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Abstract

In this paper we introduce a model of lifelong learning,

based on a Network of Experts. New tasks / experts are

learned and added to the model sequentially, building on

what was learned before. To ensure scalability of this pro-

cess, data from previous tasks cannot be stored and hence is

not available when learning a new task. A critical issue in

such context, not addressed in the literature so far, relates

to the decision which expert to deploy at test time. We in-

troduce a set of gating autoencoders that learn a represen-

tation for the task at hand, and, at test time, automatically

forward the test sample to the relevant expert. This also

brings memory efficiency as only one expert network has to

be loaded into memory at any given time. Further, the au-

toencoders inherently capture the relatedness of one task to

another, based on which the most relevant prior model to be

used for training a new expert, with fine-tuning or learning-

without-forgetting, can be selected. We evaluate our method

on image classification and video prediction problems.

1. Introduction

In the age of deep learning and big data, we face a sit-

uation where we train ever more complicated models with

ever increasing amounts of data. We have different mod-

els for different tasks trained on different datasets, each of

which is an expert on its own domain, but not on others. In

a typical setting, each new task comes with its own dataset.

Learning a new task, say scene classification based on a pre-

existing object recognition network trained on ImageNet,

requires adapting the model to the new set of classes and

fine-tuning it with the new data. The newly trained network

performs well on the new task, but has a degraded perfor-

mance on the old ones. This is called catastrophic forget-

ting [12], and is a major problem facing life long learning

techniques [32, 33, 31], where new tasks and datasets are

added in a sequential manner.

Ideally, a system should be able to operate on different

tasks and domains and give the best performance on each

of them. For example, an image classification system that
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Figure 1. The architecture of our Expert Gate system.

is able to operate on generic as well as fine-grained classes,

and in addition performs action and scene classification. If

all previous training data were available, a direct solution

would be to jointly train a model on all the different tasks

or domains. Each time a new task arrives along with its

own training data, new layers/neurons are added, if needed,

and the model is retrained on all the tasks. Such a solu-

tion has three main drawbacks. The first is the risk of the

negative inductive bias when the tasks are not related or

simply adversarial. Second, a shared model might fail to

capture specialist information for particular tasks as joint

training will encourage a hidden representation beneficial

for all tasks. Third, each time a new task is to be learned,

the whole network needs to be re-trained. Apart from the

above drawbacks, the biggest constraint with joint training

is that of keeping all the data from the previous tasks. This

is a difficult requirement to be met, especially in the era of

big data. For example, ILSVRC [30] has 1000 classes, with

over a million images, amounting to 200 GB of data. Yet

the AlexNet model trained on the same dataset, is only 200

MB, a difference in size of three orders of magnitude. With

increasing amounts of data collected, it becomes less and

less feasible to store all the training data, and more practi-

cal to just store the models learned from the data.

Without storing the data, one can consider strategies like

using the previous model to generate virtual samples (i.e.
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use the soft outputs of the old model on new task data to

generate virtual labels) and use them in the retraining phase

[5, 21, 32]. This works to some extent, but is unlikely to

scale as repeating this scheme a number of times causes a

bias towards the new tasks and an exponential buildup of

errors on the older ones, as we show in our experiments.

Moreover, it suffers from the same drawbacks as the joint

training described above. Instead of having a network that

is jack of all trades and master of none, we stress the need

for having different specialist or expert models for different

tasks, as also advocated in [13, 16, 31]. Therefore we build

a Network of Experts, where a new expert model is added

whenever a new task arrives and knowledge is transferred

from previous models.

With an increasing number of task specializations, the

number of expert models increases. Modern GPUs, used

to speed up training and testing of neural nets, have limited

memory (compared to CPUs), and can only load a relatively

small number of models at a time. We obviate the need for

loading all the models by learning a gating mechanism that

uses the test sample to decide which expert to activate ( see

Figure 1 ). For this reason, we call our method Expert Gate.

Unlike [17], who train one Uber network for performing

vision tasks as diverse as semantic segmentation, object de-

tection and human body part detection, our work focuses on

tasks with a similar objective. For example, imagine a drone

trained to fly through an environment using its frontal cam-

era. For optimal performance, it needs to deploy different

models for different environments such as indoor, outdoor

or forest. Our gating mechanism then selects a model on the

fly based on the input video. Another application could be

a visual question answering system, that has multiple mod-

els trained using images from different domains. Here too,

our gating mechanism could use the data itself to select the

associated task model.

