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Abstract

Prior approaches to line segment detection typically in-

volve perceptual grouping in the image domain or global

accumulation in the Hough domain. Here we propose a

probabilistic algorithm that merges the advantages of both

approaches. In a first stage lines are detected using a global

probabilistic Hough approach. In the second stage each de-

tected line is analyzed in the image domain to localize the

line segments that generated the peak in the Hough map.

By limiting search to a line, the distribution of segments

over the sequence of points on the line can be modeled as a

Markov chain, and a probabilistically optimal labelling can

be computed exactly using a standard dynamic program-

ming algorithm, in linear time. The Markov assumption

also leads to an intuitive ranking method that uses the local

marginal posterior probabilities to estimate the expected

number of correctly labelled points on a segment. To assess

the resulting Markov Chain Marginal Line Segment Detec-

tor (MCMLSD) we develop and apply a novel quantitative

evaluation methodology that controls for under- and over-

segmentation. Evaluation on the YorkUrbanDB dataset

shows that the proposed MCMLSD method outperforms the

state-of-the-art by a substantial margin.

1. Introduction

Much of our visual world can be approximated as piece-

wise planar, particularly in built environments. The bound-

aries and creases of these piecewise planar surfaces project

to the image as line segments, and as a consequence the

accurate detection of line segments continues to be one of

the most important low-level problems in the field of com-

puter vision. Line segments are important features for many

tasks, including feature matching across views [23], vanish-

ing point detection [15] and 3D reconstruction [22, 30, 12].

Two frameworks have been popular for line segment de-

tection: perceptual grouping and global Hough analysis.

1.1. The perceptual grouping approach

In the perceptual grouping framework, a set of heuristics

typically based upon geometric grouping cues (e.g., prox-

imity, good continuation) is used to group roughly collinear

local features (e.g., edges or vectors tangent to isophotes)

into extended line segments, which are evaluated according

to some quality of fit measure. An early example is the

hierarchical heuristic framework developed by Boldt and

colleagues [3]. More recent multi-stage grouping efforts

include the SSWMS approach of Nieto et al. [21], which

involves an iterative selection of image points with strongly

oriented gradient structure, followed by an iterative growing

process, the approach of Lu et al. [19], which involves both

linking and splitting, and the biologically inspired approach

of Liu et al. [18], which employs ‘simple cell’ filters to

detect local oriented structure, ‘complex cell’ mechanisms

that locally integrate these responses and ‘hyper-complex’

mechanisms to detect endpoints.

An alternative to this multi-stage grouping approach is

to analyze the covariance matrix of image locations in a set

of connected edges and label a set as a line segment if the

smallest eigenvalue falls below a threshold [11, 17]. While

beautifully simple, these methods are not robust to gaps or

intersections in the edge map.

Another issue in this perceptual grouping framework is

that some threshold on the quality of fit measure must be ap-

plied in order to discriminate ‘true’ line segments from false

conjunctions that might arise by chance. This issue was ad-

dressed in the LSD framework introduced by von Gioi et al.

[26] and based on earlier work by Desolneux et al. [7]. In

this framework the so-called a-contrario approach is used

to explicitly compute the probability that inferred line seg-

ments might have occurred by chance, given a maximum

entropy model of the edge map. (This is related to the min-

imum reliable scale null hypothesis testing framework for

edge detection developed by Elder & Zucker [8].) While

this approach does not eliminate the need for a threshold,

it transfers the threshold to a quantity (e.g., expected num-

ber of false positives per image) that is much easier to set

rationally. A much faster version of this method dubbed
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EDLines was later introduced by Akinlar & Topal [1].

Recent work in this area has focused on trying to dis-

criminate salient or important line segments from less im-

portant ‘background’ segments. Kim et al. [14] used a com-

bination of luminance and geometric features to select the

most significant edges, reporting superior performance to

LSD on two test images. Brown et al. [4] used a measure

of divergence between colour statistics on either side of a

hypothesized line segment to favour salient segments. The

method outperformed LSD and Hough methods using quan-

titative measures of repeatability and registration accuracy

on image pairs (see Section 3 below).

