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Abstract

In this work, we introduce a new kind of spatial parti-

tion trees for efficient nearest-neighbor search. Our ap-

proach first identifies a set of useful data splitting direc-

tions, and then learns a codebook that can be used to en-

code such directions. We use the product-quantization idea

in order to make the effective codebook large, the evalua-

tion of scalar products between the query and the encoded

splitting direction very fast, and the encoding itself com-

pact. As a result, the proposed data srtucture (Product

Split tree) achieves compact clustering of data points, while

keeping the traversal very efficient. In the nearest-neighbor

search experiments on high-dimensional data, product split

trees achieved state-of-the-art performance, demonstrating

better speed-accuracy tradeoff than other spatial partition

trees.

1. Introduction

Spatial partition trees are popular data structures for

approximate nearest neighbor search in high-dimensional

spaces. Currently partition trees provide the state-of-the-art

performance for medium-scale settings when the database

points can be held within the main memory but the linear

scan over them is slow. Partition trees proceed by hierar-

chically splitting the search space into a large number of

regions corresponding to tree leaves, whereas each such re-

gion contains one or few database points. At the search

stage, a query is propagated down the tree, a limited num-

ber of leaves are visited in the depth-first order, and only

distances to points from these leaves are evaluated. In prac-

tice, this approach is much faster that the exhaustive linear

scan while providing high accuracy given constrained time

budget.

State-of-the-art partition trees typically use binary space

splitting by a hyperplane 〈w, x〉 = b in each internal node.

Here, w is the hyperplane normal, which we refer to as split-

ting direction and b is the threshold. When searching a given

query q at each internal node the sign of the expression

〈w, q〉 − b (1)

determines the subtree that should be visited first.

The practical performance of a partition tree mostly de-

pends on two factors. The first factor is the quality of split-

ting directions that define the space partition. Typically, the

tree construction algorithms seek to use directions w with

high variance of data projections Var
x
〈w, x〉. The partition

regions produced with high-variance directions are more

compact, hence the probability that the depth-first search

will manage to move from the query’ leaf to its nearest

neighbor leaf in a small amount of steps is higher. The sec-

ond factor is propagation efficiency, which depends on the

complexity of evaluation of (1) in each internal node. The

existing state-of-the-art approaches propose different trade-

offs between these two factors.

Probably, the most well-known partition trees are KD-

trees[7], which use axis-aligned hyperplanes i.e. ||w||0 = 1.

Typically, the hyperplane orthogonal to the axis with the

highest data variance is used. The propagation down a KD-

tree is very efficient as evaluating (1) requires only one com-

parison operation in each internal node. However, the qual-

ity of splitting directions within a KD-tree is inferior as only

d possible directions w are considered in each node dur-

ing tree construction. Being dependent on the original data

coordinate basis these directions might be suboptimal in a

sense that data variance along all of them in some nodes can

be small.

In contrast, another approach, called PCA-tree[20], pro-

duces superior space partition by splitting along the main

principal direction learnt from the subset of points be-

longing to a particular node. Trinary projection tree (TP-

tree)[21] considers a restricted set of splitting directions

that is more reach than within KD-tree and less reach

than within PCA-tree. Overall, PCA-tree and TP-tree pro-

duce separating hyperplanes more adapted to the particular

dataset compared to KD-trees, which results in more com-

pact partition regions. On the other hand, the evaluation
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Tree KD-tree RP-tree PCA-tree TP-tree PS-tree

Splitting directions quality lowest low highest high high

Propagation cost per node O(1) O(d) O(d) O(d̄) O(M)

Memory per node O(1) O(d) O(d) O(d̄) O(M)

Number/cardinality of the potential split set d |Rd| |Rd| 3
d−1

2
KM

Data-adapted potential split set No No Yes No Yes

Query preprocessing complexity 0 0 0 0 O(Kd)

Table 1. Comparison of main design features for the state-of-the-art partition trees. d denotes the dimensionality of the search database. d̄

is the maximum number of active coordinates within the TP-tree splitting directions. K is the size of subdirection codebooks within the

PS-tree and M is the number of codebooks. Overall, PS-tree provides both high quality splitting directions and runtime/memory efficiency.

