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1 ETH Zürich 2 Disney Research Zürich

Abstract

We present a novel, purely affinity-based natural image

matting algorithm. Our method relies on carefully defined

pixel-to-pixel connections that enable effective use of infor-

mation available in the image and the trimap. We control

the information flow from the known-opacity regions into

the unknown region, as well as within the unknown region

itself, by utilizing multiple definitions of pixel affinities. This

way we achieve significant improvements on matte quality

near challenging regions of the foreground object. Among

other forms of information flow, we introduce color-mixture

flow, which builds upon local linear embedding and ef-

fectively encapsulates the relation between different pixel

opacities. Our resulting novel linear system formulation

can be solved in closed-form and is robust against several

fundamental challenges in natural matting such as holes

and remote intricate structures. While our method is pri-

marily designed as a standalone natural matting tool, we

show that it can also be used for regularizing mattes ob-

tained by various sampling-based methods. Our evaluation

using the public alpha matting benchmark suggests a sig-

nificant performance improvement over the state-of-the-art.

1. Introduction

Extracting the opacity information of foreground objects

from an image is known as natural image matting. Natural

image matting has received great interest from the research

community through the last decade and can nowadays be

considered as one of the classical research problems in vi-

sual computing. Mathematically, image matting requires

expressing pixel colors in the transition regions from fore-

ground to background as a convex combination of their un-

derlying foreground and background colors. The weight, or

the opacity, of the foreground color is referred to as the al-

pha value of that pixel. Since neither the foreground and

background colors nor the opacities are known, estimating

the opacity values is a highly ill-posed problem. To alleviate

the difficulty of this problem, typically a trimap is provided

in addition to the original image. The trimap is a rough seg-

mentation of the input image into foreground, background,

Figure 1. For an input image (a) and a trimap (b), we define sev-

eral forms of information flow inside the image. We begin with

color-mixture flow (c), then add direct channels of information

flow from known to unknown regions (d), and let effective share

of information inside the unknown region (e) to increase the matte

quality in challenging regions. We finally add local information

flow to get our spatially smooth result (f).

and regions with unknown opacity.

Affinity-based methods [4, 5, 11] constitute one of the

prominent natural matting approaches in literature. These

methods make use of pixel similarities to propagate the al-

pha values from the known-alpha regions to the unknown

region. They provide a clear mathematical formulation, can

be solved in closed-form, are easy to implement, and typ-

ically produce spatially consistent mattes. However, cur-

rent methods fail to effectively handle alpha gradients span-

ning large areas and spatially disconnected unknown re-

gions (i.e. holes) even in simple cases as demonstrated in

Figure 2. This is because a straightforward formulation us-

ing the pixel-to-pixel affinity definitions can not effectively

represent the complex structures that are commonly seen in

real-life objects.

In order to alleviate these shortcomings, we rely on a

careful, case-by-case design of how alpha values should

propagate inside the image. We refer to this propagation as

information flow. The key idea of our paper is a novel strat-
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egy for controlling information flow both from the known

trimap regions to the unknown region, as well as within the

unknown region itself. We formulate this strategy through

the use of a variety of affinity definitions including the

color-mixture flow, which is based on local linear embed-

ding and tailored for image matting. Step-by-step improve-

ments on the matte quality as we gradually add new build-

ing blocks of our information flow strategy are illustrated in

Figure 1. Our final linear system can be solved in closed-

form and results in a significant quality improvement over

the state-of-the-art. We demonstrate the matting quality im-

provement quantitatively, as well as through a visual inspec-

tion of challenging image regions. We also show that our

energy function can be reformulated as a post-processing

step for regularizing the spatially inconsistent mattes esti-

mated by sampling-based natural matting algorithms.

2. Related work

Opacity estimation in images is an active research topic

with a diverse set of applications, such as green-screen

keying [1], soft color segmentation [2, 17], reflection re-

moval [16], and deblurring [12]. In this paper, we aim to

estimate the opacity channel of objects in front of a complex

background, a problem referred to as natural image matting.

