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Abstract

Underwater image reconstruction methods require the

knowledge of wideband attenuation coefficients per color

channel. Current estimation methods for these coefficients

require specialized hardware or multiple images, and none

of them leverage the multitude of existing ocean optical

measurements as priors. Here, we aim to constrain the set

of physically-feasible wideband attenuation coefficients in

the ocean by utilizing water attenuation measured world-

wide by oceanographers. We calculate the space of valid

wideband effective attenuation coefficients in the 3D RGB

domain and find that a bound manifold in 3-space suffi-

ciently represents the variation from the clearest to murki-

est waters. We validate our model using in situ experiments

in two different optical water bodies, the Red Sea and the

Mediterranean. Moreover, we show that contradictory to

the common image formation model, the coefficients depend

on the imaging range and object reflectance, and quantify

the errors resulting from ignoring these dependencies.

1. Introduction

The interaction between solar radiation and the upper

ocean fuels physical, chemical, and biological processes;

and as a result water attenuates light in a wavelength-

dependent manner giving the ocean its color and other opti-

cal properties [13, 14]. Due to these wavelength-dependent

processes, underwater images suffer from reduced contrast

and color distortions. As the effect also depends on the dis-

tance of the objects, the image degradation is local and can-

not be corrected by global operations. To correct the im-

ages, both the scene 3D structure and water properties need

to be known. While 3D reconstruction is receiving consid-

erable attention, there is almost no research on the range of

water properties with respect to computer vision.

Ocean appearance is usually described using color-

transmittance dyads like ‘turquoise and clear’ or ‘blue and

dark’; but depending on location, season, time of day, and

environmental conditions, the ocean color can also be gray,

Figure 1. Water types. [Left] Based on the attenuation coeffi-

cient β(λ) measurements from a global expedition between 1947-

48 [25], 10 optical classes have come to be known as Jerlov Wa-

ter Types [24]. Types I-III are oceanic waters that range from

very clear to slightly murky, and those suffixed with ‘C’ represent

coastal waters with increasing turbidity from 1 to 9. Gray lines

represent 280 randomly chosen observations from a database [50]

that contains more than 60,000 in situ measurements taken using

modern day equipment between 1989-2015. [Right] RGB simula-

tion of the appearance of a perfect white surface viewed in 1-20m

depth in different water types. Note that the common notion that

water attenuates red colors faster than blue/green only holds for

oceanic water types. We use Jerlov water types to constrain the

space of attenuation coefficients in the RGB domain.

brown, black, or even red [6]. Transmittance describes

visibility which we might label as ranging from ‘crystal

clear’ to ‘murky’, and it is a function of the wavelength-

dependent attenuation coefficient of the water body and the

distance light has to travel. The attenuation coefficient for

the global ocean shows significant spatial and temporal vari-

ation as it depends on the concentration of organic and in-

organic substances in the water column. How and when

their concentrations change depends on complex interac-

tions involving the season, weather, illumination, currents,

depth, bathymetry, and other factors [46]. This variation

has implications for underwater computer vision where the

attenuation information is used for visibility enhancement
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Figure 2. Light propagation underwater. Object signal is at-

tenuated by the water along the line of sight to the camera (blue

arrow). Light that is scattered back to the camera from the wa-

ter column carries no information about the scene and degrades

the image (red arrows). Forward scattered light creates a blurred

version of the scene (yellow arrows).

and color restoration algorithms. For example, a visibility

enhancement algorithm whose parameters are derived from

the clear waters of the Sargasso Sea would perform poorly

when applied to photographs from the Baltic Sea, which is

characterized by strong light attenuation.

Here, our goal is to leverage the knowledge base from

optical oceanography to improve underwater computer vi-

sion algorithms. We make the following contributions:

• Using the optical classification of natural water bodies we

derive the loci of all physically meaningful RGB attenuation

coefficients for underwater imaging. This loci constitutes

the valid search space for underwater image reconstruction

algorithms, as well as a dictionary for realistic computer-

generated imagery and rendering of natural waters.

• Through the derivation of wideband coefficients, we show

that they depend on scene properties in addition to water

properties, a dependency that is ignored in the currently

used image formation model.

• We validate our proposed loci by in situ experiments

through scuba diving in two different water bodies: the Red

Sea (tropical) and the Mediterranean (temperate).