1.2. The Hough approach

A drawback of the perceptual grouping approach is that

local decisions are made before potentially relevant global

information can be brought to bear. The Hough approach

avoids this problem by accumulating edges over the entire

image into a histogram of potential line positions and orien-

tations. Accuracy can be improved by modeling uncertainty

in local edges and propagating that uncertainty to the Hough

map [24].

While the Hough approach to line detection has the ad-

vantage of integrating information globally, identifying the

endpoints that define the extent of the line segment in the

image is not necessarily straightforward. A number of

methods scan the detected lines in the image space look-

ing for a maximal chain of connected or nearly-connected

edges [10, 20]. Others have attempted to identify the end-

points of each line segment by analyzing the exact shape

of a characteristic ‘butterfly’ pattern around the associated

peak in the Hough map [13, 9, 28, 29, 27]. One major limi-

tation of this approach is that only one segment can be found

per line, whereas in built environments it is quite common

to find multiple co-linear segments.

2. Our approach

The advantage of the Hough approach is that it can in-

tegrate all evidence for line hypotheses prior to inference.

The perceptual grouping approach, on the other hand, al-

lows endpoints to be detected more directly, and permits

the identification of multiple segments per line.

Our two-stage method combines the advantages of these

two approaches. In the first stage we employ the probabilis-

tic Hough method of Tal & Elder [24] to identify globally

optimal lines. In the second stage we search each of these

lines in the image for the segment(s) that gave rise to it.

The key observation that recommends this approach is

that narrowing the search for segments from the 2D image

to 1D lines allows the problem to be modeled as the la-

belling of hidden states in a linear Markov chain model. The

problem of determining the maximum probability (MAP)

assignment of segments can then be shown to have an op-

timal substructure property that leads to an exact dynamic

programming solution in linear time.

The benefits of this approach are several:

1. Each of the lines identified by a peak in the Hough

map results from careful accumulation of the global

evidence for the line, and thus will more accurately

identify the position and orientation (ρ, θ) parameters

of the line segments than will a few local edges.

2. The lines identified by the probabilistic Hough method

have a natural order according to their significance in

the Hough map, allowing the line segment search to be

limited to the most significant lines.

3. In urban scenes, co-linear line segments are common,

arising from architectural repetition seen in cladding,

windows, etc. Unlike many Hough methods, our ap-

proach allows multiple segments to be recovered for

each line.

4. Limiting search to a line allows the problem of deter-

mining maximum probability segments to be solved

exactly, using dynamic programming, in linear time.

3. Prior Evaluation Methodology

Due in part to a lack of high quality labelled ground

truth, most line segment detection methods are evaluated

only qualitatively on real imagery [3, 9, 26, 1, 17]. More re-

cently, quantitative evaluations have been conducted based

on datasets consisting of pairs of images related by a known

homography [4]. This is a promising method, but it does

suffer from two potential drawbacks. First, it is restricted to

an analysis of co-planar line segments. Second, the evalu-

ation presupposes that the goal of line segment detection is

for the association of these segments across images for the

purposes of homography or disparity estimation. However

there are many other possible applications - single view re-

construcion, for example.

While task-specific evaluation methodologies may be

appropriate in some cases, it would be nice to have an

evaluation method that is more general. In this work we

present a new methodology for quantitative evaluation of

line segment detectors on real images that does not assume

a specific task, using images from the YorkUrbanDB dataset

(www.elderlab.yorku.ca/YorkUrbanDB/).

4. Algorithm

4.1. Line Detection

One problem with traditional Houghing methods is

that noise in the observations tends to cause each line
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to generate multiple peaks in the Hough map. To ad-

dress this issue we employ a probabilistic Hough transform

method [24] (code available from elderlab.yorku.

ca/resources), using the default Hough resolution:

∆ρ = 0.2 pixels, ∆θ = 0.1 deg. The method uses edges de-

tected by the multi-scale Elder & Zucker edge detector [8],

models uncertainty in the location and orientation of the de-

tected edges and propagates this uncertainty to the Hough

map. This propagation of uncertainty produces a smooth

Hough map that is roughly resolution invariant and greatly

reduces the multiple response problem. The problem is mit-

igated further by a sequential line extraction step in which

each peak in the Hough map is visited in descending order

of significance, and edges contributing to the peak are sub-

tracted from the Hough map when it is visited.