Even if we could deploy all the models simultaneously,

selecting the right expert model is not straightforward. Just

using the output of the highest scoring expert is no guaran-

tee for success as neural networks can erroneously give high

confidence scores, as shown in [27]. We also demonstrate

this in our experiments. Training a discriminative classifier

to distinguish between tasks is also not an option since that

would again require storing all training data. What we need

is a task recognizer that can tell the relevance of its associ-

ated task model for a given test sample. This is exactly what

our gating mechanism provides. In fact, also the prefrontal

cortex of the primate brain is considered to have neural rep-

resentations of task context that act as a gating in different

brain functions [23].

We propose to implement such task recognizer using an

undercomplete autoencoder as a gating mechanism. We

learn for each new task or domain, a gating function that

captures the shared characteristics among the training sam-

ples and can recognize similar samples at test time. We

do so using a one layer under-complete autoencoder. Each

autoencoder is trained along with the corresponding ex-

pert model and maps the training data to its own lower di-

mensional subspace. At test time, each task autoencoder

projects the sample to its learned subspace and measures the

reconstruction error due to the projection. The autoencoder

with the lowest reconstruction error is used like a switch,

selecting the corresponding expert model (see Figure 1).

Interestingly, such autoencoders can also be used to eval-

uate task relatedness at training time, which in turn can be

used to determine which prior model is more relevant to a

new task. We show how, based on this information, Expert

Gate can decide which specialist model to transfer knowl-

edge from when learning a new task and whether to use

fine-tuning or learning-without-forgetting [21].

To summarize, our contributions are the following. We

develop Expert Gate, a lifelong learning system that can se-

quentially deal with new tasks without storing all previous

data. It automatically selects the most related prior task to

aid learning of the new task. At test time, the appropriate

model is loaded automatically to deal with the task at hand.

We evaluate our gating network on image classification and

video prediction problems.

The rest of the paper is organized as follows. We dis-

cuss related work in Section 2. Expert Gate is detailed in

Section 3, followed by experiments in Section 4. We finish

with concluding remarks and future work in Section 5.

2. Related Work

Multi-task learning Our end goal is to develop a system

that can reach expert level performance on multiple tasks,

with tasks learned sequentially. As such, it lies at the inter-

section between multi-task learning and lifelong learning.

Standard multi-task learning [5] aims at learning multiple

tasks in a joint manner. The objective is to use knowledge

from different tasks, the so called inductive bias [25], in or-

der to improve performance on individual tasks. Often one

shared model is used for all tasks. This has the benifit of

relaxing the number of required samples per task but could

lead to suboptimal performance on the individual tasks. On

the other hand, multiple models can be learned, that are each

optimal for their own task, but utilize inductive bias / knowl-

edge from other models [5].

To determine which related tasks to utilize, [35] cluster

the tasks based on the mutual information gain when using

the information from one task while learning another. This

is an exhaustive process. As an alternative, [15, 38, 19] as-

sume that the parameters of related task models lie close

by in the original space or in a lower dimensional subspace

and thus cluster the tasks’ parameters. They first learn task

models independently, then use the tasks within the same

cluster to help improving or relearning their models. This
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requires learning individual task models first. Alternatively,

we use our tasks autoencoders, that are fast to train, to iden-

tify related tasks.

Multiple models for multiple tasks One of the first ex-

amples of using multiple models, each one handling a sub-

set of tasks, was by Jacobs et al. [16]. They trained an adap-

tive mixture of experts (each a neural network) for multi-

speaker vowel recognition and used a separate gating net-

work to determine which network to use for each sample.

They showed that this setup outperformed a single shared

model. A downside, however, was that each training sam-

ple needed to pass through each expert, for the gating func-

tion to be learned. To avoid this issue, a mixture of one

generalist model and many specialist models has been pro-

posed [1, 13]. At test time, the generalist model acts as a

gate, forwarding the sample to the correct network. How-

ever, unlike our model, these approaches require all the

data to be available for learning the generalist model, which

needs to be retrained each time a new task arrives.