2. Related Work

Recent single image reconstruction methods (for haze

and underwater) assume wavelength independent attenua-

tion and thus avoid the need to estimate color-dependent at-

tenuation [4, 5, 10, 15, 16, 21, 29, 33, 47]. Some underwater

works used fixed coefficients for reconstruction, which only

suit specific cases [11].

Other methods used multiple images and recovered

channel dependent optical depth (the multiplication of at-

tenuation and distance) [39, 41] or related parameters [48].

The basic estimation method for attenuation coefficients

is to acquire an image of a known calibration target at

known distances [1, 31, 51], however this requires external

hardware and distance measurement. Instead, most meth-

ods use multiple images of the same object from several

distances, where only their difference has to be known [52],

or that are known from a sonar [28] or structure-from-

motion [9]. Some of these ignore scattering and therefore

can be used only when water is clear [28, 52]. Recently, [44]

used backscatter images for calibration. In [8], the grey-

world assumption is used, but this does not always hold

especially when looking into the water column. In a lab

setup [32] used a single image of a light source. None of

these methods verified the results to be physically feasible.

Ill-posed or noisy computer vision problems tradition-

ally benefit from constraining the set of solutions. Such a

strategy is very common in tasks of estimating wavelength-

dependent functions that theoretically have many unknowns

(one per each wavelength): for example, color constancy [7,

30], reflectance and illumination estimation [35, 38, 42], or

estimating camera response functions [20] or spectral sen-

sitivities [27].

3. Light Propagation Underwater

3.1. Optical Classification of the World’s Oceans

The first systematic assessment of the optical proper-

ties of the global ocean was made by Jerlov and col-

leagues [24] during the Swedish Deep Sea Expedition of

1947-48 [25]. They measured the downwelling irradiance

at various depths, from which they obtained the total atten-

uation coefficient β(λ) (Fig. 1, left). Based on these values,

Jerlov categorized the world’s oceans into five oceanic and

five coastal classes.

Optical properties of the ocean are governed by the type

and density of the particles suspended in the water column.

Two independent mechanisms, absorption and scattering,

determine the amount of attenuation light will experience as

it travels and encounters these particles (Fig. 2). The total

attenuation coefficient β(λ) is their summed effect [3, 12].

In the open ocean these particles are almost always drifting

algae called phytoplankton with a well characterized spec-

tral signature, attenuating the longer wavelengths (i.e., red

colors) much faster than shorter ones, resulting in an over-

all bluish appearance. In the coastal oceans, optically ac-

tive impurities dumped by rivers or from agricultural runoff

may dominate, causing short wavelengths to attenuate just

as strongly as long ones (Fig. 1, right).

Jerlov’s classification is not all-encompassing for all wa-

ter bodies in the world; for example, it cannot represent the

attenuation in very murky coastal lagoons or extremely tur-

bid lakes such as those reported by [34, 37]. However, it is

regarded as a compact representation of global water color
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and transmittance [43]. The recent seaBASS database [50]

contains over fifty thousand in situ water attenuation mea-

surements taken using modern day instruments since 1989.

Qualitatively, they all appear within the range of the Jerlov

water types. A randomly chosen subset of these data is

shown in Fig. 1.

3.2. Image Formation Underwater

Fig. 2 depicts the trajectory of light reflected from the

skin of an octopus traveling towards the sensor of the diver’s

camera. The commonly used image formation model for

computer vision in scattering media states that in each color

channel c ∈ {R,G,B} the image intensity Ic at each pixel

x is composed of two components: attenuated signal and

veiling light [22, 40]:

Ic(x) = Dc(x) +Bc(x) (1)

Directly transmitted light D carries the object signal, at-

tenuated by the water along the line of sight to the camera

(Fig. 2, blue arrow). The backscattering component B, also

called veiling light, carries no information about the scene

and therefore degrades most of the color and contrast in the

image (Fig. 2, red arrows). Forward scattered light also car-

ries information about the scene, but it loses intensity and

structure due to scattering along its trajectory before reach-

ing the sensor (Fig. 2, yellow arrows), creating a blurred

version of the scene. Compared to attenuation experienced

by the directly transmitted light, that of forward scattered

light is negligible, and has been shown to minimally affect

image degradation [15, 40, 48]. In this work we focus on at-

tenuation coefficients, and therefore only consider the direct

transmission signal.