4.2. Line Segment Detection

Each selected peak in the Hough map identifies a line

that extends from one of the image borders to another. In

general, this line is only partially occupied by line segments

in the image. The goal is now to find these segments, based

on the location and orientation of nearby edges.

Prior work [6] suggests that most edges generated by a

line and detected by the Elder & Zucker edge detector lie

within one pixel of the line. To ensure we capture all edges

related to a line we extend our search to all pixels within

two pixels of the line (Fig. 1). The orthogonal projections

of these pixel locations onto the line then define an ordi-

nal sampling i ∈ [1, . . . , N ] of the line. We let xi repre-

sent the binary hidden segment state (ON or OFF) indicat-

ing whether a visible segment is present at position i on the

line, di the distance from the line to the associated pixel

and yi the associated image observation at that pixel. Each

observation yi consists of 1-2 features:

1. A binary variable ei indicating whether an edge exists

at this pixel.

2. The angular deviation θi of the edge from the line, if

the edge exists.

These features provide information about the probable

state of the line at the associated position:

p(yi|xi) ∝ p(ei = 1|xi, di)p(θi|xi, ei = 1) for edge pixels.

p(yi|xi) ∝ p(ei = 0|xi, di) for non-edge pixels.

(Note that we have assumed that the angular deviation θi is

independent of the distance di of the pixel from the line.)

We learned these distributions from the 640×480 pixel

images and hand-labelled ground truth lines of the YorkUr-

banDB training dataset [6]. Figs. 2(a-b) show the likeli-

hoods p(ei = 1|xi = ON, di) and p(ei = 1|xi = OFF, di)
as functions of di for ON and OFF states respectively. We

represent these distributions as histograms. (The likeli-

hoods for non-edge observations p(ei = 0|xi = ON, di)

Figure 1: Orthogonal projections (thin black lines) of all

pixels within two pixels of a detected line (thick black line)

define an ordinal sampling of the line i ∈ [1 . . . N ]. Pixels

within this band occupied by edges (shown red on grey)

with orientations similar to the line support the assignment

of the ON state for the associated segment variable xi at

sampled line locations.

and p(ei = 0|xi = OFF, di) are the complements of the

edge likelihoods.)

Figs. 2(c-d) show the probability p(θi|xi, ei = 1) as a

function of the angular deviation θi for ON (xi = 1) and

OFF (xi = 0) states, respectively. For the ON state we

approximate the heavy-tailed distribution as a mixture of a

uniform and a Gaussian distribution (shown in red). For the

OFF state we employ a histogram representation.
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0

Distance (pixels)

p
(y

i)

(a)
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(b)
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Angular Error (deg)

(c)

-90 -60 -30 0 30 60 90

Angular Error (deg)
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Figure 2: Likelihoods for line segment extraction, learned

from the YorkUrbanDB training dataset [6]. (a-b) Likeli-

hood p (ei|xi, di) for distance di of observations from line

for (a) ON (xi = 1) and (b) OFF (xi = 0) states. (c-d)

Probability p (θi|xi, ei) for the angular deviation θi of ob-

served edges from the line for (c) ON (xi = 1) and (d) OFF

(xi = 0) states.

Given these observations, we wish to determine the se-
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quence of hidden states x1, ..., xN that maximizes

p(x1, . . . , xN |y1, . . . , yN )

∝ p(y1, . . . , yN |x1, . . . , xN )p(x1, . . . , xN ) (1)

We assume that, when conditioned on the hidden states

xi, the observations yi are mutually independent and inde-

pendent of all xj , j 6= i. We further assume that the hidden

states are first order Markov so that Eqn. 1 becomes

p(x1, . . . , xN |y1, . . . , yN )

∝ p(y1|x1)p(x1)

N∏

i=2

p(yi|xi)p(xi|xi−1) (2)

The Markov assumption implies an exponential distribution

of segment lengths; for the YorkUrbanDB training dataset

we have verified that this distribution is indeed very close

to exponential for segments down to ∼ 15 pixels in length.

(For smaller segments the density falls off, possibly due to

difficulties in hand-labelling shorter segments.)