The numerous natural matting methods in the litera-

ture can be mainly categorized as either sampling-based or

affinity-based. In this section, we briefly review methods

that are the most relevant to our work and refer the reader

to a comprehensive survey [19] for further information.

Sampling-based methods [8, 9, 10, 15] typically seek to

gather numerous samples from the background and fore-

ground regions defined by the trimap and select the best-

fitting pair according to their individually defined criteria

for representing an unknown pixel as a mixture of fore-

ground and background. While they perform well espe-

cially around remote and challenging structures, they re-

quire affinity-based regularization to produce spatially con-

sistent mattes. Also, our experience with publicly available

matting code suggests that implementing sampling-based

methods can be challenging at times.

Affinity-based matting methods mainly make use of

pixel similarity metrics that rely on color similarity or spa-

tial proximity and propagate the alpha values from regions

with known opacity. Local affinity definitions, prominently

the matting affinity [11], operate on a local patch around the

pixel location to determine the amount of local information

flow and propagate alpha values accordingly. The matting

affinity is also widely adopted as a post-processing step in

sampling-based methods [8, 10, 15] as proposed by Gastal

and Oliveira [9].

Methods utilizing nonlocal affinities similarly use color

similarity and spatial proximity for determining how the al-

pha values of different pixels should relate to each other.

KNN matting [4] determines several neighbors for every un-

known pixel and enforces them to have similar alpha values

relative to their distance in a feature space. The manifold-

preserving edit propagation algorithm [5] also determines a

set of neighbors for every pixel, but represents each pixel as

a linear combination of its neighbors in their feature space.

Chen et al. [6] proposed a hybrid approach that uses the

sampling-based robust matting [18] as a starting point and

refines its outcome through a graph-based technique where

they combine a nonlocal affinity [5] and the matting affin-

ity. Cho et al. [7] combined the results of closed-form mat-

ting [11] and KNN matting [4], as well as the sampling-

based method comprehensive sampling [15], by feeding

them into a convolutional neural network.

In this work, we propose color-mixture flow and discuss

its advantages over the affinity definition utilized by Chen

et al. [5]. We also define three other forms of information

flow, which we use to carefully distribute the alpha informa-

tion inside the unknown region. Our approach differs from

Chen et al. [6] in that our overall information flow strategy

goes beyond combining various pixel affinities, as we dis-

cuss further in Section 3, while requiring much less memory

to solve the final system. Instead of using the results of other

affinity-based methods directly as done by Cho et al. [7],

we formulate an elegant formulation that has a closed-form

solution. To summarize, we present a novel, purely affinity-

based matting algorithm that generates high-quality alpha

mattes without making use of a sampling-based method or

a learning step.

3. Method

Trimaps are typically given as user input in natural mat-

ting, and they consist of three regions: fully opaque (fore-

ground), fully transparent (background) and of unknown

opacity. F , B and U will respectively denote these regions,

and K will represent the union of F and B. Affinity-based

methods operate by propagating opacity information from

K into U using a variety of affinity definitions. We define

this flow of information in multiple ways so that all the pix-

els inside U receives information effectively from different

regions in the image.

The opacity transitions in a matte occur as a result of the

original colors in the image getting mixed with each other

due to transparency or intricate parts of an object. We make

use of this fact by representing each pixel in U as a mixture

of similarly-colored pixels and defining a form of informa-

tion flow that we call color-mixture flow (Section 3.1). We

also add connections from every pixel in U to both F and

B to facilitate direct information flow from known-opacity

regions to even the most remote opacity-transition regions

in the image (Section 3.2). In order to distribute the infor-

mation from the color-mixture and K-to-U flows, we de-

fine intra-U flow of information, where pixels with simi-
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Input Ground-truth Trimap Closed-form KNN - HSV KNN - RGB Man. Pres. CMF-only Ours

Figure 2. We created two duotone 500x500 images and blurred them to get soft transitions between regions. The numbers show the sum

of absolute differences between the estimated alpha mattes and the ground truth. Closed-form matting [11] uses local information flow,