The only additional cost of PS-tree is query preprocessing, but in most practical circumstances this cost can be made negligible by picking

small enough K, which can still provide diverse enough split set.

of (1) in these trees is more expensive and the propagation

is slower. Moreover, PCA-trees and TP-trees require more

additional memory to hold the splits.

In this work we introduce Product Split Trees (PS-trees),

a new spatial partition trees that use codebook learning in

order to combine splitting directions of high quality and ef-

ficient propagation down the tree within the same approach.

The main idea of PS-trees is to preliminary learn a large

set of splitting directions that are promising to provide high

data variance on all levels of the tree. These directions are

learnt in the offline stage and then the values of dataset

points projections in these directions are used to build a

tree in the usual KD-tree manner. Then, at the querying

stage, projections of a query in all learnt directions are eval-

uated and then the typical KD-tree propagation is performed

based on these values.

PS-trees achieve both efficiency and good data adapta-

tion via learning splitting directions in the Product Quan-

tization (PQ) form [10]. PQ-based approaches based on

inverted indices already provide state-of-the-art for near-

est neighbor search in very large “billion-scale” datasets

[10, 4, 11]. In this work we extend PQ success to a smaller

“million-scale” regime, where space-partition trees perform

better than inverted indices. We thus show how to incorpo-

rate PQ ideas into partition trees and provide new state-of-

the-art that outperforms existing approaches.

The performance of PS-trees is evaluated on four

datasets of image descriptors typical for computer vision

tasks (SIFT vectors, “deep” descriptors, GIST descriptors,

MNIST images). We show that for a given time budget

PS-trees provide higher recall compared to the existing top-

performing partition trees. Furthermore, we also show that

for a given additional memory budget PS-trees also outper-

form the existing approaches. This encourages the usage of

PS-trees in the scenarios with limited resources, for exam-

ple in mobile applications.

2. Related work

In this section we describe several methods and ideas

from the previous works that are essential for description

of PS-trees. We also introduce notation for the following

sections.

Approximate nearest neighbor search. The task of

nearest neighbor search is an important component of many

machine learning systems that involve large-scale cluster-

ing, classification, kernel regression etc. Given a dataset

X = {x1, . . . , xN} ⊂ R
d and a query q the goal is to find

the closest point to this query argmini ||xi − q||2. Exhaus-

tive linear scan requires O(dN) operations, which could be

too expensive. In such cases, approximate nearest neigh-

bor (ANN) search methods are useful. In this paper we fo-

cus on the time-constrained ANN search which means that

the search method is terminated after certain time budget

has elapsed. Typically the methods are compared by recall

measure which is the rate of queries for which the nearest

neighbor was successfully found in a given time.

Partition trees. Paritition trees are a common method

for ANN search. They recursively split the search database

X into subsets up to a few close points (or even a single

point) in each tree leaf. At the search stage, a query q is

propagated down the tree in depth-first manner and only

distances to points from a small number of visited leaves

are evaluated. In this paper we focus on trees that use bi-

nary hyperplane partitions for splitting. In this case each

internal node has parameters w ∈ R
d and b ∈ R, and cor-

responds to the splitting of the space into two half-spaces

{x|〈w, x〉 < b} and {x|〈w, x〉 ≥ b}. Below, we assume

that w has a unit norm and we refer to it as splitting direc-

tion, while calling b the spliting threshold.

Typical methods tend to use splitting directions w which

provide high variance of data projections in it Var
x
〈w, x〉 as

the resulting trees tend to group more closely located data

points together. The threshold b is usually set to the mean

or the median of projection values. During the propagation
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of a query q, at each internal node the sign of the expression

(〈w, q〉 − b) determines the subtree that should be visited

first. The other subtree is inserted into a priority queue.

The propagation algorithm maintains this queue to extract

subtrees that are promising to contain query neighbors.