Table 1 shows values for the priors p(x1) and

p(xi|xi−1), estimated from the 51 640×480 pixel images

of the YorkUrbanDB labeled training dataset [6]. (Note that

since the probabilities for ON and OFF states sum to 1 there

are only 3 free parameters.) We make the approximation

that p(xi|xi−1) is independent of the variation in spacing

between points on the line; since the average segment in

the YorkUrbanDB generates more than 500 point samples,

errors due to this approximation tend to average out.

The standard errors for these parameter estimates are rel-

atively small, and we have verified that variation within this

range has negligible effect on results. While these parame-

ters are specific to the YorkUrbanDB dataset and may there-

fore be sub-optimal for other kinds of imagery, they can

be generalized to other image resolutions. Assuming that

the number of segments per line and their relative length

are functions of the scene and not the sensor, p(OFF ) and

p(ON) will be resolution-invariant and the probability of

state changes will vary inversely with resolution. For exam-

ple, doubling the resolution to 1280×960 pixels will halve

the probability of transition from OFF to ON or ON to OFF.

The factoring of the global probability of the line seg-

ment configuration along the line confers an optimal sub-

structure property that allows a dynamic programming so-

lution to the problem of finding the maximum a posteri-

ori configuration. In particular, let the cost function Ci(j)
represent the minimum negative log probability of all se-

quences {x1, . . . , xi} ending in state xi = j. Then the max-

imum probability sequence of states over the whole line is

the sequence that minimizes minj CN (j).

Defining the cost of transitioning from state j at location

Table 1: Prior marginal probabilities p (xi) and conditional

transition probabilities p (xi|xi−1) for the hidden segment

state xi, derived from the YorkUrbanDB training dataset.

Parameter Mean Std. Err.

p(OFF ) 0.75 0.0079

p(ON) 0.25 0.0079

p(OFF |OFF ) 0.9986 0.0001

p(ON |OFF ) 0.0014 0.0001

p(ON |ON) 0.9949 0.0004

p(OFF |ON) 0.0051 0.0004

i− 1 to state k at location i as

ci(j, k) = − log (p(yi|xi = k)p(xi = k|xi−1 = j)) ,

i = 2, . . . , N (3)

we then have that

C1(k) = − log (p(y1|x1 = k)p(x1 = k)) (4)

Ci(k) = min
j

(Ci−1(j) + ci(j, k)) , i = 2, . . . , N (5)

Thus the cost function Ci(k) can be computed sequen-

tially from i = 1 to i = N in O(N) time (Fig. 3). In order

to recover the maximum probability configuration, an aux-

iliary data structure containing

ŝi(k) = argmin
j

(Ci−1(j) + ci(j, k)) (6)

is maintained, allowing the maximum probability configu-

ration to be unwound from xN back to x1.

ON

OFF C1(0)

1 i+1i N

C1(1) Ci(1) Ci+1(1)

Ci(0) Ci+1(0)

CN(1)
CN(1)

CN(0)
CN(0)

ci(1,1)

ci(0,1)

ci(1,0)

ci(0,0)

Figure 3: The sequence of segment state variables xi are

assumed to form a Markov chain. To compute the MAP

solution we build a trellis table from the first line position

i = 1 to the last line position i = N that identifies the mini-

mum cost (negative log probability) to reach either possible

state (ON or OFF) at each position i. The selected MAP

path is shown in red, and the resulting ON/OFF states are

indicated by the solid/dashed line above the trellis.

Once a line segment is detected all associated edges (i.e.,

edges within two pixels of the segment) are removed from
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the image. This serves to reduce the incidence of multiple

detections for the same segment.

5. Ranking

Having extracted MAP segments for each line in the im-

age, we would like to rank their significance. This will al-

low downstream applications to select only the number of

segments needed to support their application, and can serve

to eliminate low-ranked noise segments. Our Markov chain

model allows us to approach the ranking problem from a

probabilistic perspective. In particular, we evaluate the fol-

lowing four probabilistic methods for ranking a segment of

length M extending from position i to position i+M :

Ranking Method 1. Posterior probability of line segment.

p(xi...i+M = ON |yi...i+M )

This ranking criterion will maximize the expected number

of segments with no false alarms.

