1

||sci ||
2
2 + do


 .

Sample λct : Correspondingly, we also sample λct from the

Gamma probability distribution mentioned above, with tci
replacing sci in the expression.

Sample λy: The posterior probability distribution over λy
can be written as:

p(λy|−) ∝
N∏

i=1

N (yi|Φ(zi ⊙ si), λ
−1
yo

IL)Gam(λy|eo, fo).

Again, we do not use the superscript ‘c’ because λy is sam-

pled utilizing the training data from all the classes. Similar

to the case of λcs, we can show that λy must be sampled as

follows:

λy ∼ Gam

(
LN

2
+ eo,

1

2

N∑

i=1

||yi −Φ(zi ⊙ si)||
2
2 + fo

)
.

Sample λh: Analogously, λh is sampled using the follow-

ing Gamma distribution:

λh ∼ Gam

(
CN

2
+ eo,

1

2

N∑

i=1

||hi −Ψ(zi ⊙ ti)||
2
2 + fo

)
.

As a result of the sampling process we infer posterior

probability distributions over the dictionary atoms and the

classifier parameters. We sample these distributions to ob-

tain the dictionary Φ and the classifier Ψ. To classify a

test sample, we first compute its representation α̂ over Φ

and then predict the label by classifying α̂ with the clas-

sifier. The class label of the test sample is decided as the

index of the largest coefficient of ℓ ∈ R
C = Φα̂. Fol-

lowing the standard practice [2],[10], we use the Orthog-

onal Matching Pursuit (OMP) algorithm [18] to compute

α̂. A Beta-Bernoulli process makes a representation vector

sparse by forcing most of its coefficients to become exactly

zero, similar to OMP. Therefore, OMP is a natural choice

for computing α̂ in our approach.

To start the sampling process, we initialize the dictio-

nary atoms by randomly selecting samples from the train-

ing data with replacement. We compute the sparse codes of

the training data over the initial Φ with OMP and use them

as the initial values of sci and tci . The vectors zci are com-

puted by replacing the non-zero coefficients of the initial sci
with ones. The initial value of Ψ is computed with the help

of ridge regression, using tci and the training labels. This

initialization procedure is inspired by the popular discrimi-

native dictionary learning approaches [2], [10], [32].
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Table 1. Face recognition results on Extended YaleB database [8].

Results are averaged over ten experiments. The time is given for

classifying a single test sample.

Method Accuracy % Average Time (ms)

DL-COPAR [26] 86.47± 0.69 31.11
LC-KSVD1 [10] 87.76± 0.60 0.61
LC-KSVD [10] 89.73± 0.59 0.60
D-KSVD [32] 89.77± 0.57 0.61
SRC [27] 89.71± 0.45 50.19
FDDL [31] 90.01± 0.69 42.82
DBDL [2] 91.09± 0.59 1.07
JBDC (Proposed) 92.14± 0.52 1.02

4. Experiments

We evaluated our approach for face, object, scene, and

action recognition tasks using standard data sets. The

performance is compared to the Label Consistent K-SVD

(LC-KSVD) [10], Sparse Representation based Classifica-

tion (SRC) [27], Discriminative Bayesian Dictionary Learn-

ing (DBDL) [2], Discriminative K-SVD (D-KSVD) [32],

Fisher Discrimination Dictionary Learning (FDDL) [31]

and the Dictionary Learning based on Commonalities and

Particularities of the data (DL-COPAR) [19]. These are the

state-of-the-art methods in the area of discriminative dic-

tionary learning/sparse representation. We also include the

results of an LC-KSVD variant LC-KSVD1, that computes

the classifier separately from the dictionary [10].

We used the author-provided implementations of all the

methods, except for SRC and D-KSVD. We implemented

SRC using the SPAMS toolbox [14], whereas the public

code of LC-KSVD [10] was modified for D-KSVD, as rec-

ommended by Jiang et al [10]. For all the methods that use

OMP to compute the sparse codes, we used the implemen-

tation of OMP provided by Elad et al. [21]. In our exper-

iments, all the approaches use the same training and test

data. The reported results have been computed after careful

optimization of the parameters for each method using cross-

validation. We followed the guidelines provided in the orig-

inal works for selecting the parameter ranges. Discussion

on parameter value selection of the proposed approach is

provided in Section 5. Experiments were conducted on an

Intel processor at 3.4 GHz, with 16 GB RAM.