KD-trees. Various partition trees differ by the sets from

which they choose the splitting direction w. KD-trees[7]

use only axis-aligned separating hyperplanes, i.e. ||w||0 =
1. Thus, each internal node of a KD-tree is assigned a

particular coordinate i and a threshold b. The propagation

through a KD-tree is efficient as it requires just one compar-

ison operation in each internal node. The performance of

KD-trees can be substantially boosted by combining them

in ensembles[18, 14]. In this case several KD-trees are built

for the same dataset and a shared priority queue is used dur-

ing simulteneous traversal of all trees. Diversity of trees is

reached by using randomness when choosing splitting axis

for each internal node. Usually a random axis is picked

from several axes with the highest variance.

PCA-trees. KD-trees are constrained to use axis-aligned

separating hyperplanes, hence only d possible splitting di-

rections are available during tree construction for each inter-

nal node. In contrast, PCA-tree[20] uses the main principal

direction as a splitting direction at each node which is guar-

anteed to be the direction with maximum variance. Com-

puting exact principal directions in each node is very expen-

sive and the approximate version, using power method, was

proposed in [13]. Apart from the slow construction time,

the high quality of splitting directions in PCA-tree comes at

a cost of expensive tree traversal as it requires O(d) oper-

ations in each internal node. Moreover, PCA-tree requires

much more additional memory as it keeps d-dimensional

splitting direction in each node. Assuming that the deep-

est possible tree is constructed (as is usually beneficial for

search accuracy) and each leaf therefore contains a single

data point, the stored split directions take approximately

same amount of memory as the data points themselves.

While such doubling of the amount of memory in the case

of a single tree might be acceptable, this additional mem-

ory requirement often becomes problematic when a forest

of partition trees needs to be constructed for better perfor-

mance.

RP-trees. Random-projection trees (RP-trees)[8] use

randomly generated splitting directions for separating hy-

perplanes. Since such splitting directions are not adapted

to a particular dataset, the RP-tree performance is typically

lower compared to PCA-trees and the only advantage of

RP-trees is faster tree construction process. However, [13]

demonstrated that the usage of approximate principal direc-

tions allows to provide both efficient construction and high-

quality space partitioning. The propagation cost in RP-trees

is also expensive as it requires O(d) operations.

TP-trees. Another approach, trinary-projection tree

(TP-tree)[21] constructs splitting directions as sums of sev-

eral coordinate axes with weights +1 or −1, which allows

to avoid multiplications and use only additions and subtrac-

tion during tree traversal. The number of active coordinates

in each splitting direction is limited by a small number d̄ to

make tree traveral even faster. Thus, TP-trees provide better

splitting directions compared to KD-trees, and require O(d̄)
operations in each node during tree traversal, which is faster

than in a PCA-tree.

Non-binary trees. Several state-of-the-art methods con-

struct non-binary partition trees. [16] proposed to perform

Hierarchical K-Means (HKM) to split the dataset recursive

into K subsets in every non-leaf node. [15] demonstrated

that HKM and KD-trees ensembles are complementary in a

sense that for different datasets different methods are opti-

mal. [15] also proposed FLANN framework that automat-

ically chooses the optimal method for a particular dataset

and tunes the parameters. Currently, FLANN is probably

the most popular framework for ANN search problems.

Locality Sensitive Hashing. Another research direction

in the field of nearest neighbor search are Locality Sen-

sitive Hashing (LSH) methods[9, 3]. The original LSH

method maps data points into a number of buckets using

several hash functions such that the probability of collision

is much higher for close points than for points which are

further apart. At the search stage a query is also hashed

and distances to all the points from the corresponding buck-

ets are evaluated. Different extensions for the LSH idea

were proposed such as multi-probe LSH[12] and the LSH

forest[6]. While LSH have nice theoretical background,

several works[14, 21, 19, 2] reported that they are outper-

formed by partition trees.

