
CNN-based Patch Matching for Optical Flow with Thresholded Hinge

Embedding Loss

Christian Bailer1 Kiran Varanasi1 Didier Stricker1,2

Christian.Bailer@dfki.de Kiran.Varanasi@dfki.de Didier.Stricker@dfki.de

1German Research Center for Artificial Intelligence (DFKI), 2University of Kaiserslautern

Abstract

Learning based approaches have not yet achieved their

full potential in optical flow estimation, where their perfor-

mance still trails heuristic approaches. In this paper, we

present a CNN based patch matching approach for opti-

cal flow estimation. An important contribution of our ap-

proach is a novel thresholded loss for Siamese networks. We

demonstrate that our loss performs clearly better than ex-

isting losses. It also allows to speed up training by a factor

of 2 in our tests. Furthermore, we present a novel way for

calculating CNN based features for different image scales,

which performs better than existing methods. We also dis-

cuss new ways of evaluating the robustness of trained fea-

tures for the application of patch matching for optical flow.

An interesting discovery in our paper is that low-pass filter-

ing of feature maps can increase the robustness of features

created by CNNs. We proved the competitive performance

of our approach by submitting it to the KITTI 2012, KITTI

2015 and MPI-Sintel evaluation portals where we obtained

state-of-the-art results on all three datasets.

1. Introduction

In recent years, variants of the PatchMatch [5] approach

showed not only to be useful for nearest neighbor field

estimation, but also for the more challenging problem of

large displacement optical flow estimation. So far, most

top performing methods like Deep Matching [32] or Flow

Fields [3] strongly rely on robust multi-scale matching

strategies, while they still use engineered features (data

terms) like SIFTFlow [22] for the actual matching.

On the other hand, works like [30, 34] demonstrated

the effectiveness of features based on Convolutional Neu-

ral Network (CNNs) for matching patches. However, these

works did not validate the performance of their features us-

ing an actual patch matching approach like PatchMatch or

Flow Fields that matches all pixels between image pairs. In-

stead, they simply treat matching patches as a classification

problem between a predefined set of patches.

This ignores many practical issues. For instance, it is

important that CNN based features are not only able to dis-

tinguish between different patch positions, but the position

should also be determined accurately. Furthermore, the top

performing CNN architectures are very slow when used for

patch matching as it requires matching several patches for

every pixel in the reference image. While Siamese networks

with L2 distance [30] are reasonably fast at testing time

and still outperform engineered features regarding classifi-

cation, we found that they are usually underperforming en-

gineered features regarding (multi-scale) patch matching.

We think that this has among other things (see Section 4)

to do with the convolutional structure of CNNs: as neigh-

boring patches share intermediate layer outputs it is much

easier for CNNs to learn matches of neighboring patches

than non neighboring patches. However, due to propaga-

tion [5] correctly matched patches close to each other usu-

ally contribute less for patch matching than patches far apart

from each other. Classification does not differentiate here.

A first solution to succeed in CNN based patch match-

ing is to use pixel-wise batch normalization [12]. While it

weakens the unwanted convolutional structure, it is compu-

tationally expensive at test time. Thus, we do not use it.

Instead, we improve the CNN features themselves to a level

that allows us to outperform existing approaches.

Our first contribution is a novel loss function for the

Siamese architecture with L2 distance [30]. We show that

the hinge embedding loss [30] which is commonly used for

Siamese architectures and variants of it have an important

design flaw: they try to decrease the L2 distance unlimit-

edly for correct matches, although very small distances for

patches that differ due to effects like illumination changes or

partial occlusion are not only very costly but also unneces-

sary, as long as false matches have larger L2 distances. We

demonstrate that we can significantly increase the matching

quality by relaxing this flaw.

Furthermore, we present a novel way to calculate CNN

based features for the scales of Flow Fields [3], which

clearly outperforms the original multi-scale feature creation

13250

approach, with respect to CNN based features. Doing so,

an important finding is that low-pass filtering CNN based

feature maps robustly improves the matching quality.

Moreover, we introduce a novel matching robustness

measure that is tailored for binary decision problems like

patch matching (while ROC and PR are tailored for classi-

fication problems). By plotting the measure over different

displacements and distances between a wrong patch and the

correct one we can reveal interesting properties of different

loss functions and scales. Our main contributions are:

1. A novel loss function, that clearly outperforms other

state-of-the art losses in our tests and allows to speed

up training by a factor of around two.

2. A novel multi-scale feature creation approach tailored

for CNN features for optical flow.

3. New evaluation measure of matching robustness for

optical flow and corresponding plots.

4. We show that low-pass filtering the feature maps cre-

ated by CNNs improves matching robustness.

5. We demonstrate the effectiveness of our approach by

obtaining a top performance on all three major eval-

uation portals KITTI 2012 [14], 2015 [25] and MPI-

Sintel [8]. Former learning based approaches always

trailed heuristic approaches on at least one of them.

2. Related Work

While regularized optical flow estimation goes back to

Horn and Schunck [18], randomized patch matching [5] is

a relatively new field, first successfully applied in approx-

imate nearest neighbor estimation where the data term is

well-defined. The success in optical flow estimation (where

the data term is not well-defined) started with publications

like [4, 10]. One of the most recent works is Flow Fields [3],

which showed that with proper multi-scale patch matching,

top performing optical flow results can be achieved.

Regarding patch or descriptor matching with learned

data terms, there exists a fair amount of literature [17, 30,

34, 31]. These approaches treat matching at an abstract

level and do not present a pipeline to solve a problem

like optical flow estimation or 3D reconstruction, although

many of them use 3D reconstruction datasets for evaluation.