Lifelong learning without catastrophic forgetting In

sequential lifelong learning, knowledge from previous tasks

is leveraged to improve the training of new tasks, while tak-

ing care not to forget old tasks, i.e. preventing catastrophic

forgetting [12]. Our system obviates the need for storing all

the training data collected during the lifetime of an agent, by

learning task autoencoders that learn the distribution of the

task data, and hence, also capture the meta-knowledge of

the task. This is one of the desired characteristics of a life-

long learning system, as outlined by Silver et al. [33]. The

constraint of not storing all previous training data has been

looked at previously by Silver and Mercer [32]. They use

the output of the previous task networks given new training

data, called virtual samples, to regularize the training of the

networks for new tasks. This improves the new task perfor-

mance by using the knowledge of the previous tasks. More

recently, the Learning without Forgetting framework of [21]

uses a similar regularization strategy, but learns a single net-

work for all tasks: they finetune a previously trained net-

work (with additional task outputs) for new tasks. The con-

tribution of previous tasks/networks in the training of new

networks is determined by task relatedness metrics in [32],

while in [21], all previous knowledge is used, regardless of

task relatedness. [21] demonstrates sequential training of a

network for only two tasks. In our experiments, we show

that the shared model gets worse when extended to more

than two tasks, especially when task relatedness is low.

Like us, two recent architectures, namely the progressive

network [31] and the modular block network [34], also use

multiple networks, a new one for each new task. They add

new networks as additional columns with lateral connec-

tions to the previous nets. These lateral connections mean

that each layer in the new network is connected to not only

its previous layer in the same column, but also to previous

layers from all previous columns. This allows the networks

to transfer knowledge from older to newer tasks. However,

in these works, choosing which column to use for a particu-

lar task at test time is done manually, and the authors leave

its automation as future work. Here, we propose to use an

autoencoder to determine which model, and consequently

column, is to be selected for a particular test sample.

3. Our Method

We consider the case of lifelong learning or sequential

learning where tasks and their corresponding data come one

after another. For each task, we learn a specialized model

(expert) by transferring knowledge from previous tasks –

in particular, we build on the most related previous task.

Simultaneously we learn a gating function that captures the

characteristics of each task. This gate forwards the test data

to the corresponding expert resulting in a high performance

over all learned tasks.

The question then is: how to learn such a gate function

to differentiate between tasks, without having access to the

training data of previous tasks? To this end, we learn a low

dimensional subspace for each task/domain. At test time

we then select the representation (subspace) that best fits

the test sample. We do that using an undercomplete autoen-

coder per task. Below, we first describe this autoencoder in

more detail (Section 3.1). Next, we explain how to use them

for selecting the most relevant expert (Section 3.2) and for

estimating task relatedness (Section 3.3).

3.1. The Autoencoder Gate

An autoencoder [4] is a neural network that learns to

produce an output similar to its input [11]. The network is

composed of two parts, an encoder f = h(x), which maps

the input x to a code h(x) and a decoder r = g(h(x)),
that maps the code to a reconstruction of the input. The

loss function L(x, g(h(x))) is simply the reconstruction er-

ror. The encoder learns, through a hidden layer, a lower

dimensional representation (undercomplete autoencoder) or

a higher dimensional representation (overcomplete autoen-

coder) of the input data, guided by regularization criteria to

prevent the autoencoder from copying its input. A linear

autoencoder with a Euclidean loss function learns the same

subspace as PCA. However, autoencoders with non-linear

functions yield better dimensionality reduction compared to

PCA [14]. This motivates our choice for this model.

Autoencoders are usually used to learn feature represen-

tations in an unsupervised manner or for dimensionality re-

duction. Here, we use them for a different goal. The lower

dimensional subspace learned by one of our undercomplete

autoencoders will be maximally sensitive to variations ob-

served in the task data but insensitive to changes orthogonal

to the manifold. In other words, it represents only the vari-

ations that are needed to reconstruct relevant samples. Our
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Figure 2. Our autoencoder gate structure.

main hypothesis is that the autoencoder of one domain/task

should thus be better at reconstructing the data of that task

than the other autoencoders. Comparing the reconstruction

errors of the different tasks’ autoencoders then allows to

successfully forward a test sample to the most relevant ex-

pert network. It has been stated by [2] that in regularized

(over-complete) autoencoders, the opposing forces between

the risk and the regularization term result in a score like be-

havior for the reconstruction error. As a result, a zero recon-

struction loss means a zero derivative which could be a local

minimum or a local maximum. However, we use an unregu-

larized one-layer under-complete autoencoder and for these,

it has been shown [3, 24] that the mean squared error cri-

terion we use as reconstruction loss estimates the negative

log-likelihood. There is no need in such a one-layer autoen-

coder to add a regularization term to pull up the energy on

unseen data because the narrowness of the code already acts

as an implicit regularizer.