Product Quantization. Product quantization (PQ) is

a lossy compression scheme for high-dimensional vec-

tors [10]. The existing state-of-the-art methods for billion-

scale ANN search, such as inverted multi-index [4] and its

modifications [11], utilize PQ to perform very fine partition

of search space into a large number of Voronoi cells. The

centroids of these cells are constructed in a special form, so

that each centroid is a concatenation of M codewords from

M d
M -dimensional codebooks C1, . . . , CM , each contain-

ing K codewords. In other words, set of cell centroids is

a Cartesian product C = C1 × . . . CM . Such form allows

to compute scalar products between a given query q and a

large number of centroids via an efficient ADC procedure

[10] based on lookup tables:

〈q, c〉 = 〈q, [c1, . . . , cM ]〉 =
M
∑

m=1

〈qm, cm〉 (2)

where qm is the mth subvector of a query q. This sum can

be calculated in M additions and lookups given that scalar

products of query subvectors and codewords are precom-

puted. Thus, the ADC process requires O(M · K · d
M ) =
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O(Kd) operations for lookup tables precomputations and

O(MN) operations to evaluate scalar products between

query and N encoded points. K is usually taken small to

make precomputation time negligible and the total compu-

tation time smaller than the O(dN) computation time re-

quired for linear scan (exhaustive search). In our paper we

adapt PQ idea to calculate query projection onto a large set

of splitting directions efficiently.

3. Product Split Trees

In this section we provide a detailed description of the

PS-tree data structure. Compared to existing partition trees,

the important new element of the PS-tree is a special set of

splitting directions W ⊂ R
d that is learned from data. Sim-

ilarly to PQ idea, PS-tree forms W as a Cartesian product

of M codebooks W 1, . . . ,WM :

W = W 1 × · · · ×WM . (3)

Each codebook Wm contains K d/M -dimensional vec-

tors, Wm = {wm
1
, . . . , wm

K}, m = 1, . . . ,M . In the fol-

lowing, we refer to these vectors as subdirections. Each

splitting direction w ∈ W is formed as a concatenation of

M subdirections [w1, . . . , wM ], hence the total number of

splitting directions |W | equals KM , which is a large num-

ber even for small K and M . For simplicity, in the follow-

ing description we assume that M = 2, which means that

PS-tree uses two subdirections codebooks W 1 and W 2. We

discuss the case of larger M at the end of this section.

PS-tree construction. Let us assume that a search

database X = {x1, . . . , xN} of d-dimensional points is

given and subdirections codebooks W1 and W2 have al-

ready been learned. Before the tree construction process

starts, scalar products of database points and the subdi-

rections from both codebooks are precomputed. We orga-

nize the values of these products into two tables T 1, T 2 ∈
R

N×K :

T 1[i, k] = 〈x1

i , w
1

k〉, i = 1, . . . , N k = 1, . . . ,K

T 2[i, k] = 〈x2

i , w
2

k〉, i = 1, . . . , N k = 1, . . . ,K , (4)

where x1

i and x2

i are d/2-dimensional vectors correspond-

ing to the first and the second halves of a point xi respec-

tively. After these preliminary precomputations the con-

struction process starts.

As well as existing partition trees, PS-tree is constructed

recursively by splitting the points in the particular node by a

hyperlane 〈w, x〉 = b, where w is a splitting direction with

the highest data variance. Now we describe a procedure

of choosing the splitting direction for a node that contains

subset of points with indices I = {i1, . . . , il}. Our goal is

to solve the maximization problem:

max
w

Var
i∈I

〈w, xi〉 (5)

As each w ∈ W is a concatenation of some w1

m ∈ W 1

and w2

n ∈ W 2, the problem (5) can be transformed into the

following:

max
m,n

[

Var
i∈I

(

〈w1

m, x1

i 〉+ 〈w2

n, x
2

i 〉
)

]

=

max
m,n

[

Var
i∈I

〈w1

m, x1

i 〉+ Var
i∈I

〈w2

n, x
2

i 〉+ 2Cov
i∈I

(

〈w1

m, x1

i 〉, 〈w
2

n, x
2

i 〉
)

]

,

(6)

which can be rewritten in the form that uses precomputed

look-up tables T 1 and T 2:

max
m,n

[Var
i∈I

(

T 1[i,m]
)

+ V ar
i∈I

(

T 2[i, n]
)