KNN Matting [4] uses HSV- or RGB-based similarity measure, and manifold-preserving edit propagation [5] uses LLE weights [14]. We

observe a performance improvement in large opacity gradients even when only the color-mixture flow (CMF) is used (Section 3.1). Notice

also that both large gradients and holes are recovered with high precision using our final formulation. See text for further discussion.

lar colors inside U share information on their opacity with

each other (Section 3.3). Finally, we add local informa-

tion flow, a pixel affecting the opacity of its immediate spa-

tial neighbors, which ensures spatially coherent end results

(Section 3.4). We formulate the individual forms of infor-

mation flow as energy functions and aggregate them in a

global optimization formulation (Section 3.5).

3.1. Color­mixture information flow

Due to transparent objects as well as fine structures and

sharp edges of an object that cannot be fully captured due

to the finite-resolution of the imaging sensors, certain pixels

of an image inevitably contain a mixture of corresponding

foreground and background colors. By investigating these

color mixtures, we can derive an important clue on how to

propagate alpha values between pixels. The amount of the

original foreground color in a particular mixture determines

the opacity of the pixel. Following this fact, if we represent

the color of a pixel as a weighted combination of the colors

of several others, those weights should also represent the

opacity relation between the pixels.

In order to make use of this relation, for every pixel in U ,

we find KCM = 20 similar pixels in a feature space by an

approximate K nearest neighbors search in the whole image.

We define the feature vector for this search as [r, g, b, x̃, ỹ]T ,

where x̃ and ỹ are the image coordinates normalized by im-

age width and height, and the rest are the RGB values of

the pixel. This set of neighbors, selected as similar-colored

pixels that are also close-by, is denoted by NCM
p .

We then find the weights of the combination wCM
p,q that

will determine the amount of information flow between the

pixel p and q ∈ NCM
p . The weights are defined such that

the colors of the neighbors of a pixel gives the original pixel

color when combined:

argmin
wCM

p,q

∥

∥

∥

∥

∥

∥

cp −
∑

q∈NCM
p

wCM
p,q cq

∥

∥

∥

∥

∥

∥

2

, (1)

where cp represents the 3x1 vector of RGB values. We

minimize this energy using the method by Roweis and

Saul [14]. Note that since we are only using RGB values,

the neighborhood correlation matrix computed during the

minimization has a high chance of being singular as there

could easily be two neighbors with identical colors. So, we

condition the neighborhood correlation matrix by adding

10−3IKCM×KCM
to it before inversion, where IKCM×KCM

is the identity matrix.

Note that while we use the method by Roweis and

Saul [14] to minimize the energy in (1), we do not fully

adopt their local linear embedding (LLE) method. LLE

finds a set of neighbors in a feature space and uses all the

variables in the feature space to compute the weights in or-

der to reduce the dimentionality of input data. Manifold-

preserving edit propagation [5] and LNSP matting [6] algo-

rithms make use of the LLE weights directly in their formu-

lation for image matting. However, since we are only in-

terested in the weighted combination of colors and not the

spatial coordinates, we exclude the spatial coordinates in the

energy minimization step. This increases the validity of the

estimated weights, effects of which can be observed even

in the simplest cases such as in Figure 2, where manifold-

preserving weight propagation and CMF-only results only

differ in the weight computation step.

We define the energy term representing the color-mixture

flow as:

ECM =
∑

p∈U



αp −
∑

q∈NCM
p

wCM
p,q αq





2

. (2)

3.2. K­to­U information flow

The color-mixture flow already provides useful informa-

tion on how the mixed-color pixels are formed. However,

many pixels in U receive information present in the trimap

indirectly through their neighbors, all of which can possibly
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Input Ground-truth Without K-to-U flow Without confidences (ηp) Our method

Figure 3. Direct information flow from both F and B to even the most remote regions in U increases our performance around holes

significantly (top inset). Using confidences further increases the performance, especially around regions where foreground and background

colors are similar (bottom inset).