The transmission is set by the Beer-Lambert law [40]:

D(z2, λ) = D(z1, λ)e
−

∫
z2

z1
β(z′,λ)dz′

(2)

where z1 and z2 are the start and end points along the LOS,

respectively, λ is wavelength, and β is the attenuation co-

efficient of the water body. Assuming the water volume is

spatially homogeneous (β(z, λ) = β(λ)) simplifies Eq. 2 :

D(z2, λ) = D(z1, λ)e
−β(λ)∆z , (3)

where ∆z = z2 − z1.

Now, the apparent color of a surface captured by a sensor

with spectral response Sc(λ) at a distance z is:

Dc =
1

κ

∫
Λ

Sc(λ)ρ(λ)E(λ)e−β(λ)z
dλ , c = R,G,B (4)

where ρ(λ) is the reflectance spectrum of the surface of in-

terest and E is the illumination irradiance. Here κ is a scal-

ing constant governing image parameters, such as exposure.

Reconstruction algorithms usually aim to recover the

unattenuated colors of the original scene, denoted by Jc:

Jc = Dc(z = 0) . (5)

4. Effective Wideband Attenuation

Eq. 4 incorporates the wavelength dependent nature of β
in the overall color signal Dc. When working with wide-

band cameras, it is common to express attenuation by wide-

band channels, simplifying Eq. 4 to the following [9, 39]:

Dc(z +∆z) = Dc(z)e
−βc∆z, (6)

where we term βc as the effective wideband attenuation co-

efficient. This simplification offers two advantages (at the

cost of accuracy, which we discuss shortly). First, it re-

duces the number of unknowns that need to be estimated

for β to three, one for each color channel of an RGB cam-

era. Second, by removing the wavelength dependency, it

makes it possible for the term e−β∆z to be taken outside of

the integration.

When the direct signal and range z are known or esti-

mated, the unattenuated image signal Jc can be recovered:

Ĵc = Dce
βcz . (7)

Following Eq. 6 the wideband attenuation coefficient is de-

fined as

βc = ln

[

Dc(z)

Dc(z +∆z)

]/

∆z , (8)

i.e., based on Eq. 4, for Eq. 6 to hold, the effective attenua-

tion coefficient βc has to obey:

βc = ln









∫

Sc(λ)ρ(λ)E(λ)e−β(λ)(z)dλ
∫

Sc(λ)ρ(λ)E(λ)e−β(λ)(z+∆z)dλ









/

∆z.

(9)

It can be seen that βc in Eq. 9 depends on Sc, z,∆z, ρ
and E, as opposed to β(λ) that is a property of the water.

It is clear that the simplifications in the commonly used im-

age formation model results in Eq. 6 not being an analytical

result of Eq. 9, and the quality of the approximation also de-

pends on the camera and the imaged scene. Next, we move

on to quantify the space that physically feasible βc can oc-

cupy, and then analyze these limitations.

4.1. Space of Wideband Attenuation Coefficients

We projected the attenuation coefficients β(λ) of the 10

Jerlov water types into the RGB domain using Eq. 9. Fig. 3a

shows the βc values calculated for oceanic (denoted by X’s)

and coastal water types (filled circles), where the color of

each marker describes one of the water types from Fig. 1.

We used the spectral response curves of a Nikon D90 cam-

era from the database of [27]. For simplicity, we assumed

ρ = E = 1 in Eq. 9 and used z1 = 0 and z2 = 10m. The

10 Jerlov water types are discrete, and we do not expect the

attenuation to bounce between them in nature. Instead, we

show that for a specific camera and distance the values of βc
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Figure 3. Space of wideband attenuation coefficients. a) Based on Jerlov water types, we derived the coordinates of the RGB attenuation

coefficients βc for oceanic (X’s) and coastal (filled circles) waters using Eq. 9, which fall on two lines in 3-dimensional space. In all

subplots, we used the spectral response of a Nikon D90 camera from [27], and z = 10m for modelling. b) Shifting of the βc locus based

on the spectral response of the camera sensor used. c) Shifting of the βc locus based on radiance, shown here for each of the 24 patches of

a Macbeth ColorChecker (inset) under D65 illuminant. d) Sensitivity of βc to the values of range z used to calculate it. For oceanic water,

larger ranges result in higher attenuation in the red channel, but for very turbid coastal waters the effect is greater in the blue channel.