+

+2Cov
i∈I

(

T 1[i,m], T 2[i, n]
)

] . (7)

The exact maximization of (7) would require evaluation

of K2 possible pairs (m,n) that is inefficient, especially

for large K. Instead, a simple heuristic is used to boost tree

construction efficiency. We compute variances of T 1[i,m]
and T 2[i, n] for all m,n and choose a small number of can-

didates {m1, . . . ,mt}, {n1, . . . , nt} that provide the largest

variances:

Var
i∈I,m∈{m1,...,mt}

T 1[i,m] ≥ Var
i∈I,m′ /∈{m1,...,mt}

T 1[i,m′]

Var
i∈I,n∈{n1,...,nt}

T 2[i, n] ≥ Var
i∈I,n′ /∈{n1,...,nt}

T 2[i, n′] . (8)

Then the expression from (7) is evaluated only for the pairs

{(m,n)|m ∈ {m1, . . . ,mt}, n ∈ {n1, . . . , nt}}, which re-

duces the number of evaluations from K2 to t2. In the ex-

periments, we observed that this heuristic has almost no in-

fluence on the PS-tree performance while making the tree

construction process much faster. In all experiments we

used t = 10.

After finding the optimal pair (m,n) the threshold b is

adjusted. In previous works, b is typically set to the mean

or to the median of projection coordinates onto the splitting

direction. While providing the same quality in practice, the

mean value is faster to compute and we use it in our exper-

iments with PS-trees. Futhermore, in the case of PS-trees

the calculation of the median would require explicit array of

(T 1[i,m] + T 2[i, n]) values, while the mean can be found

as a simple sum of expectations E
i∈I

T 1[i,m] and E
i∈I

T 2[i, n]

which by the time of construction are already pre-computed

in the process of variance evaluations.

After the split is constructed, the node points are dis-

tributed between two children nodes according to the usual

hyperplane splitting: points {xi|T
1[i,m]+T 2[i, n] < b} go

to the first child node and points {xi|T
1[i,m] + T 2[i, n] ≥

b} go to the second child node, and the recursion proceeds.

Querying. The process of PS-tree querying is almost the

same as for existing partition trees. The only difference is

that query projections in all splitting subdirections are pre-

computed and reused during propagation. In more details,
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when a PS-tree receives a query q, the lookup-tables S1 and

S2 are filled in using the following rule:

S1[k] = 〈w1

k, q
1〉 k = 1, . . . ,K

S2[k] = 〈w2

k, q
2〉 k = 1, . . . ,K (9)

where q1 and q2 are query subvectors corresponding to the

first and the second halves of q respectively. The runtime

cost of these calculations is negligible comparing to the total

search time as typical values of K are small.

When tables S1 and S2 are precomputed, q is propagated

down the tree in the usual partition tree manner. At each in-

ternal node with splitting direction [w1

mw2

n] a projection of

q in this direction is efficiently calculated using two lookups

and one sum operation:

〈q, [w1

mw2

n]〉 = S1[m] + S2[n] , (10)

after which the value (10) is compared with the splitting

threshold b. The query is then propagated into the corre-

sponding child node. The other child node is inserted into

a priority queue with the priority
(

S1[m] + S2[n]− b
)2

(in

the analysis, we assume that a min-heap is used for the pri-

ority queue). When q reaches a leaf, the exact distances

from q to points from this leaf are evaluated. Then the next

subtree is extracted from the priority queue. After given

search time budget, the visited point with minimum distance

to the query is returned.

Learning splitting directions. Now we describe how

subdirection codebooks W 1 and W 2 are learned for a

dataset X = {x1, . . . , xN}. Our learning approach is moti-

vated by the assumption that for a particular dataset very

good set of splitting directions can be obtained from the

nodes of a PCA-tree constructed for this dataset. This is

because in each node the splitting direction of the PCA-tree

is guaranteed to provide the highest data variance. Another

observation is that with a constrained number of splitting

directions, the directions in the top nodes are more impor-

tant. Achieving lower variance fast (i.e. in the top levels of

the tree) is important as this e.g. would prevent “tall” sub-

trees from being added to the priority queue too often during

traversal.