Input No K-to-U flow With K-to-U flow

Figure 4. K-to-U flow does not perform well when the foreground

object is highly-transparent. See text for discussion.

be in U . This indirect information flow might not be enough

especially for remote regions that are far away from K.

In order to facilitate the flow of information from both

F and B directly into every region in U , we add connec-

tions from every pixel in U to several pixels in K. For

each pixel in U , we find KKU = 7 similar pixels in both

F and B separately to form the sets of pixels NF
p and NB

p

with K nearest neighbors search using the feature space

[r, g, b, 10 ∗ x̃, 10 ∗ ỹ]T to favor close-by pixels. We use

the pixels in NF
p and NB

p together to represent the pixel

color cp by minimizing the energy in (1). Using the result-

ing weights wF
p,q and wB

p,q , we define an energy function to

represent the K-to-U flow:

EKU =
∑

p∈U



αp −
∑

q∈NF
p

wF
p,qαq −

∑

q∈NB
p

wB
p,qαq





2

(3)

Note that αq = 1 for q ∈ F and αq = 0 for q ∈ B. This fact

allows us to define two combined weights, one connecting

a pixel to F and another to B, as:

wF
p =

∑

q∈NF
p

wF
p,q and wB

p =
∑

q∈NB
p

wB
p,q (4)

such that wF
p + wB

p = 1, and rewrite (3) as:

EKU =
∑

p∈U

(

αp − wF
p

)2
. (5)

The energy minimization in (1) gives us similar weights

for all q when cq are similar to each other. As a result, if

NF
p and NB

p have pixels with similar colors, the estimated

weights wF
p and wB

p become unreliable. We account for

this fact by augmenting the energy function in (5) with con-

fidence values.

We can determine the colors contributing to the mixture

estimated by (1) using the weights wF
p,q and wB

p,q:

c
F
p =

∑

q∈NF
p
wF

p,qcq

wF
p

, c
B
p =

∑

q∈NB
p
wB

p,qcq

wB
p

, (6)

and define a confidence metric according to how similar the

estimated foreground color c
F
p and background color c

B
p

are:

ηp =
∥

∥

c
F
p − c

B
p

∥

∥

2
/3. (7)

The division by 3 is to get the confidence values between

[0, 1]. We update the new energy term to reflect our confi-

dence in the estimation:

ẼKU =
∑

p∈U

ηp
(

αp − wF
p

)2
. (8)

This update to the energy term increases the matting quality

in regions with similar foreground and background colors,

as seen in Figure 3.

It should be noted that the K-to-U information flow is not

reliable when the foreground object is highly transparent, as

seen in Figure 4. This is mainly due to the low representa-

tional power of NF
p and NB

p for cp around large highly-

transparent regions as the nearest neighbors search does not

give us well-fitting pixels for wF
p,q estimation. We construct

our final linear system accordingly as we discuss further in

Section 3.5.

3.2.1 Pre-processing the trimap

Prior to determining NF
p and NB

p , we pre-process the in-

put trimap in order to facilitate finding more reliable neigh-

bors, which in turn increases the effectiveness of the K-to-U
flow. Trimaps usually have regions marked as U despite be-

ing fully opaque or transparent, as drawing a very detailed

trimap is a very cumbersome and error-prone job. Several

methods [8, 10] refine the trimap as a pre-processing step

by expanding F and B starting from their boundaries with

U as proposed by Shahrian et al. [15]. Incorporating this

technique improves our results as shown in Figure 5(d). We

also apply this extended F and B regions after the matte

estimation as a post-processing. Since the trimap trimming

method by Shahrian et al. [15] propagates known regions
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Input Trimap No trim CS trim Both trims

Figure 5. The trimap is shown overlayed on the original image (b)

where the extended foreground regions are shown with blue (CS

trimming [15]) and cyan (patch-search) and the extended back-

ground regions with red (CS trimming) and yellow (patch-search).

CS trimming makes the fully opaque / transparent regions cleaner,

while our trimming improves the results around remote structures.

only to nearby pixels, in addition to this edge-based trim-

ming, we also make use of a patch-based trimming step.