For example, for type I waters βR is 14% higher at 5 meters than its magnitude at 10 meters, while this is only 2% for water type 9C.

Conversely, for type 9C waters in the blue channel βB is approximately 14% higher at 5 meters than its value at 10 meters, while it remains

constant for type I waters. e) For a given sensor, the locus of βc (shown here for oceanic water) spans the area highlighted in gray, as the

range and radiance are varied. In this example, we used the radiance from c) and changed z from 1 to 30 meters. Throughout the paper

the units of βc are m−1.

are located along a 1D manifold, containing two lines- one

for open water and one for coastal. Attenuation measure-

ments that are between water types are likely to fall along

these lines. The rationale behind the linear shape of the lo-

cus might be that a main component in attenuation is the

absorption of pure water and variations from it stem from

different concentrations of several types of organisms and

particles in water [2].

The loci (black line for oceanic, blue for coastal waters)

were fit using minimum mean square distance in 3-space

and are almost perfect linear with R2 (quality of fit) values

very close to 1. This result reduces the potential space of

coefficients from the entire R3 to a limited manifold.

Based on Eq. 9, an alarming result is that the wideband

attenuation coefficients βc depend on scene reflectance ρ,

ambient light spectrum E, spectral response of the camera

Sc, and range ∆z. This contradicts the standard image for-

mation model (Eq. 6). We now explore how our basic result

(Fig. 3a) depends on them.

Fig. 3b shows how coefficients shift due to the response

of three different sensors: Nikon D90, Canon 500D and

Point Grey Grasshopper, whose spectral sensitivities we

adopted from [27]. The inter-camera variation can be po-

tentially standardized by calibrating the camera, e.g., trans-

forming the spectral response into the CIE RGB 10-degree

observer space [45], but this requires knowledge of the cam-
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Figure 4. Visualization of errors when incorrect βc is used. We used the white, foliage, red, yellow, magenta and cyan patches of a

Macbeth ColorChecker to demonstrate the errors in color correction when a) βc is calculated using an incorrect range z, and b) from an

incorrect water type. a) We simulated the patches at 7m depth, with ambient light D65 at the sea surface, and calculated the appearance

of each patch when corrected by βc obtained with z values ranging from 1 − 14m. The z-axis shows the error (Eq. 10) between the

unattenuated colors and those obtained by using incorrect βc. The rest of the colors on each surface show the distorted colors resulting

from an incorrect βc. For oceanic waters, colors that contain red are most affected by larger errors in z. b) We simulated the appearance

of the same patches in water type 1C, but corrected with βc calculated from other water types at depths of 1-15m. In both a) and b), errors

are higher for coastal water classes, and for increasing ranges. For visualization purposes, in both a) and b), we normalized the resulting

colors for each patch by the maximum value encountered for that patch across all depths and water types.

era spectral sensitivity.

In Fig. 3c, we use radiance (the product of reflectance

and illumination) to demonstrate the combined effect on

the patches of a Macbeth ColorChecker (XRite, Inc.) il-

luminated under the CIE 65 light. This dependency was

also recently observed empirically by [44]. For oceanic wa-

ters, the locus simply shifts in 3-space, but for coastal wa-

ters which are associated with strong attenuation, the locus

changes only very slightly.

In Fig. 3d, we used z1 = 1 and varied z2 up to 30 me-

ters to calculate the shift of βc. The z dependency is more

prominent in water types where the attenuation coefficient

changes rapidly within the sensitivity range of one of the

color channels, for example, the red range in coastal waters.

Fig. 3e summarizes the space of βc values for a given

camera. Variations in water type, scene radiance, and range

result in the sweeping of a 2D plane of possible βc values.

4.2. Sensitivity of Reconstruction to Error in Atten
uation Coefficients

We showed in the previous section that in practice the

effective attenuation coefficients may vary within the same

scene because of dependencies on distance and reflectance,

as opposed to the common notion (Eq. 6). In this section

we examine how much these errors influence color recon-

struction. To examine the best-case scenario, we assume

backscatter was removed properly, and look only at the error

in compensating for attenuation of the direct signal (Eq. 7).