With these considerations in mind we propose the fol-

lowing learning method for the codebooks W 1 and W 2, as-

suming each of them has size K. We form two datasets

X1 = {x1

1
, . . . , x1

N} and X2 = {x1

2
, . . . , x2

N} where x1

i

and x2

i are the first and the second halves of xi respectively.

Then, for both X1 and X2 we construct the “tops” of PCA-

trees progressing upto the depth ⌊log
2
K⌋+1. By gathering

the splitting directions from these shallow trees, we obtain

the codebooks W 1 and W 2.

3.1. Analysis

We now analyse PS-tree design, and compare it to exist-

ing partition trees. The comparison is also summaraized in

Table 1.

Splitting directions quality. Due to better adaptation to

a particular dataset and a wide choise of possible splitting

directions the PS-tree constructs much better separating hy-

perplanes compared to the KD-tree and provides compara-

ble quality of space partition with PCA-tree and TP-tree.

Query propagation cost. In each internal node query

proragation requires only three operations which makes the

PS-tree almost as efficient as the KD-tree and more efficient

than the PCA-tree and the TP-tree.

Storage cost. Each internal node of the PS-tree keeps

two subdirection indices and a threshold value. Thus, its

storage cost is almost the same as for the KD-tree. Ad-

ditional memory requirements for the PCA-tree and the

TP-tree are considerably higher. Thus, PCA-tree keeps

d-dimensional vector in each internal node, while TP-tree

node keeps O(d̄) of information where d̄ is a number of ac-

tive coordinates.

Query preprocessing cost. Unlike existing trees, the

PS-tree performs query preprocessing before propagation.

This preprocessing includes 2 × K calculations of dot-

products of d/2-dimensional vectors, which has O(Kd)
complexity. As typical value of K is much smaller than the

typical number of visited points (and the number of evalu-

ated distances) the cost is negligible compared to the total

search time.

Ensembles of randomized PS-trees. As other partition

trees, PS-trees can be generalized to be used in ensembles

with shared priority queues during search. Typically for this

purpose, randomization is included into the tree construc-

tion process. In PS-tree we incorporate randomization in

the following (standard) way. When evaluating t2 possi-

ble (m,n) pairs we randomly choose one of the top five

pairs with the highest variances. In the experiments below

we show that the usage of randomized PS-tree ensembles

boosts performance significantly (in the same way as it does

for other partition trees). As we use the same codebook for

all PS-trees in the ensemble, using multiple trees does not

increase the query pre-processing time.

PS-trees with M = 1. In principle, one can omit the us-

age of Product Quantization in PS-trees and use M = 1. In

this case the splitting directions can be also obtained from

the top levels of the PCA-tree constructed for the particular

dataset. However, the total number of possible splitting di-

rections would then be equal to K. As K should be small

for the efficient query preprocessing, PS-trees with M = 1
provide smaller numbers of splitting directions. We show

below that this results in an inferior performance, especially

for the case of tree ensembles.

PS-trees with M > 2. PS-trees also can be generalized

for more than two subdirection codebooks. This however

results in several drawbacks. First, finding an optimal split-

ting direction would require to search over KM combina-

tions, which becomes more difficult for the case M > 2
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Figure 1. The mean distances from data points to centroids of par-

tition regions that they belong to (for the SIFT1M dataset). The

partition regions evaluated are those produced by the PS-tree, the

TP-tree, the PCA-tree and the KD-tree of small depths. The PS-

tree and the TP-tree/PCA-tree produce more compact partition re-

gions compared to the KD-tree, which translates into more eficient

leaf visitation order and therefore in a more efficient NN search.

Figure 2. The comparison of PS-trees with different values of

codebook sizes K on the SIFT1M dataset (recall vs. time) for

M = 2. The performance saturates after K = 127. Even for

small K the PS-tree provides reasonable performance that indi-

cates the importance of splitting directions adaptation.

because the number of pairwise covariances becomes C2

M .