To this end, we extend the transparent and opaque re-

gions by relying on patch statistics. We fit a 3D RGB

normal distribution Np to the 3 × 3 window around each

pixel p. In order to determine the most similar distribution

in F for a pixel p ∈ U , we first find the 20 distributions

with closest mean vectors. We define the foreground match

score bFp = minq∈F B(Np, Nq), where B(·, ·) represents

the Bhattacharyya distance between two normal distribu-

tions. We find the match score for background bBp the same

way. We then select a region for pixel p according to the

following rule:

p ∈











F̂ if bFp < τc and bBp > τf

B̂ if bBp < τc and bFp > τf

Û otherwise

(9)

Simply put, an unknown pixel is marked as F̂ , i.e. in fore-

ground after trimming, if it has a strong match in F and no

match in B, which is determined by constants τc = 0.25 and

τf = 0.9. By inserting known-alpha pixels in regions far

away from U -K boundaries, we further increase the matting

performance in challenging remote regions (Figure 5(e)).

3.3. Intra­U information flow

Each individual pixel in U receives information through

the color-mixture and K-to-U flows. In addition to these, we

would like to distribute the information inside U effectively.

We achieve this by encouraging pixels with similar colors

inside U to have similar opacity.

For each pixel in U , we find KU = 5 nearest neigh-

bors only inside U to determine N̂U
p using the feature

vector defined as v = [r, g, b, x̃/20, ỹ/20]T . Notice that

we scale the coordinate members of the feature vector we

used in Section 3.1 to decrease their effect on the near-

est neighbor selection. This lets N̂U
p have pixels inside

U that is far away, so that the information moves more

freely inside the unknown region. We use the neighborhood

NU
p = N̂U

p ∪ {q | p ∈ N̂U
q } to make sure that information

flows both ways between p to q ∈ N̂U
p . We then deter-

mine the amount of information flow using the L1 distance

between feature vectors:

wU
p,q = max

(

1− ‖vp − vq‖1 , 0
)

∀q ∈ NU
p . (10)

The energy term for intra-U information flow then can be

defined as:

EUU =
∑

p∈U

∑

q∈NU
p

wU
p,q (αp − αq)

2
. (11)

The information sharing between the unknown pixels in-

creases the matte quality around intricate structures as

demonstrated in Figure 1(e).

KNN matting [4] uses a similar affinity definition to

make similar-color pixels have similar opacities. However,

relying only on this form of information flow alone for the

whole image creates some typical artifacts in the resulting

alpha mattes. Depending on the feature vector definition

and the image colors, the resulting alpha values may erro-

neously underrepresent the smooth transitions (KNN - HSV

case in Figure 2) when the neighbors of the pixels in U hap-

pen to be mostly in only F or B, or create flat, constant al-

pha regions instead of subtle gradients (KNN - RGB case in

Figure 2). Restricting information flow to be applied solely

based on color similarity fails to represent the complex al-

pha transitions or wide regions with an alpha gradient.

3.4. Local information flow

Spatial connectivity is one of the main cues for informa-

tion flow. We connect each pixel in U to its 8 immediate

neighbors denoted by NL
p to ensure spatially smooth mat-

tes. The amount of local information flow should also adapt

to strong edges in the image.

To determine the amount of local flow, we rely on the

matting affinity definition proposed by Levin et al. [11].

The matting affinity utilizes the local patch statistics to de-

termine the weights wL
p,q , q ∈ NL

p . We define our related

energy term as follows:

EL =
∑

p∈U

∑

q∈NL
p

wL
p,q (αp − αq)

2
. (12)

Despite representing local information flow well, matting

affinity by itself fails to represent large transition regions

(Figure 2 top), or isolated regions that have weak or no spa-

tial connection to F or B (Figure 2 bottom).