Zagoruyko and Komodakis [34] compared different archi-

tectures to compare patches. Simo-Serra et al. [30] used the

Siamese architecture [6] with L2 distance. They argued that

it is the most useful one for practical applications.

Recently, several successful CNN based approaches for

stereo matching appeared [35, 23, 24]. However, so far

there are still few approaches that successfully use learning

to compute optical flow. Worth mentioning is FlowNet [11].

They tried to solve the optical flow problem as a whole with

CNNs, having the images as CNN input and the optical flow

Layer 1 2 3 4 5 6 7 8

Type Conv MaxPool Conv Conv MaxPool Conv Conv Conv

Input size 56x56 52x52 26x26 22x22 18x18 9x9 5x5 1x1

Kernel size 5x5 2x2 5x5 5x5 2x2 5x5 5x5 1x1

Out. channels 64 64 80 160 160 256 512 256

Stride 1 2 1 1 2 1 1 1

Nonlinearity Tanh - Tanh Tanh - Tanh Tanh Tanh

Table 1. The CNN architecture used in our experiments.

as output. While the results are good regarding runtime,

they are still not state-of-the-art quality. Also, the network

is tailored for a specific image resolution and to our knowl-

edge training for large images of several megapixel is still

beyond todays computational capacity.

A first approach using patch matching with CNN based

features is PatchBatch [12]. They managed to obtain state-

of-the-art results on the KITTI dataset [14], due to pixel-

wise batch normalization and a loss that includes batch

statistics. However, pixel-wise batch normalization is com-

putationally expensive at test time. Furthermore, even with

pixel-wise normalization their approach trails heuristic ap-

proaches on MPI-Sintel [8]. A recent approach is Deep-

DiscreteFlow [15] which uses DiscreteFlow [26] as basis

instead of patch matching. Despite using recently invented

dilated convolutions [23] (we do not use them, yet) they also

trail the original DiscreteFlow approach on some datasets.

3. Our Approach

Our approach is based on a Siamese architecture [6]. The

aim of Siamese networks is to learn to calculate a mean-

ingful feature vector D(p) for each image patch p. During

training the L2 distance between feature vectors of match-

ing patches (p1 ≡ p+2) is reduced, while the L2 distance be-

tween feature vectors of non-matching patches (p1 6= p−2)

is increased (see [30] for a more detailed description).

Siamese architectures can be strongly speed up at test-

ing time as neighboring patches in the image share convo-

lutions. Details on how the speedup works are described

in our supplementary material. The network that we used

for our experiments is shown in Table 1. Similar to [7], we

use Tanh nonlinearity layers as we also have found them to

outperform ReLU for Siamese based patch feature creation.

3.1. Loss Function and Batch Selection

The most common loss function for Siamese network

based feature creation is the hinge embedding loss:

lh(p1, p2) =

{

L2(p1, p2), p1 ≡ p2

max(0,m− L2(p1, p2)), p1 6= p2
(1)

L2(p1, p2) = ||D(p1)−D(p2)||2 (2)

It tries to minimize the L2 distance of matching patches

and to increase the L2 distance of non-matching patches

3251

Figure 1. If a sample is pushed (blue arrow), although it is clearly

on the correct side of the decision boundary other samples also

move due to weight change. If most samples are classified cor-

rectly beforehand, this creates more false decision boundary cross-

ings than correct ones. lh performs the unnecessary push, lt not.

above m. An architectural flaw which is not or only poorly

treated by existing loss functions is the fact that the loss

pushes feature distances between matching patches unlimit-

edly to zero (L2(p1, p
+
2) → 0). We think that training up to

very small L2 distances for patches that differ due to effects

like rotation or motion blur is very costly – it has to come

at the cost of failure for other pairs of patches. A possible

explanation for this cost is shown in Figure 1. As a result,

we introduce a modified hinge embedding loss with thresh-

old t that stops the network from minimizing L2 distances

too much:

lt(p1, p2) =

{

max(0, L2(p1, p2)− t), p1 ≡ p2

max(0,m− (L2(p1, p2)− t)), p1 6= p2
(3)

We add t also to the second equation to keep the “virtual

decision boundary” at m/2. This is not necessary but makes

comparison between different t values fairer.

As our goal is a network that creates features with the

property L2(p1, p
+
2) < L2(p1, p

−

2) one might argue that it

is better to train this property directly. A known function to

do this is a gap based loss [17, 33], that only keeps a gap in

the L2 distance between matching and non-matching pairs:

lg(p1, p
+
2) = max(0, L2(p1, p

+
2)− L2(p1, p

−

2) + g),

p1 ≡ p+2 ∩ p1 6= p−2
(4)

lg(p1, p
−

2) is set to −lg(p1, p
+
2) (reverse gradient). While lg

intuitively seems to be better suited for the given problem

than lt, we will show in Section 4 why this is not the case.

There we will also compare lt to further loss functions.

The given loss functions have in common that the loss

gradient is sometimes zero. Ordinary approaches still back

propagate a zero gradient. This not only makes the approach

slower than necessary, but also leads to a variable effective

batch size of training samples, that are actually back propa-

gated. This is a limited issue for the hinge embedding loss

lh, where only ≈ 25% of the training samples obtain a zero

gradient in our tests. However, with lt (and suitable t) more

than 80% of the samples obtain a zero gradient.