Moreover, the propagation cost is O(M) operations and

each node has to keep M indices instead of just two. In

practice, the PS-tree with M = 2 already provides sufficient

number of splitting directions and outperforms existing ap-

proaches. Similarly to inverted multi-indices (and largely

for the same reasons), M = 2 seems to be the “sweet spot”.

4. Experiments

In this section we provide the results of the experiments

that compare the PS-tree with other existing partition trees

and some non-tree ANN-search methods. The experiments

were performed on four datasets:

1. SIFT1M dataset[10] that contains one million of 128-

dimensional SIFT descriptors along with precomputed

groundtruth for 10, 000 queries.

2. DEEP1M dataset [5], containing one million of 256-

dimensional deep descriptors along with precomputed

groundtruth for 1, 000 queries. Deep descriptors are

formed as normalized and PCA-compressed outputs of

fully-connected layer of a CNN pretrained on the Im-

agenet dataset[1]. Currently such deep descriptors are

an important test case for nearest neighbor search al-

gorithms.

3. GIST1M[10] that contains one million of 960-

dimensional GIST descriptors[17] along with the pre-

computed groundtruth for 1, 000 queries.

4. MNIST[22], containing 70, 000 784-dimensional vec-

tors, corresponding to 28 × 28 images of handwritten

digits. We used a random subset of 1, 000 vectors as

queries and the remaining 69, 000 vectors as the base

set.

In most of our experiments, different methods are com-

pared based on the recall measure which is a rate of queries

for which true nearest neighbor was successfully found. We

measure the recall only with respect to the first nearest neig-

bor, as the ability to find several nearest neighbors is also

important but in practice it is highly correlated with an abil-

ity to find the closest one. For efficiency, during subdirec-

tion codebook learning, we used the approximate version of

PCA-tree construction from [13]. For KD-trees, we use the

well-known implementation from the FLANN library [15].

The TP-tree implementation was not avaliable online or on

request, and we carefully reimplemented it in C++ within

the FLANN framework with the same level of optimization

as the PS-tree. Thus all compared methods are implemented

as different classes inherited from the same base class and

differ only by their splitting and propagation functions. All

other implementation details are kept the same to ensure fair

comparisons. We intend to publish our code as additional

FLANN classes with the publication. All the timings are

obtained in the single-thread mode on the Intel(R) Xeon(R)

CPU E5-2650 v2 @ 2.60GHz machine as the averaged re-

sults over ten runs.

Splitting quality. In the first experiment we demon-

strate that PS-tree produces splitting directions which are of

comparable quality with the directions of TP-tree or PCA-

tree and are much better than KD-tree splitting directions.

For that purpose, we construct a single tree of each type

with the depths in the range [1, 5] for SIFT1M dataset. For

each depth value we measure the average distances from

the data points to the centroids of the leaves they belong to,

which is a quantitative measure of the partition compact-

ness. Figure 1 shows that splitting directions of PS-tree and

TP-tree/PCA-tree are of the same quality and are much bet-

ter than KD-tree directions.
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Figure 3. The comparison of a single PS-tree, a single TP-tree and a single KD-tree on the four datasets. For the whole range of possible

time budget values PS-trees provide the highest recall. For SIFT1M the performance of the Inverted Multi-Index is also provided. For

typical search times useful at the “million-scale”, the inverted multi-index is inferior to all kinds of partition trees.

Choice of K. Then we investigate a question of an op-

timal K for a given dataset. Figure 2 demonstrates the per-

formance of PS-trees for different values of K. The perfor-

mance saturates with the values of K larger than 127. Note,

that even with very small K = 7 (and 49 available split-

ting directions) the PS-tree provides quite reasonable per-

formance that proves the importance of splitting directions

adaptation to the particular dataset. In the experiments be-

low we chose K to be close to the dataset dimensionality,

namely K = 127 for SIFT1M, K = 255 for DEEP1M, 511
for MNIST and 1023 for GIST1M.

Searching with a single tree. Now we compare search

performance of a single PS-tree, a single TP-tree and a sin-

gle KD-tree. We compare the PS-tree variants with M = 1
and M = 2 to demonstrate the benefit of the PQ usage.