4.1. Face recognition

We experimented with two commonly used face

databases: Extended YaleB [8] and the AR database [16].

4.1.1 Extended YaleB database

This database comprises 2, 414 images of 38 subjects. The

images have large variations in terms of illumination condi-

tions and expressions for each subject. To use the images in

our experiments, we first created 504-dimensional random

face features [27] from the 192× 168 cropped face images.

For each experiment, we randomly selected 15 features per

subject for training and the remaining samples were used for

testing. We conducted 10 experiments by randomly select-

ing the training and testing samples. The means±std.dev of

the resulting recognition rates are reported in Table 2. We

abbreviate the proposed approach as JBDC for Joint dis-

criminative Bayesian Dictionary and Classifier learning.

The proposed approach resulted in 11.8% reduction in

the error rate in Table 2. This reduction is achieved over a

recently proposed Bayesian discriminative dictionary learn-

ing technique [2]. In our opinion, the better performance of

our approach over DBDL is attributed to the stronger cou-

pling between the dictionary and the classifier, and to the

ability of JBDC to exploit the relation between the class

labels and the factors for the dictionary and the classifier

alike. The recognition time of JBDC is comparable to those

of the efficient approaches. The low recognition time owes

to the joint learning of the classifier along the dictionary.

The dictionary/classifier size inferred by JBDC is gener-

ally smaller than the dictionary size computed by DBDL

which also gives a slight computational advantage to our

approach over DBDL. However, the final dictionary size

of JBDC is generally larger than the optimal dictionary

sizes for D-KSVD and LC-KSVD, which benefits these ap-

proaches computationally. Nevertheless, the accuracy of

the proposed approach remains significantly better these ap-

proaches. In our experiments, the average dictionary size

computed by JBDC was 567 atoms, whereas this value was

574 for DBDL. LC-KSVD and D-KSVD used 375 dictio-

nary atoms, which resulted in their best performance.

4.1.2 AR face database

This database consists of over 4, 000 face images of 126
subjects. For each subject, 26 images are taken during two

different sessions such that they have large variations in fa-

cial disguise, illumination and expressions. We projected

165× 120 cropped face images onto 540-dimensional vec-

tors using a random projection matrix, thereby extracting

Random-Face features [27]. Following a common evalua-

tion protocol, we selected a subset of 2, 600 images of 50
male and 50 female subjects from the database. For each

subject, we used 7 randomly selected images for training

and the remaining images were used for testing. Results

of our recognition experiments are summarized in Table 2.

Similar to the Extended YaleB data set, the proposed ap-

proach is also able to generally perform better than the exist-

ing approaches on AR database. On average, as compared

to 705 dictionary atoms learned by DBDL, JBDC inferred

697 atoms for the training data.
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Table 2. Face recognition on AR database [16]. Results are aver-

aged over ten experiments. The time is for a single test sample.

Method Accuracy % Average Time (ms)

DL-COPAR [26] 83.29± 1.23 36.49

SRC [27] 84.60± 1.37 59.91

LC-KSVD1 [10] 84.61± 1.44 0.91

LC-KSVD [10] 85.37± 1.34 0.91

D-KSVD [32] 85.41± 1.49 0.92

FDDL [31] 85.97± 1.23 50.03

DBDL [2] 86.15± 1.19 1.20

JBDC (Proposed) 87.17± 0.99 1.18

4.2. Object classification

For object classification, we used the Caltech-101

database [6], which contains 9, 144 image samples from

101 object categories and a class of background images.

The number of samples per class in this database vary be-

tween 31 and 800. For classification, we first created 4096-

dimensional feature vectors of the images using the 16-

layer deep convolutional neural networks for large scale vi-

sual recognition [23]. These features were used to create

the training and the testing data sets. Following a com-

mon evaluation protocol, we used 5, 10, 15, 20, 25 and 30
randomly chosen samples per class for training and the re-

maining samples were used for testing. Results of our ex-

periments are summarized in Table 3. From the table, it is

clear that the proposed approach consistently improves the

classification accuracy over the existing techniques. The

average reduction in the error rate for these experiments is

7.85%. The overall time for classifying 30 samples per class

by our approach was 18.77 seconds, whereas DBDL, LC-

KSVD and D-KSVD required 18.80, 18.78 and 18.79 sec-

onds, respectively. For JBDC, the final dictionary size was

3001, whereas this value was 3033 for DBDL. Similarly,

LC-KSVD and D-KSVD required 3030 atoms for their best

performance.