Ranking Method 2. Posterior probability of line segment

multiplied by length.

p(xi...i+M = ON |yi...i+M ) ∗M

This criterion will maximize the expected total length of

segments with no false alarms.

Ranking Method 3. Posterior odds for fully ON vs fully

OFF configurations.

p(xi...i+M = ON |yi...i+M )

p(xi...i+M = OFF |yi...i+M )

Ranking Method 4. Sum of marginal posterior probabili-

ties for ON states. The forward-backward algorithm is used

to compute the posterior probability at each location.

i+M∑

j=i

p(xj = ON |yi:i+M )

This measure reflects the expected number of ON samples

on the segment, and thus will maximize the expected num-

ber of correctly labelled locations within the segment.

6. Evaluation Methodology

It is important to evaluate line segment detection algo-

rithms on real, complex images. Prior evaluations have

generally been qualitative (i.e., visual). Recent efforts to

quantify the evaluation require pairs of images related by

a known homography, and are perhaps thus best suited for

matching tasks [4]. Here we propose an alternative quan-

titative evaluation methodology that does not assume the

existence of image pairs or known homographies and thus

could be applicable for a broader range of tasks.

Our proposed evaluation method does require an image

dataset in which important segments have been labelled.

Here we employ the YorkUrbanDB dataset [6], which con-

sists of 102 images of urban scenes, randomly divided into

training and test subsets of 51 images each. In each image,

major line segments that conform to one of the three so-

called Manhattan directions [5] (i.e., vertical or horizontal

and conforming to the main directions of orthogonal walls,

streets, etc.) have been identified and labelled by hand. This

database has been used widely to train and evaluate algo-

rithms for vanishing point detection [25], line detection [2]

and Manhattan frame estimation [6, 24].

We assume that the line segment detector under evalu-

ation returns a list of line segments in ranked order. We

sample each ground truth and detector segment uniformly

with a sample spacing of one pixel and use these point sam-

ples to evaluate the detector as a function of the number k

of top-ranked segments selected, varying k from 10 to 500.

For each value of k we first identify potential point

matches as those (ground truth, detector) point pairs lying

within a threshold distance of 2
√
2 pixels of each other.

This threshold was selected to associate any pair of lines

that could potentially appear in the image with less than

a one-pixel intervening gap. We then sort these candi-

date matches by Euclidean distance and accept matches in

greedy fashion starting with the smallest distance, matching

each point at most once, and thus arriving at a near-optimal

bipartite match. Having associated ground truth and de-

tector points, we employ the Hungarian algorithm [16] to

identify the optimal bipartite match between ground truth

and detector segments that maximizes the total number of

points matched.

Now that we have a 1:1 association between ground truth

and detector segments, it remains to evaluate the quality of

this association. We propose three evaluative measures.

1. Recall as a function of the number of segments. We

can compute a measure of recall as the number of ground

truth point samples matched to detector samples, divided by

the total number of ground truth point samples. This mea-

sure of recall is problematic if we allow matches without

regard to the segments on which the points lie, as it does not

penalize under-segmentation (joining multiple short seg-

ments into a single long segment) or over-segmentation

(breaking up a long segment into multiple short segments).

However, constraining matches to lie on 1:1 associated

segments solves both of these problems. In the case of

under-segmentation, only one of the shorter ground truth

segments is matched, leading to a high penalty. In the case

of over-segmentation, only one of the detector segments is

matched, again generating a high penalty.

Without additional constraints, using recall by itself is

still problematic, as it is biased toward detectors that report

a larger number of segments, thereby maximizing the prob-
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ability of detecting ground truth points. We address this by

comparing recall as a function of the same number k of seg-

ments reported.

2. Recall as a function of total segment length. There

is still a potential bias in this recall-vs-k measure. Ne-

glecting co-linear ground truth segments, the method can

be biased toward detectors that report segments of maximal

length (i.e., global lines) as this minimizes the risk of miss-

ing ground truth points. To address this potential bias, our

second performance measure reports recall as a function of

the sum L of the lengths of detected segments. This severely

penalizes detectors that report over-long segments.

3. Precision-Recall. Our third and final performance mea-

sure is conventional precision-recall. We can take as a mea-

sure of precision the number of ground truth point samples

matched to detector samples, divided by the total number of

detector point samples. Again, by enforcing a 1:1 match-

ing at the segment level, both under-segmentation and over-

segmentation are penalized.