3.5. Linear system and energy minimization

Our final energy function is a combination of the four en-

ergy definitions representing each form of information flow:

E1 = ECM +σKUEKU +σUUEUU +σLEL+λET , (13)
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Input Ground-truth Sampling-based α̂ [15] Regularization by [9] Our regularization

Figure 6. The matte regularization method by Gastal and Oliveira [9] loses remote details (top inset) or fills in holes (bottom inset) while

our regularization method is able to preserve these details caught by the sampling-based method.

where σKU = 0.05, σUU = 0.01, σL = 1 and λ = 100
are algorithmic constants determining the strength of corre-

sponding information flows, and

ET =
∑

p∈F

(αp − 1)
2
+

∑

p∈B

(αp − 0)2

is the energy term to keep the known opacity values con-

stant. For an image with N pixels, by defining N × N
sparse matrices WCM , WUU and WL that have non-zero el-

ements for the pixel pairs with corresponding information

flows and the vector wF that has elements wF
p for p ∈ U ,

1 for p ∈ F and 0 for p ∈ B, we can rewrite (13) in matrix

form as:

E1 =α
TLIFMα+ (α−w

F )TσKUH(α−w
F )+

(α−αK)
TλT (α−αK),

(14)

where T is an N ×N diagonal matrix with diagonal entry

(p, p) 1 if p ∈ K and 0 otherwise, H is a sparse matrix with

diagonal entries ηp as defined in (7), αK is a row vector

with pth entry being 1 if p ∈ F and 0 otherwise, α is a

row-vector of the alpha values to be estimated, and LIFM

is defined as:

LIFM =(DCM −WCM )T (DCM −WCM )+

σUU (DUU −WUU ) + σL(DL −WL),
(15)

where the diagonal matrix D(·)(i, i) =
∑

j W(·)(i, j).
The energy in (14) can be minimized by solving

(LIFM + λT + σKUH)α = (λT + σKUH)wF . (16)

We define a second energy function that excludes the K-

to-U information flow:

E2 = ECM + σUUEUU + σLEL + λET , (17)

which can be written in matrix form as:

E2 = α
TLIFMα+ (α−αK)

TλT (α−αK), (18)

and can be minimized by solving:

(LIFM + λT )α = λT αK. (19)

We solve the linear systems of equations in (16) and (19)

using the preconditioned conjugate gradients method [3].

As mentioned before, the K-to-U information flow is

not effective for highly transparent objects. To determine

whether to include the K-to-U information flow and solve

for E1, or to exclude it and solve for E2 for a given image,

we use a simple histogram-based classifier to determine if

we expect a highly transparent result.

If the matte is highly transparent, the pixels in U are ex-

pected to mostly have colors that are a mixture of F and

B colors. On the other hand, if the true alpha values are

mostly 0 or 1 except for soft transitions, the histogram of U
will likely be a linear combination of the histograms of F
and B as U will mostly include very similar colors to that

of K. Following this observation, we attempt to express the

histogram of the pixels in U , DU , as a linear combination

of DF and DB. The histograms are computed from the 20

pixel-wide region around U in F and B, respectively. We

define the error e, the metric of how well the linear combi-

nation represents the true histogram, as:

e = min
a,b

‖aDF + bDB −DU‖
2. (20)

Higher e values indicate a highly-transparent matte, in

which case we prefer E2 over E1.

4. Matte regularization for sampling-based

matting methods

Sampling-based natural matting methods usually select

samples for each pixel in U either independently or by pay-

ing little attention to spatial coherency. In order to obtain

a spatially coherent matte, the common practice is to com-

bine their initial guesses for alpha values with a smooth-

ness measure. Multiple methods [8, 9, 10, 15] adopt the

post-processing method proposed by Gastal and Oliveira [9]

which combines the matting affinity [11] with the sampling-

based alpha values and corresponding confidences. This

post-processing technique leads to improved mattes, but

since it involves only local smoothness, the results can still

be suboptimal as seen in Figure 6(d).