4.3. Scene categorization

The Fifteen Scene Category database [12] consists of im-

ages from fifteen natural scene categories. The average im-

age size in the database is 250× 300 pixels and the number

of sample per class vary between 200 to 400. For this data

set, we directly used the 3000-dimensional Spatial Pyramid

Features of the images provided by Jiang et al. [10]. From

these features, we selected 50 random samples per class for

training and used the remaining samples for testing. We

summarize the results of our experiments with this data set

in Table 4. As evident form the table, the proposed approach

is also able to improve results for categorizing the natural

scenes.

Table 3. Object classification on Caltech-101 [6].

Training samples 5 10 15 20 25 30

SRC [27] 76.23 79.99 81.27 83.48 84.00 84.51

DL-COPAR [26] 76.11 80.40 83.44 84.01 84.85 85.03

FDDL [31] 78.31 81.37 83.37 84.76 85.66 85.98

LC-KSVD1 [10] 79.03 82.86 84.13 84.65 86.10 86.94

D-KSVD [32] 79.69 83.11 84.99 86.01 86.80 87.72

LC-KSVD [10] 79.74 83.13 85.20 85.98 86.77 87.81

DBDL [2] 80.11 84.03 85.99 86.71 87.97 88.81

JBDC (Proposed) 81.64 85.70 86.96 87.88 88.72 89.59

Table 4. Classification accuracies (%) on Fifteen Scene Category

dataset [12] using Spatial Pyramid Features. The time for comput-

ing a single test sample is given in milliseconds.

Method Accuracy % Time

FDDL[31] 94.08± 0.43 57.99

D-KSVD [32] 95.12± 0.18 0.58

LC-KSVD1[10] 95.37± 0.28 0.59

SRC [27] 95.41± 0.13 78.33

DL-COPAR [26] 96.02± 0.28 55.67

LC-KSVD[10] 96.38± 0.29 0.59

DBDL[2] 96.98± 0.28 0.71

JBDC (Proposed) 97.73± 0.21 0.70

4.4. Action recognition

We used UCF sports action database [20] for action

recognition. The database consists of 10 classes of varied

sports actions, having a total of 150 clips @ 10 fps. We

used the action bank features [22] for this database to train

and test the approaches. Following a common evaluation

protocol, we performed a five-fold cross validation. The

mean recognition rates of the resulting five experiments are

reported in Table 5. For FDDL and DL-COPAR we report

the results directly from [30], as our parameter optimiza-

tion for these algorithms could not achieve these accuracies.

Results of LDL [30] are also taken from the original work.

The proposed joint Bayesian dictionary and classifier learn-

ing approach is able to show an average reduction of 12.2%
in the error rate for action recognition.

5. Discussion

The choice of the parameter values for our approach is

intuitive due to its Bayesian nature. In all the experiments,

we set co, do, eo and f0 to 10−6. A wide range of simi-

lar small values of these parameters (of the non-informative

Gamma hyper-priors) results in a very similar performance

of the approach. Considering that the data used in our ex-

periments is mainly clean in terms of white noise, we se-

lected λyo = λho = 106 for the face, object and scene

recognition experiments. The values of these precision pa-

rameters were set to 109 for the action recognition task due

to the less amount of the available training data. Follow-
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Table 5. Action recognition on UCF Sports Action database [20].