Fig. 4a visualizes errors resulting from ignoring the z
dependency of βc. We show the reconstructed colors of six

Macbeth chart patches, for z = 7m, using βc estimated for

a different z, for all water types. We quantify the error be-
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Figure 5. Validation of our model. We measured spectral irradiance in situ at 1,5,10,15 and 20 meters depth in the Mediterranean Sea (a)

and the Red Sea (b). From these irradiance measurements, we calculated the attenuation coefficient β(λ) according to Eq. 2. Dashed lines

represent Jerlov’s water types I-III. The Mediterranean is most similar to Jerlov’s oceanic type II characterization (c), and the Red Sea is

clearer, closer to a type I (d). The attenuation coefficient we measured in situ falls on the oceanic water locus derived based on Jerlov’s

water types for both the Mediterranean Sea and the Red Sea. (e) and the tropical sea (f) Here, we adjusted the locus of βc for the ranges z1
and z2 we used to calculate the attenuation.

tween the unattenuated color J and the one reconstructed

using Eq. 5 with incorrect βc, Ĵ in the RGB space using:

cosα = J · Ĵ/(|J | · |Ĵ |) , (10)

where the angle α yields dissimilarity between them. In

general, the hue of the reconstructed colors shifts whether

βc was estimated using longer or shorter ranges, and the

larger the ∆z, the more prominent this effect gets. Water

type also affects this shift; for example, the white patch can

appear purplish when imaged in water type 9C if corrected

with βc estimated from shorter depths, or yellowish if cor-

rected with βc estimated from longer ranges.

In Fig. 4b, we simulated the same Macbeth chart patches

in water type 1C, and visualize the errors resulting from

βc estimated from other water types, at depths of 1-15m.

While the errors remain small for water types I-III at each

depth, they increase for all coastal water types, and as in the

previous case, cause hue shifts.

As we showed earlier, βc also depends on other parame-

ters. In general, the error eJ in the recovered image J due

to the error eβ in estimating β can be quantified as:

eJ =
δJ

δβ
eβ . (11)

Differentiating Eq. 7 yields δJ
δβc

= zJc and substituting this

in Eq. 11 yields
eJ
J

= zeβ . (12)

4936



Figure 6. Experiments validating our model. a,b) Synchronized with our in situ light measurements in Fig. 5, we went SCUBA diving

to 31 meters and photographed a color calibration target in roughly 5 meter intervals. This was done in two optically different water

bodies, Mediterranean (type II), and the Red Sea (type I). c) From these images we calculated βc using Eq. 8. Each green circle represents

βc calculated between corresponding patches photographed at various depth combinations. These are compared to the loci from our

theoretical derivation (Eq. 9), depicted as a gray plane. The loci was derived using the measured in situ β(λ) (Fig. 5), Nikon camera

sensitivity, with varying z, ρ and E. The observed βc fall within the loci predicted by our model (gray planes).

Thus, the relative reconstruction error linearly increases

with the object distance and the error in βc.

5. Real-World Experiments

5.1. Attenuation as a Function of Wavelength

We conducted in situ experiments underwater in the Red

Sea (tropical water body) and the Mediterranean (temperate

water body) to validate our analysis. We deployed a profil-

ing reflectance radiometer from a boat (PRR800, Biospher-

ical Instruments) which measured downwelling irradiance

underwater from the surface to 20 meters depth (Fig. 5a,b),

sampling 19 channels between 300−900 nm. The radiome-

ter was deployed at late morning using the free-fall tech-

nique [49] to avoid shade or reflectance from the boat and

to maintain the light sensor in a vertical orientation. The

data was analyzed using the PROFILER software from the

manufacturer. We then calculated the attenuation coefficient

β (Fig. 5c,d) according to Eq. 2. The measured attenuation

falls within oceanic water types in both cases: our Mediter-

ranean dive site was type II, and Red Sea, type I.

Next, we used Eq. 9 to calculate βc using the mea-

sured attenuation, in different ranges. Fig. 5e,f shows that

our in situ attenuation measurements (filled circles) in the

Mediterranean fall between Jerlov’s water types IB and II

on the derived line, which agrees with previous characteri-

zations of this water body [26]. The attenuation measure-

ments for the Red Sea fall on the space around water type

I, which generally describes clear to slightly turbid tropical

waters.