Our approach with multiple forms of information flow

can also be used for post-processing in a way similar to that

of Gastal and Oliveira [9]. Given the initial alpha values α̂p

and confidences η̂p found by a sampling-based method, we

define the matte regularization energy:

ER = E2 + σR

∑

p∈U

η̂p(αp − α̂p)
2, (21)
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Table 1. Our scores in the alpha matting benchmark [13] together with the top-performing published methods at the time of submission. S,

L and U denote the three trimap types, small, large and user, included in the benchmark. Bold and blue numbers represent the best scores

obtained among all the published methods in the benchmark∗.

Average Rank∗∗ Troll Doll Donkey Elephant Plant Pineapple Plastic bag Net

Overall S L U S L U S L U S L U S L U S L U S L U S L U S L U

Sum of Absolute Differences

Ours 2.1 2.8 1.6 2.0 10.3 11.2 12.5 5.6 7.3 7.3 3.8 4.1 3 1.4 2.3 2.0 5.9 7.1 8.6 3.6 5.7 4.6 18.3 19.3 15.8 20.2 22.2 22.3

DCNN [7] 3.2 4.6 1.6 3.4 12.0 14.1 14.5 5.3 6.4 6.8 3.9 4.5 3.4 1.6 2.5 2.2 6.0 6.9 9.1 4.0 6.0 5.3 19.9 19.2 19.1 19.4 20.0 21.2

CSC [8] 10 13.5 6.4 10.3 13.6 15.6 14.5 6.2 7.5 8.1 4.6 4.8 4.2 1.8 2.7 2.5 5.5 7.3 9.7 4.6 7.6 6.9 23.7 23.0 21.0 26.3 27.2 25.2

LNSP [6] 10.7 7.3 10.3 14.6 12.2 22.5 19.5 5.6 8.1 8.8 4.6 5.9 3.6 1.5 3.5 3.1 6.2 8.1 10.7 4.0 7.1 6.4 21.5 20.8 16.3 22.5 24.4 27.8

Mean Squared Error

Ours 3.5 5.0 2.1 3.4 0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.3 0.2 0.1 0.1 0.1 0.4 0.4 0.6 0.2 0.3 0.3 1.3 1.2 0.8 0.8 0.8 0.9

DCNN [7] 3.7 4.5 1.9 4.6 0.4 0.5 0.7 0.2 0.3 0.4 0.2 0.3 0.2 0.1 0.1 0.1 0.4 0.4 0.8 0.2 0.4 0.3 1.3 1.2 1.0 0.7 0.7 0.9

LNSP [6] 9.2 6.6 8.6 12.4 0.5 1.9 1.2 0.2 0.4 0.5 0.3 0.4 0.2 0.0 0.1 0.2 0.4 0.5 0.8 0.2 0.3 0.4 1.4 1.2 0.8 1.0 1.1 1.5

KL-D [10] 11.6 11.0 10.5 13.3 0.4 0.9 0.7 0.3 0.5 0.5 0.3 0.4 0.3 0.1 0.2 0.1 0.4 0.4 1.2 0.4 0.6 0.6 1.7 2.0 2.1 0.8 0.8 0.9

∗ Some columns do not have a bold number when the best-scoring algorithm for that particular image-trimap pair is not among the top-ranking methods included here.

∗∗ The ranks presented here only take the already-published methods at the time of the submission into account, hence could differ from the online version of the benchmark.

where σR = 0.05 determines how much loyalty should be

given to the initial values. This energy can be written in the

matrix form as

ER =α
TLIFMα+ (α− α̂)TσRĤ(α− α̂)+

(α−αK)
TλT (α−αK)

(22)

and minimized by solving

(LIFM + λT + σRĤ)α = (λT + σRĤ)α̂. (23)

Figure 6 shows that this non-local regularization of mattes

is more effective especially around challenging foreground

structures such as long leaves or holes as seen in the in-

sets. In the next section, we will numerically explore the

improvement we achieve by replacing the matte regulariza-

tion step with ours in several sampling-based methods.