Preprocessing We start from a robust image represen-

tation x, namely the activations of the last convolutional

layer of AlexNet pretrained on ImageNet. Before the en-

coding layer, we pass this input through a preprocessing

step, where the input data is standardized, followed by a

sigmoid function. The standardization of the data, i.e. sub-

tracting the mean and dividing the result by the standard

deviation, is essential as it increases the robustness of the

hidden representation to input variations. Normally, stan-

dardization is done using the statistics of the data that a net-

work is trained on, but in this case, this is not a good strat-

egy. This is because, at test time, we compare the relative

reconstruction errors of the different autoencoders. Differ-

ent standardization regimes lead to non-comparable recon-

struction errors. Instead, we use the statistics of Imagenet

for the standardization of each autoencoder. Since this is a

large dataset it gives a good approximation of the distribu-

tion of natural images. After standardization, we apply the

sigmoid function to map the input to a range of [0 1].

Network architecture We design a simple autoencoder

that is no more complex than one layer in a deep model,

with a one layer encoder/decoder (see Figure 2). The en-

coding step consists of one fully connected layer followed

by ReLU [39]. We make use of ReLU activation units as

they are fast and easy to optimize. ReLU also introduces

sparsity in the hidden units which leads to better generaliza-

tion. For decoding, we use again one fully connected layer,

but now followed by a sigmoid. The sigmoid yields values

between [0 1], which allows us to use cross entropy as the

loss function. At test time, we use the Euclidean distance to

compute the reconstruction error.

3.2. Selecting the most relevant expert

At test time, and after learning the autoencoders for the

different tasks, we add a softmax layer that takes as input

the reconstruction errors eri from the different tasks autoen-

coders given a test sample x. The reconstruction error eri of

the i-th autoencoder is the output of the loss function given

the input sample x. The softmax layer gives a probability

pi for each task autoencoder indicating its confidence:

pi =
exp(−eri/t)∑
j exp(−erj/t)

(1)

where t is the temperature. We use a temperature value of

2 as in [13, 21] leading to soft probability values. Given

these confidence values, we load the expert model associ-

ated with the most confident autoencoder. For tasks that

have some overlap, it may be convenient to activate more

than one expert model instead of taking the max score only.

This can be done by setting a threshold on the confidence

values, see section 4.2.

3.3. Measuring task relatedness

Given a new task Tk associated with its data Dk, we first

learn an autoencoder for this task Ak. Let Ta be a previous

task with associated autoencoder Aa. We want to measure

the task relatedness between task Tk and task Ta. Since

we do not have access to the data of task Ta, we use the

validation data from the current task Tk. We compute the

average reconstruction error Erk on the current task data

made by the current task autoencoder Ak and, likewise, the

average reconstruction error Era made by the previous task

autoencoder Aa on the current task data. The relatedness

between the two tasks is then computed:

Rel(Tk, Ta) = 1− (
Era − Erk

Erk
) (2)

Note that the relatedness value is not symmetric. Applying

this to every previous task, we get a relatedness value to

each previous task.

We exploit task relatedness in two ways. First, we use it

to select the most related task to be used as prior model for

learning the new task. Second, we exploit the level of task

relatedness to determine which transfer method to use: fine-

tuning or learning-without-forgetting (LwF) [21]. We found

in our experiments that LwF only outperforms fine-tuning
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Algorithm 1 Expert Gate

Training Phase input: expert-models (E1, ., Ej),
tasks-autoencoders (A1, ., Aj), new task (Tk), data

(Dk) ; output: Ek

1: Ak =train-task-autoencoder (Dk)
2: (rel,rel-val)=select-most-related-task(Dk,Ak,{A})

3: if rel-val >rel-th then

4: Ek=LwF(Erel, Dk)
5: else

6: Ek=fine-tune(Erel, Dk)
7: end if

Test Phase input: x ; output: prediction

8: i=select-expert({A}, x)
9: prediction = activate-expert(Ei, x)

when the two tasks are sufficiently related. When this is not

the case, enforcing the new model to give similar outputs for

the old task may actually hurt performance. Fine-tuning,

on the other hand, only uses the previous task parameters

as a starting point and is less sensitive to the level of task

relatedness. Therefore, we apply a threshold on the task

relatedness value to decide when to use LwF and when to

fine-tune. Algorithm 1 shows the main steps of our Expert

Gate in both training and test phase.