Since the YorkUrbanDB dataset does not provide a com-

plete labelling of all segments in an image, detection of a

segment that is not in the dataset does not necessarily repre-

sent an error. For this reason, the absolute precision values

reported here should be interpreted with caution. Never-

theless, since the segments labelled in the YorkUrbanDB

dataset are highly-visible features projecting from promi-

nent structures in the scene, it is reasonable to expect a supe-

rior detector to rank these highly, and therefore attain higher

relative precision values compared to inferior detectors.

To facilitate future comparisons, the code that performs

these evaluations as well as the code for the MCMLSD

algorithm is available online at elderlab.yorku.ca/

resources.

7. Results

Our MCMLSD algorithm generates an average of 414

lines and 488 line segments for each 640×480-pixel im-

age of the YorkUrbanDB training dataset. Note that not

all lines generate a segment and some generate several seg-

ments. Fig. 4 shows the 10 top-ranked segments produced

by each of our four ranking methods on an example image.

We find that the multiplicative nature of the first criterion

favours short high-confidence segments. This problem can

be addressed by multiplying by segment length (Method 2),

forming a contrast between purely ON and purely OFF con-

figurations (Method 3), or summing the ON point marginals

(Method 4) to estimate the number of correctly labeled

points.

Figure 5 shows the recall for each of these ranking meth-

ods as a function of the number of segments returned, on

the YorkUrbanDB training dataset. The bias toward shorter

segments leads to poor recall for Method 1. Methods 2-4

yield much better results and in the sequel we adopt Method

(a) Method 1 (b) Method 2 (c) Method 3 (d) Method 4

Figure 4: 10 top-ranked segments for four ranking methods

on example image.

4 as our ranking method of choice, given its superior perfor-

mance and intuitive probabilistic interpretation. We call the

resulting algorithm the Markov Chain Marginal Line Seg-

ment Detector (MCMLSD) to capture the importance of the

Markov chain model of the line as well as the probabilistic

ranking that maximizes the expected number of correctly

labelled points on the segment.
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Figure 5: Performance of the four ranking methods de-

scribed in section 5, as measured by recall vs number of

segments returned, on the YorkUrbanDB training dataset.

Next, we compare the results of the proposed MCMLSD

method against three other leading methods for which code

is available online: The Progressive Probabilistic Hough

Transform (PPHT) method of Matas et al. [20], the slice

sampling weighted mean shift (SSWMS) method of Nieto

et al. [21] and the widely-used line segment detector (LSD)

method of Grompone von Gioi et al. [26].

We used the OpenCV implementation of the PPHT al-

gorithm. This algorithm has five parameters - we set these

to the values used by Nieto et al. [21] in their comparative

evaluation: ρ resolution = 1 pixel, θ resolution = 1 deg, ac-

cumulator threshold = 80, minimum line segment length =

30 pixels, maximum gap between points in the same seg-

ment = 10 pixels. Matas et al. do not specify a ranking

method, however the method is designed to detect the most

salient segments first. We therefore use the order in which

the algorithm reports the segments as the ranking order.

We obtained the code for the SSWMS method from

(sourceforge.net/projects/lswms. (The au-

thors renamed the method LSWMS there.) There are two
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parameters - we used the author-recommended default val-

ues for both (orientation threshold ∆θ = 22.5 deg and mean

shift bandwidth = 3 pixels). The SSWMS algorithm is de-

signed to output segments roughly in descending order of

salience - we therefore use this order to rank the segments.

We obtained the code for LSD from www.ipol.im/

pub/art/2012/gjmr-lsd/. We rank segments using

the criterion recommended by the authors and employed in

later work [4], namely in increasing order of the number of

expected false alarms, which is one of the outputs of the

LSD detector.

Fig. 6 shows the top-ranked 90 segments returned by

each algorithm on four example images from the YorkUr-

banDB test dataset. It is clear that the proposed MCMLSD

method tends to return more complete line segments, more

evenly distributed over the major structures of the scene.

Results for all images in the YorkUrbanDB test dataset can

be found in the supplementary material.