As a result, we only add training samples with a non-zero

loss to a batch. All other samples are rejected without back

propagation. This not only increases the training speed by

a factor of around two in our tests, but also improves the

training quality by avoiding variable effective batch sizes.

3.2. Training

Our training set consists of several pairs of images (I1,

I2 ∈ Iall) with known optical flow displacement between

their pixels. We first subtract the mean from each image

and divide it by its standard derivation. To create training

samples, we randomly extract patches p1 ∈ I1 and their

corresponding matching patches p+2 ∈ I2, p1 ≡ p+2 for

positive training samples. For each p1, we also extract one

non-matching patch p−2 ∈ I2, p1 6= p−2 for negative training

samples. Negative samples p−2 are sampled from a distribu-

tion N(p+2) that prefers patches close to the matching patch

p+2 , with a minimum distance to it of 2 pixels, but it also

allows to sample patches that are far from p+2 . The exact

distribution can be found in our supplementary material.

We only train with pairs of patches where the center

pixel of p1 is not occluded in the matching patch p+2 . Oth-

erwise, the network would train the occluding object as a

positive match. However, if the patch center is visible we

expect the network to be able to deal with a partial occlu-

sion. We use a learning rate between 0.004 and 0.0004 that

decreases linearly in exponential space after each batch i.e.

learnRate(t) = e−xt → learnRate(t+ 1) = e−(xt+ǫ).

3.3. Multi­scale matching

The Flow Fields approach [3], which we use as basis

for our optical flow pipeline compares patches at different

scales using scale spaces [21], i.e. all scales have the full

image resolution. It creates feature maps for different scales

by low-pass filtering the feature map of the highest scale

(Figure 2 left). For SIFTFlow [22] features used in [3],

low-pass filtering features (i.e. feature → low-pass = fea-

ture → downsample → upsample) performs better than re-

calculating features for each scale on a different resolution

(i.e. downsample → feature → upsample).

We observed the same effect for CNN based features –

even if the CNN is also trained on the lower resolutions.

However, with our modifications shown in Figure 2 right

(that are further motivated in Section 4), it is possible to

obtain better results by recalculating features on different

resolutions. We use a CNN trained and applied only on the

highest image resolution for the highest and second highest

scale. Furthermore, we use a CNN trained on 3 resolutions

(100%, 50% and 25%) to calculate the feature maps for the

third and fourth scale applied at 50% and 25% resolution,

respectively. For the multi-resolution CNN, the probability

to select a patch on a lower resolution for training is set to

be 60% of the probability for the respective next higher res-

olution. For lower resolutions, we also use the distribution

N(p+2). This leads to a more wide spread distribution with

3252

Figure 2. Our modification of feature creation of the Flow Fields approach [3] for clearly better CNN performance. Note that Flow Fields

expects feature maps of all scales in the full image resolution (See [3] for details). Reasons of design decision can be found in Section 4.1.

respect to the full image resolution.

Feature maps created by our CNNs are not used directly.

Instead, we perform a 2x low-pass filter on them, before

using them. Low-pass filtering image data creates matching

invariance while increasing ambiguity (by removing high

frequency information). Assuming that CNNs are unable to

create perfect matching invariance, we can expect a similar

effect on feature maps created by CNNs. In fact, a small

low-pass filter clearly increases the matching robustness.

The Flow Fields approach [3] uses a secondary con-

sistency check with different patch size. With our ap-

proach, this would require to train and execute two addi-

tional CNNs. To keep it simple, we perform the secondary

check with the same features. This is possible due to the

fact that Flow Fields is a randomized approach. Still, our

tests with the original features show that a real secondary

consistency check performs better. The reasoning for our

design decisions in Figure 2 can be found in Section 4.1.

3.4. Evaluation Methodology for Patch Matching

In previous works, the evaluation of the matching robust-

ness of (learning based) features was performed by evalua-

tion methods commonly used in classification problems like

ROC in [7, 34] or PR in [30]. However, patch matching is

not a classification problem, but a binary decision problem.

While one can freely label data in classification problems,

patch matching requires to choose, at each iteration, out of

two proposal patches p2, p
∗

2 the one that fits better to p1.

The only exception from this rule is outlier filtering. This is

not really an issue, as there are better approaches for outlier

filtering, like the forward backward consistency check [3],

which is more robust than matching-error based outlier fil-

tering1. In our evaluation, the matching robustness r of a

network is determined as the probability that a wrong patch

p−2 is not confused with the correct patch p+2 :

r =
∑

(I1,I2)∈S

∑

p1∈I1

P r
p1
(p−2)/(|I1||S|) (5)

1Even if outlier filtering would be performed by matching error, the

actual matching remains a decision problem.

P r
p1
(p−2) = P (L2(p1, p

+
2) < L2(p1, p

−

2)),

p1 ≡ p+2 ∈ I2, p1 6= p−2 ∈ N(p+2),
(6)

where S is a set of considered image pairs (I1, I2), |S| the

number of image pairs and |I1| the number of pixels in I1.

As r is a single value we can plot it for different cases:

1. The curve for different spatial distances between p+2
and p−2 (rdist).

2. The curve for different optical flow displacements be-

tween p1 and p+2 (rflow).

rdist and rflow vary strongly for different locations. This

makes differences between different networks hard to visu-

alize. For better visualization, we plot the relative matching

robustness errors Edist and Eflow, computed with respect

to a pre-selected network net1. E is defined as:

E(net1, net2) = (1− r(net2))/(1− r(net1)) (7)

4. Evaluation

We examine our approach on the KITTI 2012 training

set [14] as it is one of the few datasets that contains ground

truth for non-synthetic large displacement optical flow esti-

mation. We use patches taken from 130 of the 194 images

of the set for training and patches from the remaining 64

images for validation. Each tested network is trained with

10 million negative and 10 million positive samples in total.