4. Experiments

First, we compare our method against various baselines

on a set of three image classification tasks (Section 4.1).

Next, we analyze our gate behavior in more detail on a big-

ger set of tasks (Section 4.2), followed by an analysis of

our task relatedness measure (Section 4.3). Finally, we test

Expert Gate on a video prediction problem (Section 4.4).

Implementation details We use the activations of the last

convolutional layer of an AlexNet pre-trained with Ima-

geNet as image representation for our autoencoders. We

experimented with the size of the hidden layer in the au-

toencoder, trying sizes of 10, 50, 100, 200 and 500, and

found an optimal value of 100 neurons. This is a good com-

promise between complexity and performance. If the task

relatedness is higher than 0.85, we use LwF; otherwise, we

use fine-tuning. We use the MatConvNet framework [36]

for all our experiments.

4.1. Comparison with baselines

We start with the sequential learning of three image clas-

sification tasks: in order, we train on MIT Scenes [29] for

scene classification, Caltech-UCSD Birds [37] for fine-

grained bird classification and Oxford Flowers [28] for fine-

grained flower classification. To simulate a scenario in

which an agent or robot has some prior knowledge, and is

then exposed to datasets in a sequential manner, we start off

Table 1. Classification accuracy for the sequential learning of 3

image classification tasks. Methods with * assume all previous

training data is still available, while methods with ** use an oracle

gate to select the proper model at test time.
Method Scenes Birds Flowers avg

Joint Training* 63.1 58.5 85.3 68.9

Multiple fine-tuned models** 63.4 56.8 85.4 68.5

Multiple LwF models** 63.9 58.0 84.4 68.7

Single fine-tuned model 63.4 - - -

50.3 57.3 - -

46.0 43.9 84.9 58.2

Single LwF model 63.9 - - -

61.8 53.9 - -

61.2 53.5 83.8 66.1

Expert Gate (ours) 63.5 57.6 84.8 68.6

with an AlexNet model pre-trained on ImageNet. We com-

pare against the following baselines:

1. A single jointly-trained model: Assuming all training

data is always available, this model is jointly trained (by

finetuning an AlexNet model pretrained on ImageNet) for

all three tasks together.

2. Multiple fine-tuned models: Distinct AlexNet models

(pretrained on ImageNet) are finetuned separately, one for

each task. At test time, an oracle gate is used, i.e. a test

sample is always evaluated by the correct model.

3. Multiple LwF models: Distinct models are learned with

learning-without-forgetting [21], one model per new task,

always using AlexNet pre-trained on ImageNet as previous

task. This is again combined with an oracle gate.

4. A single fine-tuned model: one AlexNet model (pre-

trained on ImageNet) sequentially fine-tuned on each task.

5. A single LwF model: LwF sequentially applied to mul-

tiple tasks. Each new task is learned with all the outputs

of the previous network as soft targets for the new train-

ing samples. So, a network (pre-trained on ImageNet) is

first trained for Task 1 data without forgetting ImageNet

(i.e. using the pretrained AlexNet predictions as soft tar-

gets). Then, this network is trained with Task 2 data, now

using ImageNet and Task 1 specific layers outputs as soft

targets; and so on.

For baselines with multiple models (2 and 3), we rely on

an oracle gate to select the right model at test time. So re-

ported numbers for these are upper bounds of what can be

achieved in practice. The same holds for baseline 1, as it

assumes all previous training data is stored and available.

Table 1 shows the classification accuracy achieved on the

test sets of the different tasks. For our Expert Gate system

and for each new task, we first select the most related previ-

ous task (including ImageNet) and then learn the new task

expert model by transferring knowledge from the most re-

lated task model, using LwF or finetuning.

For the Single fine-tuned model and Single LwF

model, we also report intermediate results in the sequen-

tial learning. When learning multiple models (one per

new task), LwF improves over vanilla fine-tuning for
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Scenes and Birds, as also reported by [21]1. How-

ever, for Flowers, performance degrades compared to

fine-tuning. We measure a lower degree of task re-

latedness to ImageNet for Flowers than for Birds or

Scenes (see Figure 3) which might explain this effect.