Fig. 7 provides a quantitative comparison of the four

methods on the YorkUrbanDB test set. On all three mea-

sures the proposed MCMLSD method outperforms the

other three methods by a significant margin, particularly

in the high-recall regime. For example, from Fig. 7(a) we

can see that for k = 90 returned segments, our MCMLSD

method attains a recall score of 0.62, 48% higher than

the next-best method LSD. While the proposed MCMLSD

method achieves a maximum recall rate of 0.80, the SS-

WMS and PPHT methods are unable to achieve recall rates

higher than 0.5 and LSD tops out at 0.57. From Fig. 7(c) we

can see that at its maximal recall rate, the LSD method has a

precision of only 0.27, whereas the MCMLSD method has

a precision of 0.40 for the same rate of recall, an improve-

ment of 48%.

The MCMLSD algorithm adapts well to different im-

age resolutions as long as the transition probabilities are

adjusted correctly (Section 4.2). Fig. 8 shows the top 90

segments returned for an example image from the York

UrbanDB dataset at normal (640×480 pixel) and high

(1280×960 pixel) resolutions. Note that the algorithm is

able to take advantage of the higher resolution to deliver

more complete and accurate segments.

(a) 640×480 pixels (b) 1280×960 pixels

Figure 8: Top 90 segments for MCMLSD on an example

image at low and high resolutions.

8. Run Time

The dynamic programming solution for line segment de-

tection runs in O (N) = O (
√
n) time, where N is the num-

ber of point samples on the line and n is the number of pix-

els in the image. Given a set of m detected lines, the total

time complexity of line segment extraction is O (m
√
n).

Table 2 shows the average run time for the four algo-

rithms tested here on the 640×480 pixel images of the

YorkUrbanDB training dataset, using a 3.4 GHz Intel Core

i7 with 8GB RAM. The MATLAB implementation of our

MCMLSD method has an average run time of 5.2 sec per

image. This is slower than the other methods, which are op-

timized and implemented in C++, and return results within

a few hundred milliseconds. About 63% of our run time

is taken by the probabilistic Hough method for line extrac-

tion [24], which we believe could be sped up considerably

with more efficient coding practices and implementation in

C or C++. There are also many opportunities for mapping

to parallel hardware, as edge detection is dominated by con-

volutions and in the dynamic programming line segment

detection stage lines separated by more than 4 pixels are

processed independently.

Table 2: Average number of segments returned and run time

per image for the four systems evaluated.

Algorithm # Segments Run Time (sec)

PPHT 457 0.076

SSWMS 391 0.30

LSD 537 0.27

MCMLSD 488 5.2

9. Conclusions

We have developed and evaluated a novel method for line

segment detection called MCMLSD that combines the ad-

vantages of global probabilistic Hough methods for line de-

tection with spatial analysis in the image domain to identify

segments. The key insight is that limiting segment search

to Hough-detected lines leads naturally to a Markov chain

formulation that allows maximum probability solutions to

be computed exactly in linear time. Our method also has

the advantage that it can detect multiple segments lying on

the same line, a common scenario for images of the built

environment. This formulation leads to a natural probabilis-

tic measure for ranking segments based upon the sum over

point marginals, which maximizes the expected number of

correctly labelled points on detected lines.

A second contribution is our new methodology for eval-

uating line segment detectors on an incomplete labelled

dataset. By constraining matches between ground truth and

detector output to be 1:1 at the segment level, we show

2037

www.ipol.im/pub/art/2012/gjmr-lsd/
www.ipol.im/pub/art/2012/gjmr-lsd/


PPHT SSWMS LSD MCMLSD

Figure 6: Top 90 segments returned by PPHT, SSWMS, LSD and the proposed MCMLSD method, for four example test

images drawn from the YorkUrbanDB dataset.
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Figure 7: Performance of the proposed MCMLSD methods compared with the state of the art. (a) Recall as a function of

number of segments returned. (b) Recall as a function of the total length of segments returned. (c) Precision-Recall.

that under- and over-segmentation are penalized appropri-

ately. Using this new evaluation methodology we find

that MCMLSD outperforms the state-of-the-art by a sub-

stantial margin. The code for MCMLSD and our evalua-

tion method is available at www.elderlab.yorku.ca/

resources.
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