5. Results and discussion

We quantitatively evaluate the proposed algorithm using

the public alpha matting benchmark [13]. At the time of

submission, our method ranks in the first place according to

the sum-of-absolute-differences (SAD) and mean-squared

error (MSE) metrics. The results can be seen in Table 1.

Our unoptimized research code written in Matlab requires

on average 50 seconds to process a benchmark image.

We also compare our results qualitatively with the

closely related methods in Figure 7. We use the results

that are available on the matting benchmark for all except

manifold-preserving matting [5] which we implemented

ourselves. Figure 7(c,d,e) show that using only one form of

information flow is not effective in a number of scenarios

such as wide unknown regions or holes in the foreground

object. The strategy DCNN matting [7] follows is using

the results of closed-form and KNN matting directly rather

than formulating a combined energy using their affinity def-

initions. When both methods fail, the resulting combination

also suffers from the errors as it is apparent in the pineap-

ple and troll examples. The neural network they propose

Table 2. Performance improvement achieved when our matte reg-

ularization method replaces the method by Gastal and Oliveira [9]

in the post-processing steps of 3 sampling-based methods. The

training dataset [13] of 27 images and 2 trimaps per image (S and

L) was used for this comparison.

Sum of Absolute Differences Mean Squared Error

Overall S L Overall S L

KL-D [10] 24.4 % 22.4 % 26.5 % 28.5 % 25.9 % 31.0 %

SM [9] 6.0 % 3.7 % 8.4 % 13.6 % 8.5 % 18.8 %

CS [15] 4.9 % 10.0 % -0.1 % 18.7 % 25.5 % 11.8 %

also seems to produce mattes that appear slightly blurred.

LNSP matting [6], on the other hand, has issues around

regions with holes (pineapple example) or when the fore-

ground and background colors are similar (donkey and troll

examples). It can also oversmooth some regions if the true

foreground colors are missing in the trimap (plastic bag ex-

ample). Our method performs well in these challenging sce-

narios mostly because, as detailed in Section 3, we carefully

define intra-unknown region and unknown-to-known region

connections which results in a more robust linear system.

We also compare the proposed post-processing method

detailed in Section 4 with the state-of-the-art method by

Gastal and Oliveira [9] on the training dataset provided

by Rhemann et al. [13]. We computed the non-smooth

alpha values and confidences using the publicly avail-

able source code for comprehensive sampling [15], KL-

divergence sampling [10] and shared matting [9]. Table 2

shows the percentage improvement we achieve over Gastal

and Oliveira [9] for each algorithm using SAD and MSE as

error measures. Figure 8 shows an example for regularizing

all three sampling-based methods. As the information com-

ing from alpha values and their confidences found by the

sampling-based method is distributed more effectively by

the proposed method, the challenging regions such as fine

structures or holes detected by the sampling-based method

are preserved when our method is used for post-processing.
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Figure 7. Several examples from the alpha matting benchmark [13] are shown (a) with trimaps overlayed onto the images (b). The mattes

are computed by closed-form matting [11] (c), KNN matting [4] (d), manifold-preserving edit propagation [5] (e), LNSP matting [6] (f),

DCNN matting [7] (g) and the proposed method (h). See text for discussion.

Input and ground-truth Regularization of KL-D [10] Regularization of SM [9] Regularization of CS [15]

Figure 8. Matte regularization using the proposed method (cyan) or [9] (magenta) for three sampling-based methods (yellow). Our method

is able to preserve remote details while producing a clean matte (top inset) and preserve sharpness even around textured areas (bottom).

6. Conclusion

In this paper, we proposed a purely affinity-based nat-

ural image matting method. We introduced color-mixture

flow, a specifically tailored form of LLE weights for nat-

ural image matting. By carefully designing flow of infor-

mation from the known region to the unknown region, as

well as distributing the information inside the unknown re-

gion, we addressed several challenges that are common in

natural matting. We showed that the linear system we for-

mulate outperforms the state-of-the-art in the alpha matting

benchmark. We also showed that our formulation can be

used to replace the commonly used matte refinement step in

sampling-based matting methods to achieve an increase in

the final matte quality.
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