I S FB

F

B

S

I 0.92 0.87 0.83

0.81

0.82

0.79

Figure 3. Task relatedness.

First letters indicate tasks.

Comparing the Single

fine-tuned model (learned

sequentially) with the Mul-

tiple fine-tuned models,

we observe an increasing

drop in performance on

older tasks: sequentially

fine-tuning a single model

for new tasks shows catas-

trophic forgetting and is not

a good strategy for lifelong learning. The Single LwF model

is less sensitive to forgetting on previous tasks. However,

it is still inferior to training exclusive models for those

tasks (Multiple fine-tuned / LwF models), both for older

as well as newer tasks. Lower performance on previous

tasks is because of a buildup of errors and degradation

of the soft targets of the older tasks. This results in LwF

failing to compensate for forgetting in a sequence involving

more than 2 tasks. This also adds noise in the learning

process of the new task. Further, the previous tasks have

varying degree of task relatedness. On these datasets, we

systematically observed the largest task relatedness values

for ImageNet (see Figure 3). Treating all the tasks equally

prevents the new task from getting the same benefit of

ImageNet as in the Multiple LwF models setting. Our

Expert Gate always correctly identifies the most related

task, i.e. ImageNet. Based on the relatedness degree, it

used LwF for Birds and Scenes, while fine-tuning was

used for Flowers. As a result, the best expert models were

learned for each task. At test time, our gate mechanism

succeeds to select the correct model for 99.2% of the test

samples. This leads to superior results to those achieved

by the other two sequential learning strategies (Single

fine-tuned model and Single LwF model). We achieve

comparable performance on average to the Joint Training

that has access to all the tasks data. Also, performance is

on par with Multiple fine-tuned models or Multiple LwF

models that both assume having the task label for activating

the associated model.

4.2. Gate Analysis

The goal of this experiment is to further evaluate our Ex-

pert Gate’s ability in successfully selecting the relevant net-

work(s) for a given test image. For this experiment, we add

3 more tasks: Stanford Cars dataset [18] for fine-grained car

1Note these numbers are not identical to [21] but show similar trends.

At the time of experimentation, the code for LwF was not available, so we

implemented this ourselves in consultation with the authors of [21], and

used parameters provided by them.

classification, FGVC-Aircraft dataset [22] for fine-grained

classification of aircraft, and VOC Actions, the human ac-

tion classification subset of VOC challenge 2012 [9]. This

last dataset has multi-label annotations. For sake of consis-

tency, we only use the actions with single label. For these

newly added datasets, we use the bounding boxes instead of

the full images as the images might contain more than one

object. So in total we deal with 6 different tasks: Scenes,

Birds, Flowers, Cars, Aircrafts, and Actions, along with Im-

ageNet that is considered as a generalist model or initial

pre-existing model.

We compare again with Joint Training, where we fine-

tune the ImageNet pre-trained AlexNet jointly on the six

tasks assuming all the data is available. We also compare

with a setting with multiple fine-tuned models where the

model with the maximum score is selected (Most confident

model). For our Expert Gate, we follow the same regime as

in the previous experiment. The most related task is always

ImageNet. Based on our task relatedness threshold, LwF

was selected for Actions, while Aircrafts and Cars were

fine-tuned. Table 2 shows the results.

Even though the jointly trained model has been trained

on all the previous tasks data simultaneously, its average

performance is inferior to our Expert Gate system. This

can be explained by the negative inductive bias where some

tasks negatively affect others, as is the case for Scenes and

Cars.

As we explained in the Introduction, deploying all mod-

els and taking the max score (Most confident model) is not

an option: for many test samples the most confident model

is not the correct one, resulting in poor performance. Ad-

ditionally, with the size of each expert model around 220

MB and the size of each autoencoder around 28 MB, there

is almost an order of magnitude difference in memory re-

quirements.