Furthermore, we publicly validate the performance of our

approach by submitting our results to the KITTI 2012, the

recently published KITTI 2015 [25] and MPI-Sintel evalu-

ation portals (with networks trained on the respective train-

ing set). We use the original parameters of the Flow Fields

approach [3] except for the outlier filter distance ǫ and the

random search distance R. ǫ is set to the best value for each

network (with accuracy ±0.25, mostly: ǫ = 1.5). The ran-

dom search distance R is set to 2 for four iterations and to

R = 1 for two additional iterations to increase accuracy.

The batch size is set to 100 and m to 1.

To evaluate the quality of our optical flow results we

calculate the endpoint error (EPE) for non-occluded areas

3253

Approach EPE >3

px noc.

EPE >3

px all

EPE

noc.

EPE all

ours 4.95% 11.89% 1.10 px 2.60 px

original ([3]+CNN) 5.48% 12.59% 1.28 px 3.08 px

ms res 1 5.17% 12.10% 1.17 px 2.80 px

Approach EPE >3

px noc.

EPE >3

px all

EPE

noc.

EPE all

all resolutions 5.66% 13.01% 1.27 px 2.98 px

nolowpass 5.21% 12.21% 1.19 px 2.80 px

ms res 2+ 5.18% 12.12% 1.21 px 2.84 px

Table 2. Comparison of CNN based multi-scale feature creation approaches. See text for details.

0 5 10 15 20 25

50

70

90

110

130

150

170

190 No downsampling

2x downsampling

2x downsampling with

more close-by training

2x downsampling with

32x32 CNN

Distance to correct match in pixels

R
e

le
a

ti
v
e

 e
rr

o
r

c
o

m
p

a
re

d
 t
o

 "
S

c
a

le
 1

"
in

 %

(a)

0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

140

160

180

200
No downsampling

2x downsampling

4x downsampling

2x downsampling with more

close-by training

Distance to correct match in pixels
R

e
le

a
ti
v
e

 e
rr

o
r

c
o

m
p

a
re

d
 t
o

 "
S

c
a

le
 1

"
in

 %

(b)

Figure 3. Relative matching robustness errors Edist(“No Downsampling”, X). Features created on lower resolutions are more accurate for

large distances but less accurate for small ones. No downsampling is on the horizontal line as results are normalized for it. Details in text.

(noc) as well as occluded + non-occluded areas (all). (noc)

is a more direct measure as CNNs are only trained here.

However, the interpolation into occluded areas (like Flow

Fields we use EpicFlow [28] for that) also depends on good

matches close to the occlusion boundary, where matching

is especially difficult due to partial occlusions of patches.

Furthermore, like [14], we measure the percentage of pixels

with an EPE above a threshold in pixels (px).

4.1. Comparison of CNN based Multi­Scale Feature
Map Approaches

In Table 2, we compare the original feature creation ap-

proach (Figure 2 left) with our approach (Figure 2 right),

with respect to our CNN features. We also examine two

variants of our approach in the table: nolowpass which

does not contain the “Low-Pass 2x” blocks and all resolu-

tions which uses 1x,2x,4x,8x up/downsampling for the four

scales (instead of 1x,1x,2x,4x in Figure 2 right). The reason

why all resolutions does not work well is demonstrated in

Figure 3 (a). Starting from a distance between p+2 and p−2 of

9 pixels, CNN based features created on a 2x down-sampled

image match more robustly than CNN based features cre-

ated on the full image resolution. This is insufficient as the

random search distance on scale 2 is only 2R = 4 pixels.

Thus, we use it for scale 3 (with random search distance

4R = 8 ≈ 9 pixels).

One can argue that by training the CNN with more close-

by samples Nclose(p
+
2) more accuracy could be gained. But

Approach/

Loss

EPE >3

px noc.

EPE >3

px all

EPE

noc.

EPE all robust-

ness r

Lh 7.26% 14.78% 1.46 px 3.33 px 98.63%

Lt, t = 0.2 6.17% 13.51% 1.37 px 3.10 px 99.15%

Lt, t = 0.3 4.95% 11.89% 1.10 px 2.60 px 99.34%

Lt, t = 0.4 5.18% 12.10% 1.25 px 3.14 px 99.41%

Lg , g = 0.2 5.92% 13.17% 1.41 px 3.37 px 99.15%

Lg , g = 0.4 5.89% 13.23% 1.41 px 3.36 px 99.31%

Lg , g = 0.6 6.37% 13.74% 1.51 px 3.40 px 99.08%

Hard Mining

x2 [30]

6.03% 13.34% 1.35 px 2.99 px 99.07%

DrLIM [16] 5.36 % 12.40% 1.18 px 2.79 px 99.15%

CENT. [12] 6.32% 13.90% 1.46 px 3.37 px 98.72%

SIFTFlow [22] 11.52% 19.79% 1.99 px 4.33 px 97.31%

SIFTFlow*[22] 5.85% 12.90% 1.52 px 3.56 px 97.31%

Table 3. Results on KITTI 2012 [14] validation set. Best result is

bold, 2. best underlined. SIFTFlow uses our pipeline tailored for

CNNs. SIFTFlow* uses the original pipeline [3] (Figure 2 left).

raising extremely the amount of close-by samples only re-

duces the accuracy threshold from 9 to 8 pixels. Using a

CNN with smaller 32x32 patches instead of 56x56 patches

does not raise the accuracy either– it even clearly decreases

it. Figure 3 (b) shows that downsampling decreases the

matching robustness error significantly for larger distances.