PCA-tree is not included in the comparison as its perfor-

mance was shown to be inferior [21]. For all benchmark

datasets we measure recall achieved with different time bud-

gets. The results are presented in Figure 3. For SIFT1M we

also add the performance of the Inverted Multi-Index, which

is the state-of-the-art method for the billion-scale ANN

search. The parameters of all methods were accurately

tuned on the hold-out datasets. Figure 3 shows that a sin-

gle PS-tree outperforms existing methods on both datasets.

The performance of the Inverted Multi-Index is lower than

for all partition trees, which reveals its inefficiency at this

scale (perhaps due to very unbalanced splitting of the data).

Performance of tree ensembles. We then compare the

ensembles of PS-trees with the ensembles of TP-trees and

FLANN. The size of ensembles is chosen so that the amount

of required additional memory is approximately the same

as the size of the indexed database. For a dataset of N
points each partition tree contains N−1 internal nodes, as-

suming that each leaf contains only one point. Each leaf

node keeps only an integer index (four bytes). Each internal

nodes keeps two pointers to child nodes (which gives eight

bytes), float-valued threshold (four bytes) and some infor-

mation about splitting direction, depending on the tree kind.

The KD-tree requires only one byte for the coordinate axis

and the PS-tree requires two bytes for the two indices m,n.

The TP-tree node requires d̄ bytes which is a number of ac-

tive coordinates. In our experiments the average value of d̄
was eleven for SIFT1M, twelve for DEEP1M and fourteen

for MNIST and GIST1M. Overall, internal nodes of the TP-
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Figure 4. The comparison of different partition tree ensembles in the regime with the constrained additional memory. In this experiment,

we cap the amount of the additional memory to be the same as the size of the search database. Therefore, for 128-dimensional SIFT1M

eight KD-trees, eight PS-trees and four TP-trees are compared. For 256-dimensional deep descriptors, 16 KD-trees, 16 PS-trees and eight

TP-trees are compared. In this regime, memory-effective PS-trees with M = 2 outperform existing partition tree ensembles considerably.

PS-trees also outperform the state-of-the-art LSH method[3] under the same memory constraint.

tree require twice as many memory as required by the PS-

tree. Hense, for SIFT1M we compare ensembles of eight

PS-trees and four TP-trees, while for DEEP1M ensembles

of 16 PS-trees and eight TP-trees are compared. For MNIST

and GIST1M we compare ensembles of 32 PS-trees and 32
TP-trees, as the performance of PS-trees ensemble saturates

and the addition of more than 32 trees gives no performance

benefit. For comparison, we also provide the performance

of the state-of-the-art LSH method [3] on SIFT1M with the

same memory constraints. [3] reported that for LSH 0.9 ac-

curacy level is achieved in 3.1 ms (on a faster CPU) with

about 13 thousand candidates checked. PS-tree ensemble

achieves 0.9 recall level in 1.5 ms on our CPU which cor-

responds to four thousand candidates on average. The re-

sults are presented in Figure 4. It demonstrates that for the

regime with limited additional memory an ensemble of PS-

trees outperforms other multiple partition trees on all four

datasets. Note that for all datasets, PS-trees with M = 2
provides much higher recall compared to M = 1. This ver-

ifies the benefit of using product-quantized codebooks.

5. Summary

In this paper we have introduced Product Split (PS)-

trees, a new data structure for the approximate nearest

neighbor search. PS-trees provide a new state-of-the-art

among partition trees for high-dimensional search, due to

the combination of compact space partition and the compu-

tational efficiency of splitting functions. The high-level idea

is to find a large set of promising splitting directions adapted

to a particular dataset and then to learn a product code-

book for the representation of this set. Using the learned

codebooks, we then construct partition trees that can be tra-

versed efficiently. Our approach thus builds on the prod-

uct quantization idea, and extends it to the “million-scale”

nearest neighbor search territory. Whereas previously prod-

uct quantization was successfully combined with inverted

indices, we show the merit of combining it with partition

trees.
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