Comparison with a discriminative classifier Finally,

we compare with a discriminative classifier trained to pre-

dict the task. For this classifier, we first assume that all data

from the previous tasks are stored, even though this is not in

line with a lifelong learning setup. Thus, it serves as an up-

per bound. For this classifier (Discriminative Task Classi-

fier) we use a neural net with one hidden layer composed of

100 neurons (same as our autoencoder code size). It takes as

input the same data representation as our autoencoder gate

and its output is the different tasks labels. Table 3 compares

the performance of our gate on recognizing each task data to

that of the discriminative classifier. Further, we test the sce-

nario of a discriminative classifier with the number of stored

samples per task varying from 10-2000 (Figure 5). It ap-

proaches the accuracy of our gate with 2000 samples. Note

that this is 1

2
to 1

3
of the size of the used datasets. For larger

datasets, an even higher number of samples would proba-

bly be needed to match performance. In spite of not having
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Table 2. Classification accuracy for the sequential learning of 6 tasks. Method with * assumes all the training data is available.

Method Scenes Birds Flowers Cars Aircrafts Actions avg

Joint Training* 59.5 56.0 85.2 77.4 73.4 47.6 66.5

Most confident model 40.4 43.0 69.2 78.2 54.2 8.2 48.7

Expert Gate 60.4 57.0 84.4 80.3 72.2 49.5 67.3

Table 3. Results on discriminating between the 6 tasks (classification accuracy)

Method Scenes Birds Flowers Cars Aircrafts Actions avg

Discriminative Task Classifier - using all the tasks data 97.0 98.6 97.9 99.3 98.8 95.5 97.8

Expert Gate (ours) - no access to the previous tasks data 94.6 97.9 98.6 99.3 97.6 98.1 97.6

access to any of the previous tasks data, our Expert Gate

achieves similar performance to the discriminative classi-

fier. In fact, our Expert Gate can be seen as a sequential

classifier with new classes arriving one after another. This

is one of the most important results from this paper: with-

out ever having simultaneous access to the data of different

tasks, our Expert Gate based on autoencoders manages to

assign test samples to the relevant tasks equally accurately

as a discriminative classifier.

Figure 4 shows some of the few confusion cases for our

Expert Gate. For some test samples even humans have a

hard time telling which expert should be activated. For ex-

ample, Scenes images containing humans can also be clas-

sified as Actions. To deal with such cases, it may be prefer-

able in some settings to allow more than one expert to be

activated. This can be done by setting a threshold on the

probabilities for the different tasks. We tested this scenario

with a threshold of 0.1 and observed 3.7% of the test sam-

ples being analyzed by multiple expert models. Note that

in this case we can only evaluate the label given by the cor-

responding task as we are missing the ground truth for the

other possible tasks appearing in the image. This leads to an

average accuracy of 68.2%, i.e. a further increase of 0.9%.

4.3. Task Relatedness Analysis

In the previous cases, the most related task was always

Imagenet. This is due to the similarity between the im-

ages of these different tasks and those of Imagenet. Also,

the wide diversity of Imagenet classes enables it to cover

a good range of these tasks. Does this mean that Ima-

genet should be the only task to transfer knowledge from,

regardless of the current task nature? To answer this ques-

tion, we add three more different tasks to our previous bas-

ket: the Google Street View House Numbers SVHN [26]

for digit recognition, the Chars74K dataset [8] for charac-

ter recognition in natural images (Letters), and the Mnist

dataset [20] for handwritten digits. For Chars74K, we use

the English set and exclude the digits, considering only the

characters. From the previous set, we pick the two most

related tasks, Actions and Scenes, and the two most unre-

lated tasks, Cars and Flowers. We focus on LwF [21] as a

method for knowledge transfer. We also consider ImageNet

as a possible source. We consider the following knowl-

edge transfer cases: Scenes → Actions, ImageNet → Ac-

tions, SVHN → Letters, ImageNet → Letters, SVHN →
Mnist, ImageNet → Mnist, Flowers → Cars and Imagenet

→ Cars. Figure 6 shows the performance of LwF compared

to fine-tuning the tasks with pre-trained AlexNet (indicated

by ”Only X”) along with the degree of task relatedness. The

red line indicates the threshold of 0.85 task relatedness used

in our previous experiments.

In the case of a high score for task relatedness, the LwF

uses the knowledge from the previous task and improves

performance on the target task – see e.g. (SVHN→Letter,

Scenes→Actions, ImageNet→Actions). When the tasks are

less related, the method fails to improve and starts to de-

grade its performance, as in (Imagenet→Letters, SVHN →
Mnist). When the tasks are highly unrelated, LwF can even

fail to reach a good performance for the new task, as in the

case of (Imagenet→ Cars, Flowers→ Cars). This can be

explained by the fact that each task is pushing the shared

parameters in a different direction and thus the model fails

to reach a good local minimum. We conclude that our gate

autoencoder succeeds to predict when a task could help an-

other in the LwF framework and when it cannot.