In fact, for a distance above 170 pixels, the relative error of

4x downsampling is reduced by nearly 100% compared to

No downsampling – which is remarkable.

3254

Multi-resolution network training We examine three

variants of training our multi-resolution network (green

boxes in Figure 2): training it on 100%, 50% and 25% res-

olution although it is only used for 50% and 25% resolu-

tion, at testing time (ours in Table 2), training it on 50%
and 25% resolutions, where it is used for at testing time (ms

res 2+) and training it only on 100% resolution (ms res 1).

As can be seen in Table 2 training on all resolutions (ours)

clearly performs best. Likely, mixed training data performs

best as samples of the highest resolution provide the largest

entropy while samples of lower resolutions fit better to the

problem. However, training samples of lower resolutions

seem to harm training for higher resolutions. Therefore, we

use an extra CNN for the highest resolution.

4.2. Loss Functions and Mining

We compare our loss lt to other state-of-the-art losses

and Hard Mining [30] in Figure 4 and Table 3. As shown in

the table, our thresholded loss lt with t = 0.3 clearly outper-

forms all other losses. DrLIM [16] reduces the mentioned

flaw in the hinge loss, by training samples with small hinge

loss less. While this clearly reduces the error compared to

hinge, it cannot compete with our thresholded loss lt. Fur-

thermore, no speedup during training is possible like with

our approach. CENT. (CENTRIFUGE) [12] is a variant of

DrLIM which performs worse than DrLIM in our tests.

Hard Mining [30] only trains the hardest samples with

the largest hinge loss and thus also speeds up training. How-

ever, the percentage of samples trained in each batch is fixed

and does not adapt to the requirements of the training data

like in our approach. With our data, Hard Mining becomes

unstable with a mining factor above 2 i.e. the loss of nega-

tive samples becomes much larger than the loss of positive

samples. This leads to poor performance (r = 96.61% for

Hard Mining x4). We think this has to do with the fact that

the hardest of our negative samples are much harder to train

than the hardest positive samples. Some patches are e.g.

fully white due to overexposure (negative training has no

effect here). Also, many of our negative samples have, in

contrast to the samples of [30], a very small spatial distance

to their positive counterpart. This makes their training even

harder (We report most failures for small distances, see sup-

plementary material), while positive samples do not change.

To make sure that our dynamic loss based mining ap-

proach (Lt with t = 0.3) cannot become unstable towards

much larger negative loss values we tested it to an extreme:

we randomly removed 80% of the negative training sam-

ples while keeping all positive. Doing so, it not only stayed

stable, but it even used a smaller positive/negative sample

mining ratio than the approach with all training samples –

possibly it can choose harder positive samples which con-

tribute more to training. Even with the removal of 80% (8

million) of possible samples we achieved a matching ro-

0 1 2 3 4 5 6 7 8

0

50000

100000

150000

200000

250000

L_t, t = 0.3 for positve samples

L_t, t = 0.3 for negative samples with

distance 10 pixels

L_g, g = 0.4 for positive samples

L_g, g = 0.4 for negative samples with

distance 10 pixels

L_2 Distance

N
u

m
b

e
r

o
f
s
a

m
p

le
s

Figure 5. The distribution of L2 errors for different for Lt and Lg

for positive samples p+2 and negative samples p−2 with distance of

10 pixels to the corresponding positive sample.

bustness r of 99.18%.

Lg performed best for g = 0.4 which corresponds to a

gap of Lt, t = 0.3 (gLt
= 1 − 2t). However, even with

the best g, Lg performs significantly worse than Lt. This is

probably due to the fact that the variance Var(L2(p1, p2)) is

much larger for Lg than for Lt. As shown in Figure 5, this is

the case for both positive (p+2) as well as negative (p−2) sam-

ples. We think this affects the test set negatively as follows:

if we assume that p1, p+2 , p−2 are unlearned test set patches it

is clear that the condition L2(p1, p
+
2) < L2(p1, p

−

2) is more

likely violated if Var(L2(p1, p
+
2)) and Var(L2(p1, p

−

2)) are

large compared to the learned gap. Only with Lt it is pos-

sible to force the network to keep the variance small com-

pared to the gap. With Lg it is only possible to control the

gap but not the variance, while lh keeps the variance small

but cannot limit the gap.

Matching Robustness plots Some loss functions perform

worse than others although they have a larger matching ro-

bustness r. This mostly can be explained by the fact that

they perform poorly for large displacements (as shown in

Figure 4 (b)). Here, correct matches are usually more im-

portant as missing matches lead lo larger endpoint errors.

An averaged r over all pixels does not consider this.

Figure 4 also shows the effect of parameter t in Lt. Up to

t ≈ 0.3, all distances and flow displacements are improved,

while small distances and displacements benefit more and

up to a larger t ≈ 0.4. The improvement happens as un-

necessary destructive training is avoided (see Section 3.1).

Patches with small distances benefit more form larger t,
likely as the real gap greal = |L2(p1, p

−

2) − L2(p1, p
+
2)|

is smaller here (as p−2 and p+2 are very similar for small dis-

tances). For large displacements patches get more chaotic

(due to more motion blur, occlusions etc.), which forces

larger variances of the L2 distances and thus a larger gap

is required to counter the larger variance.