Method Accuracy %Method Accuracy %

D-KSVD [32] 89.1 SRC [27] 92.6

LC-KSVD1 [10] 89.6 FDDL [31] 93.6

DL-COPAR [26] 90.7 LDL [30] 95.0

LC-KSVD [10] 91.7 DBDL [2] 95.1

JBDC(Proposed) 95.7

Figure 3. (a) Dictionary size as a function of Gibbs Sampling iter-

ations for Extended YaleB. The first 100 iterations are shown for

different values of ao and bo. (b) Worst-case Point Scale Reduc-

tion Factor (PSRF) [7] for πk
c , ∀c, ∀k as a function of the sampling

iterations for Extended YaleB.

ing the common practice in the Beta Process based factor

analysis [33], we let λϕo = 1/L and λψo = 1/C; and

chose λso = λto = 1 for all the experiments. We chose a

non-informative initial value for the Bernoulli parameters,

i.e. πcko = 0.5, ∀k, ∀c, implying each dictionary atom has a

50% chance of being used by the representation of a sample

of any class at the start of the sampling process.

In the light of Lemma 3.1, we chose ao = bo = δ/4 in

our experiments, such that δ = min
c

|Ic|. Here, ao = bo

indicates that we let the final dictionary size to be roughly

around the training data size. This rule was empirically de-

rived and it generally worked well for all the recognition

tasks in our experiments. The value δ/4 controls the rate

at which the dictionary is pruned to its final size - as illus-

trated in Fig. 3 (a). In the figure, we plot the dictionary size

obtained after each sampling iteration for a face recognition

experiment with Extended YaleB database, where 32 sam-

ples per class were used for training. The plot is provided

for the first 100 iterations for a better visualization. After

around 500 iterations, the recognition rates for all the three

curves in Fig. 3 (a) were found to be very similar, which

also indicates good convergence of the sampler.

To quantitatively analyze the convergence of the sam-

pling process, we followed Gelman and Rubin [7]. For that,

the Potential Scale Reduction Factors (PSRFs) for the key

parameters of our model, i.e. πck, ∀k, ∀c, were monitored

with the increasing number of the sampling iterations for

each recognition task. To compute the PSRF values, we ran

10 sampling processes for each database. Each sampling

process was initialized by randomly sampling the parame-

ters πck from the standard uniform distribution on the open

interval (0, 1). In each experiment, the processes were run

for 2n iterations and the last n iterations were used to com-

pute the PSRFs. For the details on computing the PSRF val-

ues, we refer to [7]. According to Gelman and Rubin, the

sampler can be considered converged when PSRF values of

the parameters approach to 1. In Fig. 3 (b), we show the

worst-case values for the Extended YaleB database against

the increasing number of the sampler iterations. The worst-

case PSFRs are the maximum values among the C × |K|
values for πck, ∀k, ∀c. In the figure, these values become

very close to 1 after five hundred iterations of the sampler.

Since the shown values are for the worst cases, we can con-

jecture that the performed Gibbs sampler converges reason-

ably well. The mean PSRFs values for all the five data sets

used in our experiments were observed to be very close to

1 after five hundred iterations. Note that, the analysis has

been done using those values of the remaining parameters

that are mentioned in the preceding paragraphs and using

the initialization procedure discussed in Section 3.2. The

sampling process took around 8 and 23 minutes to converge

for a single experiment of face recognition with Extended

YaleB and AR database, respectively. It took around 26, 8
and 3 minutes respectively for a single object, scene and ac-

tion recognition experiment. For the object recognition, the

reported time is for 5 training samples per class.

6. Conclusion

We proposed a Bayesian approach to jointly infer a dis-

criminative dictionary and a linear classifier under coupled

Beta-Bernoulli processes. Our representation model places

separate probability distributions over the dictionary and

the classifier, but associates them to the training data using

the same Bernoulli distributions. The Bernoulli distribu-

tions represent the frequency of the dictionary atom usage

in data representation and they are learned adaptively under

a Bayesian inference. The inference process also accounts

for the class labels and the classifier is tailored according to

the learned Bernoulli distributions. The joint inference pro-

motes discriminability in the dictionary, which is further en-

couraged by using separate Bernoulli distributions to repre-

sent the training data of each class in our approach. To clas-

sify a test sample, we first compute its representation over

the dictionary and then predict its label using the representa-

tion with the classifier. The classifier accurately predicts the

class label due to its strong coupling with the dictionary. We

compared our approach with the state-of-the-art discrimina-

tive dictionary learning approaches for face, object, scene

and action classification tasks. Experiments demonstrate

the effectiveness of the proposed approach across the board.
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