4.4. Video Prediction

Next, we evaluate our Expert Gate for video prediction

in the context of autonomous driving. We use a state of

the art system for video prediction, the Dynamic Filter Net-

work (DFN) [7]. Given a sequence of 3 images, the task for

the network is to predict the next 3 images. This is quite

a structured task, where the task environment and training

data affect the prediction results quite significantly. An au-

tonomous vehicle that uses video prediction needs to be able

to load the correct model for the current environment. It

might not have all the data from the beginning, and so it

becomes important to learn specialists for each type of en-

vironment, without the need for storing all the training data.

Even when all data is available, joint training does not give

the best results on each domain, as we show below.

We show experiments conducted on three domains/tasks:

for Highway, we use the data from DFN [7], with the same

train/test split; for Residential data, we use the two longest

sequences from the KITTI dataset [10]; and for City data,

we use the Stuttgart sequence from the CityScapes dataset
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Figure 4. Examples of confusion cases made by our Expert Gate.
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Figure 5. Comparison between our gate and the discriminative

classifier with varying number of stored samples per task.

Figure 6. Relatedness analysis. The relatedness values are normal-

ized for the sake of better visualization. The red line indicates our

relatedness threshold value.

[6], i.e. the only sequence in that dataset with densely sam-

pled frames. We use a 90/10 train/test split on both residen-

tial and city datasets. We train the 3 tasks using 3 differ-

ent regimes: sequential training using a Single Fine-tuned

Model, Joint Training and Expert Gate. For video predic-

tion, LwF does not seem applicable. In this experiment, we

use the autoencoders only as gating function. We do not use

task relatedness. Video prediction results are expressed as

the average pixel-wise L1-distance between predicted and

ground truth images (lower is better), and shown in table 4.

Similar trends are observed as for the image classifica-

tion problem: sequential fine-tuning results in catastrophic

forgetting, where a model fine-tuned on a new dataset de-

teriorates on the original dataset after fine-tuning. Joint

training leads to better results on each domain, but requires

all the data for training. Our Expert Gate system gives

better results compared to both sequential and joint train-

ing. These numbers are supported by qualitative results as

well (Figure 7). Please refer to the supplementary materi-

als for more figures. These experiments show the potential

of our Expert Gate system for video prediction tasks in au-

tonomous driving applications.

Table 4. Video prediction results (average pixel L1 distance). For

methods with * all the previous data needs to be available.
Method Highway Residential City avg

Single Fine-tuned Model 13.4 - - -

25.7 45.2 - -

26.2 50.0 17.3 31.1

Joint Training* 14.0 40.7 16.9 23.8

Expert Gate (ours) 13.4 40.3 16.5 23.4

Figure 7. Qualitative results for video prediction. From left to

right: last ground truth image (in a sequence of 3); predicted image

using sequential fine-tuning and using Expert Gate. Examining the

lane markers, we see that Expert Gate is visually superior.

5. Conclusions and Future Work

In the context of lifelong learning, most work has fo-
cused on how to exploit knowledge from previous tasks and
transfer it to a new task. Little attention has gone to the
related and equally important problem of how to select the
proper (i.e. most relevant) model at test time. This is the
topic we tackle in this paper. To the best of our knowl-
edge, we are the first to propose a solution that does not re-
quire storing data from previous tasks. Surprisingly, Expert
Gate’s autoencoders can distinguish different tasks equally
well as a discriminative classifier trained on all data. More-
over, they can be used to select the most related task and
the most appropriate transfer method during training. Com-
bined, this gives us a powerful method for lifelong learning,
that outperforms not only the state-of-the-art but also joint
training of all tasks simultaneously.
Our current system uses only the most related model for
knowledge transfer. As future work, we will explore the
possibility of leveraging multiple related models for the
training of new tasks – for instance, by exploring new strate-
gies for balancing the contribution of the different tasks by
their relatedness degree rather than just varying the learn-
ing rates. Also a mechanism to decide when to merge tasks
with high relatedness degree rather than adding a new ex-
pert model, seems an interesting research direction.
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