Lg performs worse than Lt mainly at small distances and

large displacements. Likely, the larger variance is more de-

structive for small distances, as the real gap greal is smaller

3255

0 10 20 30 40 50 60 70 80 90 100
80

90

100

110

120

130

140

150

160
L_t, t = 0.2 L_t, t = 0.3*

L_t, t = 0.4 L_t, t = 0.45

L_g, g = 0.4 DrLIM

Hard Mining x2 * with 2x lowpass

Distance to correct match in pixel

R
e
la

ti
v
e
 e

rr
o
r

E
(L

_
t,

 t
=

0
.3

,
X

)
in

 %

(a) by distance between p
+

2
and p

−

2

0 20 40 60 80 100 120 140 160 180
60

80

100

120

140

160

180

200
L_t, t = 0.2 L_t, t = 0.3*
L_t, t = 0.4 L_t, t = 0.45
L_g, g = 0.4 DrLIM
Hard Mining x2 * with 2x lowpass

Optical flow displacement

R
e
la

ti
v
e
 e

rr
o
r

E
(L

_
t,

 t
=

 0
.3

,X
)

in
 %

(b) by flow displacement (offset between p1 and p
+

2
)

Figure 4. Relative matching robustness errors E(“Lt, t = 0.3′′, X) for different loss functions plotted for different distances (a) and

displacements (b). Note that the plot for Lt, t = 0.3 is on the horizontal line, as E is normalized for it. See text for details.

(more sensitive) here. Figure 4 also shows that low-pass fil-

tering the feature map increases the matching robustness for

all distances and displacements. In our tests, a 2.25× low-

pass performed the best (tested with ±0.25). Engineered

SIFTFlow features can benefit from much larger low-pass

filters which makes the original pipeline (Figure 2 left) ex-

tremely efficient for them. However, using them with our

pipeline (which recalculates features on different resolu-

tions) shows that their low matching robustness is justified

(see Table 3). SIFTFlow also performs better in outlier fil-

tering. Due to such effects that can so far not directly be

trained, it is still challenging to beat well designed purely

heuristic approaches with learning. In fact, existing CNN

based approaches often still underperform purely heuristic

approaches – even direct predecessors (see Section 4.3).

4.3. Public Results

Our public results on the KITTI 2012 [14], 2015 [25] and

MPI-Sintel [8] evaluation portals are shown in Table 4, 5

and 6. For the public results we used 4 extra iterations with

R = 1 for best possible subpixel accuracy and for simi-

lar runtime to Flow Fields [3]. t is set to 0.3. On KITTI

2012 our approach is the best in all measures, although

we use a smaller patch size than PatchBatch (71x71) [12].

PatchBatch (51x51) with a patch size more similar to ours

performs even worse. PatchBatch*(51x51) which is like

our work without pixel-wise batch normalization even trails

purely heuristic methods like Flow Fields.

On KITTI 2015 our approach also clearly outperforms

PatchBatch and all other general optical flow methods in-

cluding DeepDiscreteFlow [15] that, despite using CNNs,

trails its engineered predecessor DiscreteFlow [26] in many

measures. The only methods that outperform our approach

are the rigid segmentation based methods SDF [1], JFS [20]

and SOF [29]. These require segmentable rigid objects

moving in front of rigid background and are thus not suited

for scenes that contain non-rigid objects (like MPI-Sintel)

or objects which are not easily segmentable. Despite not

making any such assumptions our approach outperforms

two of them in the challenging foreground (moving cars

with reflections, deformations etc.). Furthermore, our ap-

proach is clearly the fastest of all top performing methods

although there is still optimization potential (see below).

Especially, the segmentation based methods are very slow.

On the non rigid MPI-Sintel datasets our approach is

the best in the non-occluded areas, which can be matched

by our features. Interpolation into occluded areas with

EpicFlow [28] works less well, which is no surprise as as-

pects like good outlier filtering which are important for oc-

cluded areas are not learned by our approach. Still, we ob-

tained the best overall result on the more challenging final

set that contains motion blur. In contrast, PatchBatch lags

far behind on MPI-Sintel, while DeepDiscreteFlow again

clearly trails its predecessor DiscreteFlow on the clean set,

but not the final set. Our approach never trails on the rele-

vant matchable (non-occluded) part.

Our detailed runtime is 4.5s for CNNs (GPU) + 16.5s

patch matching (CPU) + 2s for up/downsampling and low-

pass (CPU). The CPU parts of our approach likely can be

significantly sped up using GPU versions like a GPU based

propagation scheme [2, 13] for patch matching. This is

contrary to PatchBatch where the GPU based CNN already

takes the majority of time (due to pixel-wise normalization).

Also, in final tests (after submitting to evaluation portals)

we were able to improve our CNN architecture (see sup-

plementary material) so that it only needs 2.5s with only a

marginal change in quality on our validation set.

3256

Method EPE >3 px noc. EPE >5 px noc. EPE >3 px all EPE >5 px all EPE noc. EPE all runtime

Ours (56x56) 4.89 % 3.04 % 13.01 % 9.06 % 1.2 px 3.0 px 23s

PatchBatch (71x71) [12] 4.92 % 3.31 % 13.40 % 10.18 % 1.2 px 3.3 px 60s

PatchBatch (51x51) [12] 5.29 % 3.52 % 14.17 % 10.36 % 1.3 px 3.3 px 50s

Flow Fields [3] 5.77 % 3.95 % 14.01 % 10.21% 1.4 px 3.5 px 23s

PatchBatch*(51x51)[12] 5.94% [12] - - - - - 25.5s [12]

Table 4. Results on KITTI 2012 [14] test set. Numbers in brackets show the patch size for learning based methods. Best result for published

methods is bold, 2. best is underlined. PatchBatch* is PatchBatch without pixel-wise batch normalization.

background foreground (cars) total

Type Method EPE >3

px noc.