5.2. Validation of Effective Wideband Coefficients

Synchronized with our in situ light measurements, we

went SCUBA diving and photographed a color calibration

target (DGK Color Tools) at depths ranging from 30 meters

to the surface, in roughly 5 meter intervals (Fig. 6). We used

a Nikon D90 camera equipped with a Nikkor 12-24 mm

lens, in an Ikelite housing. All photos were taken at fixed

magnification, aperture and ISO, with only the shutter speed

varying, and no more than 5 cm away from the color chart

to avoid backscatter. We standardized exposure across all

images by compensating for shutter speed. Images acquired
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are shown in Fig. 6a,b for the Mediterranean and the Red

Sea, respectively. Then, using Eq. 8 we calculated βc from

the images for each of the color patches.

Fig. 6c depicts the calculated βc values from the images,

overlaid on the plane of physically-feasible values calcu-

lated using Eq. 9. We used the Nikon camera, the β(λ)
measured in situ and varied z, ρ and E. For the Mediter-

ranean, we derived the locus for water type II, and water

type I for the Red Sea. The resulting βc values calculated

from the images within the plane that stems from Eq. 9, val-

idating our analysis.

Our photographs taken in situ mostly reflect the behav-

ior of βc in our simulations, but with some shifts. These

differences are more pronounced in the dives at the temper-

ate water site, in which the color chart was held steady by

a diver suspended in blue water, where in the tropical dive

site, it was possible to place the chart on the seafloor and

measure depth with greater accuracy.

6. Application to Other Scattering Media

In this section, we extend our methodology to milk and

red wine, two commonly used participating media in com-

puter vision and graphics. The optically important compo-

nents in milk that affect its appearance are fat and protein

molecules. Authors in [17, 18] developed an appearance

model for milk based on the Lorenz-Mie scattering theory,

modelling the wavelength-dependent of attenuation coeffi-

cient β(λ) for a given fat weight and protein content. Us-

ing a constant protein content and varying fat content from

0.2 to 10 %, we derived the space of βc coefficients for

milk using a range of 1 mm (Fig. 7, X’s). Others have

estimated the RGB attenuation coefficients of milk using

different methodologies [19, 23, 32], and these data show

good agreement with the line we have derived. Similarly,

β(λ) for different kinds of red wine are provided in [36].

In Fig. 7b, we used four different kinds of red wine (X’s)

to derive the line that represents the valid space of βc, and

compared these to previously published measurements of

extinction coefficients in red and rose wine [19, 32].

7. Discussion

We showed that the range of wideband attenuation co-

efficients in the ocean is limited. Moreover, we showed

that the common naı̈ve transition from wavelength depen-

dent attenuation β(λ) to wideband attenuation βc is not as

straightforward as was done until now. The wideband co-

efficients become sensitive to the object range and original

color. This invalidates the commonly used image formation

model to some extent and we analyzed the expected errors

from this discrepancy. We validated our model with in situ

experiments in two types of water.

This analysis triggers many questions and research di-

Figure 7. Application to scattering media other than ocean wa-

ter. a) We used β(λ) for milk derived as a function of fat and

protein content (X’s) by [17], and show that the corresponding

locus is also linear. Filled circles represent previously published

attenuation (extinction) coefficients estimated from photos using

dilution (marked with ˆ [32]), models of subsurface light trans-

port (marked with # [23]), and Lorenz-Mie theory (marked with

+ [18]). Note that here we derived the locus using the spectral

response of a Nikon D90 camera, and the sensors used in these

publications were different. b) Locus of RGB attenuation coeffi-

cients for red wine, using β(λ) curves given in [36]. Filled dots

represent previously published coefficients for various types of red

wine. Those marked with ˆ were obtained from [32], and + repre-

sents a data point from [19].

rections. In the future we are planning to develop methods

that take into account the dependencies we showed. For ex-

ample, use a pre-measured range map and reconstruct the

image using distance-dependent coefficients. In addition,

using our analysis we can infer the water type out of the

coefficients, and consequently bio-optical properties, if the

camera’s sensitivity is known. Relating the ocean’s bio-

optical properties to the RGB domain will enable the use

of RGB cameras in two new functions: for reliable ecolog-

ical monitoring (e.g., plankton biomass estimation, harmful

algal blooms, floods, oil spills, etc.); and for validation of

remotely sensed datasets of ocean color.
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