EPE >3

px all

EPE >3

px noc.

EPE >3

px all

EPE >3

px noc.

EPE >3

px all

runtime

Rigid

Segmentation

based methods

SDF [1] 5.75% 8.61% 22.28% 26.69% 8.75% 11.62% unknown

JFS [20] 7.85% 15.90% 18.66% 22.92% 9.81% 17.07% 13 min

SOF [29] 8.11% 14.63% 23.28% 27.73% 10.86% 16.81% 6 min

General

methods

Ours (56x56) 8.91% 18.33% 20.78% 24.96% 11.06% 19.44% 23s

PatchBatch (51x51) [12] 10.06% 19.98% 26.21% 30.24% 12.99% 21.69% 50s

DiscreteFlow [26] 9.96% 21.53 % 22.17% 26.68 % 12.18% 22.38% 3 min

DeepDiscreteFlow [15] 10.44% 20.36 % 25.86% 29.69 % 13.23% 21.92% 1 min

Table 5. Results on KITTI 2015 [25] test set. Numbers in brackets shows the used patch size for learning based methods. Best result for all

published general optical flow methods is bold, 2. best underlined. Bold for segmentation based method shows that the result is better than

the best general method. Rigid segmentation based methods were designed for urban street scenes and similar containing only segmentable

rigid objects and rigid background (and are usually very slow), while general methods work for all optical flow problems.

5. Conclusion and Future Work

In this paper, we presented a novel extension to the hinge

embedding loss that not only outperforms other losses in

learning robust patch representations, but also allows to in-

crease the training speed and to be robust with respect to

unbalanced training data. We presented a new multi-scale

feature creation approach for CNNs and proposed new eval-

uation measures by plotting matching robustness with re-

spect to patch distance and motion displacement. Further-

more, we showed that low-pass filtering feature maps cre-

ated by CNNs improves the matching result. All together,

we proved the effectiveness of our approach by submitting

it to the KITTI 2012, KITTI 2015 and MPI-Sintel evalua-

tion portals where we, as the first learning based approach,

achieved state-of-the-art results on all three datasets. Our

results also show the transferability of our contribution, as

our findings made in Section 4.1 and 4.2 (on which our

architecture is based on) are solely based on KITTI 2012

validation set, but still work unchanged on KITTI 2015 and

MPI-Sintel test sets, as well.

In future work, we want to improve our network archi-

tecture (Table 1) by using techniques like (non pixel-wise)

batch normalization and dilated convolutions [23]. Further-

more, we want to find out if low-pass filtering invariance

also helps in other application, like sliding window object

detection [27]. We want to further improve our loss func-

tion Lt e.g. by a dynamic t that depends on the properties

of training samples. So far, we just tested a patch size of

56x56 pixels, although [12] showed that larger patch sizes

Method(final) EPE all EPE not occl. EPE occluded

Ours 5.363 2.303 30.313

DeepDiscreteFlow[15] 5.728 2.623 31.042

FlowFields [3] 5.810 2.621 31.799

CPM-Flow [19] 5.960 2.990 30.177

DiscreteFlow [26] 6.077 2.937 31.685

PatchBatch [12] 6.783 3.507 33.498

Method(clean) EPE all EPE not occl. EPE occluded

CPM-Flow [19] 3.557 1.189 22.889

DiscreteFlow [26] 3.567 1.108 23.626

FullFlow [9] 3.601 1.296 22.424

FlowFields [3] 3.748 1.056 25.700

Ours 3.778 0.996 26.469

DeepDiscreteFlow[15] 3.863 1.296 24.820

PatchBatch [12] 5.789 2.743 30.599

Table 6. Results on MPI-Sintel [8]. Best result for all published

methods is bold, second best is underlined.

can perform even better. It might be interesting to find out

which is the largest beneficial patch size. Frames of MPI-

Sintel with very large optical flow showed to be especially

challenging. They lack training data due to rarity, but still

have a large impact on the average EPE (due to huge EPE).

We want to create training data tailored for such frames and

examine if learning based approaches benefit from it.

Acknowledgments

This work was funded by the BMBF project DYNAM-

ICS (01IW15003).

3257

References

[1] M. Bai, W. Luo, K. Kundu, and R. Urtasun. Exploiting se-

mantic information and deep matching for optical flow. In

European Conference on Computer Vision (ECCV), 2016. 7,

8

[2] C. Bailer, M. Finckh, and H. P. Lensch. Scale robust multi

view stereo. In European Conference on Computer Vision

(ECCV), 2012. 7

[3] C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense corre-

spondence fields for highly accurate large displacement op-

tical flow estimation. In International Conference on Com-

puter Vision (ICCV), 2015. 1, 2, 3, 4, 5, 7, 8

[4] L. Bao, Q. Yang, and H. Jin. Fast edge-preserving patch-

match for large displacement optical flow. In Computer Vi-

sion and Pattern Recognition (CVPR), 2014. 2

[5] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman.

Patchmatch: A randomized correspondence algorithm for

structural image editing. ACM Transactions on Graphics-

TOG, 2009. 1, 2

[6] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun,

C. Moore, E. Säckinger, and R. Shah. Signature verifica-

tion using a siamese time delay neural network. Interna-

tional Journal of Pattern Recognition and Artificial Intelli-

gence, 7(04):669–688, 1993. 2

[7] M. Brown, G. Hua, and S. Winder. Discriminative learning

of local image descriptors. Pattern Analysis and Machine

Intelligence (PAMI), 33(1):43–57, 2011. 2, 4

[8] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A

naturalistic open source movie for optical flow evaluation.

In European Conference on Computer Vision (ECCV), 2012.

http://sintel.is.tue.mpg.de/results. 2, 7, 8

[9] Q. Chen and V. Koltun. Full flow: Optical flow estimation by

global optimization over regular grids. In Computer Vision

and Pattern Recognition (CVPR), 2016. 8

[10] Z. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displace-

ment optical flow from nearest neighbor fields. In Computer

Vision and Pattern Recognition (CVPR), 2013. 2

[11] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbaş,

V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.

Flownet: Learning optical flow with convolutional networks.

In Computer Vision and Pattern Recognition (CVPR), 2016.

2

[12] D. Gadot and L. Wolf. Patchbatch: a batch augmented loss

for optical flow. In Computer Vision and Pattern Recognition

(CVPR), 2016. 1, 2, 5, 6, 7, 8

[13] S. Galliani, K. Lasinger, and K. Schindler. Massively par-

allel multiview stereopsis by surface normal diffusion. In

International Conference on Computer Vision (ICCV), 2015.

7

[14] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vi-

sion meets robotics: The kitti dataset. The In-

ternational Journal of Robotics Research, 2013.

http://www.cvlibs.net/datasets/kitti/

eval_stereo_flow.php?benchmark=flow. 2, 4,

5, 7, 8

[15] F. Güney and A. Geiger. Deep discrete flow. In Asian Con-

ference on Computer Vision (ACCV), 2016. 2, 7, 8

[16] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduc-

tion by learning an invariant mapping. In Computer Vision

and Pattern Recognition (CVPR), 2006. 5, 6

[17] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg.

Matchnet: unifying feature and metric learning for patch-

based matching. In Computer Vision and Pattern Recogni-

tion (CVPR), 2015. 2, 3

[18] B. K. Horn and B. G. Schunck. Determining optical flow.

In Technical symposium east, pages 319–331. International

Society for Optics and Photonics, 1981. 2

[19] Y. Hu, R. Song, and Y. Li. Efficient coarse-to-fine patch-

match for large displacement optical flow. 8

[20] J. Hur and S. Roth. Joint optical flow and temporally con-

sistent semantic segmentation. In European Conference on

Computer Vision (ECCV), 2016. 7, 8

[21] T. Lindeberg. Scale-space theory: A basic tool for analyzing

structures at different scales. Journal of applied statistics,

21(1-2):225–270, 1994. 3

[22] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman.

Sift flow: Dense correspondence across different scenes. In

European Conference on Computer Vision (ECCV). 2008. 1,

3, 5

[23] W. Luo, A. G. Schwing, and R. Urtasun. Efficient deep learn-

ing for stereo matching. In Computer Vision and Pattern

Recognition (CVPR), 2016. 2, 8

[24] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers,

A. Dosovitskiy, and T. Brox. A large dataset to train con-

volutional networks for disparity, optical flow, and scene

flow estimation. In Computer Vision and Pattern Recogni-

tion (CVPR), 2016. 2

[25] M. Menze and A. Geiger. Object scene flow

for autonomous vehicles. In Computer Vision

and Pattern Recognition (CVPR), 2015. http:

//www.cvlibs.net/datasets/kitti/eval_

scene_flow.php?benchmark=flow. 2, 4, 7, 8

[26] M. Menze, C. Heipke, and A. Geiger. Discrete optimization

for optical flow. In German Conference on Pattern Recogni-

tion (GCPR), 2015. 2, 7, 8

[27] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Neural Information Processing Systems (NIPS), 2015. 8

[28] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid.

Epicflow: Edge-preserving interpolation of correspondences

for optical flow. In Computer Vision and Pattern Recognition

(CVPR), 2015. 5, 7

[29] L. Sevilla-Lara, D. Sun, V. Jampani, and M. J. Black. Optical

flow with semantic segmentation and localized layers. In

Computer Vision and Pattern Recognition (CVPR), 2016. 7,

8

[30] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and

F. Moreno-Noguer. Discriminative learning of deep convolu-

tional feature point descriptors. In International Conference

on Computer Vision (ICCV), 2015. 1, 2, 4, 5, 6

[31] K. Simonyan, A. Vedaldi, and A. Zisserman. Learning

local feature descriptors using convex optimisation. Pat-

tern Analysis and Machine Intelligence (PAMI), 36(8):1573–

1585, 2014. 2

3258

 http://sintel.is.tue.mpg.de/results
 http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow
 http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow
 http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
 http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
 http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow

[32] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid.

Deepflow: Large displacement optical flow with deep match-

ing. In International Conference on Computer Vision

(ICCV), 2013. 1

[33] P. Wohlhart and V. Lepetit. Learning descriptors for object

recognition and 3d pose estimation. In Computer Vision and

Pattern Recognition (CVPR), 2015. 3

[34] S. Zagoruyko and N. Komodakis. Learning to compare im-

age patches via convolutional neural networks. In Computer

Vision and Pattern Recognition (CVPR), 2015. 1, 2, 4

[35] J. Zbontar and Y. LeCun. Stereo matching by training a con-

volutional neural network to compare image patches. Jour-

nal of Machine Learning Research, 17:1–32, 2016. 2

3259

