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Abstract

Re-identification of people in surveillance footage must

cope with drastic variations in color, background, viewing

angle and a person’s pose. Supervised techniques are often

the most effective, but require extensive annotation which

is infeasible for large camera networks. Unlike previous

supervised learning approaches that require hundreds of

annotated subjects, we learn a metric using a novel one-

shot learning approach. We first learn a deep texture rep-

resentation from intensity images with Convolutional Neu-

ral Networks (CNNs). When training a CNN using only

intensity images, the learned embedding is color-invariant

and shows high performance even on unseen datasets with-

out fine-tuning. To account for differences in camera color

distributions, we learn a color metric using a single pair

of ColorChecker images. The proposed one-shot learn-

ing achieves performance that is competitive with super-

vised methods, but uses only a single example rather than

the hundreds required for the fully supervised case. Com-

pared with semi-supervised and unsupervised state-of-the-

art methods, our approach yields significantly higher accu-

racy.

1. Introduction

Person re-identification is the task of finding the same

individual across a network of cameras. A successful al-

gorithm must cope with significant appearance changes

caused by variations in color, background, camera view-

point and a person’s pose. Most successful state-of-the-art

approaches employ supervised learning [14, 28, 32–34, 36,

62] and require hundreds of labeled image pairs of people

across each camera pair. Novel deep architectures [2,11,55]

can outperform these approaches, but training them from

scratch requires thousands of labeled image pairs. Fine-

tuning for target camera pairs [60] may help to decrease

the amount of required training data to hundreds of image

pairs. However, annotating hundreds of subjects in each

camera pair is still tedious and does not scale to real-world
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Figure 1: One-Shot Metric Learning. We split metric M

into texture and color components. Deep texture features T
are trained with CNN on intensity images to enforce color

invariance without having to fine-tune. Joint learning on

multiple source datasets (labeled data) increases good gen-

eralization under the Euclidean distance (identity matrix I).

We adapt for color differences specific to target camera pair

(unlabelled data) using a single image of color chart and

learning color metric G for patch color features c.

networks. To overcome this issue, semi-supervised and un-

supervised methods have been proposed [15,26,49,52,58].

Unfortunately, without labeled data, they usually look for

feature invariance, which often reduces discriminativity

and specificity (inability to adapt to camera-pair-specific

changes). This makes them uncompetitive with supervised

techniques. As a result, unsupervised and semi-supervised

methods have received little attention in the research com-

munity because practicality and scalability have not been

the main concern in current benchmark datasets (often lim-

ited to a small number of cameras).

In this paper, we propose a metric learning approach that

scales to large camera networks by employing techniques

similar to one-shot-learning [16]. We assume the metric

learned for a pair of cameras can be split into texture and

color components (see Fig. 1). For texture, we learn a color-

invariant deep representation T that has good generaliza-

tion abilities without fine-tuning. We can achieve this if we
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use only intensity images and train a single CNN through

a challenging multi-classification task on multiple datasets.

In contrast, a CNN learned on color images would most

likely require fine-tuning when testing [60], since the train-

ing dataset would have to be extremely large to cover all

possible inter-camera color variations. Fine-tuning still re-

quires a lot of training data, precluding its use with large

camera networks. Instead, we incorporate color into our

model using handcrafted color features that are independent

of texture, and we learn a color metric G for each cam-

era pair using a novel one-shot learning formulation. This

strategy only requires a single example per camera, making

it feasible for large networks. To account for specific dif-

ferences in camera color distributions, we densely sample

patches on registered images of a Macbeth ColorChecker

chart [37] and learn a Mahalanobis metric that directly mod-

els the relationship between color features across a pair of

cameras. Our contributions are:

• We split a metric for person re-identification into tex-

ture and color components. The metric is then learned

on the target camera pair by a novel one-shot metric

learning approach.

• Deep texture features are learned using only inten-

sity images, thus ensuring invariance to color changes.

Such features show high performance on unseen

datasets without fine-tuning and are very competitive

with semi- and unsupervised state-of-the-art methods.

• We adapt for color differences across cameras by

learning a metric locally for patches using a single pair

of images of a ColorChecker chart.

• Spatial variations in a person’s appearance are incorpo-

rated into the color metric by explicitly modeling back-

ground distortions across cameras. When computing a

distance between two images, we accommodate pose

misalignments by defining a linear patch assignment

problem, thus allowing patches to perturb their loca-

tions.

We conduct extensive experiments on five benchmark

datasets. The results illustrate that by combining our deep

texture features with a color metric trained using a single

pair of images, we achieve very competitive performance

with metrics learned from hundreds of examples. We out-

perform semi-supervised and unsupervised approaches and

establish a new state of the art for scalable solutions for re-

identification.

2. Related work

Supervised re-identification Most successful person re-

identification techniques are based on supervised learning.

They usually employ metric learning [2, 14, 28, 32, 33, 62]

that uses training data to search for effective distance func-

tions to compare people across different cameras. Many

supervised machine learning algorithms have been consid-

ered for learning a robust metric. This includes feature se-

lection by Adaboost [21], feature ranking by RankSVMs

[45] and feature learning by convolution neural networks

[2, 32, 51, 55, 60]. Although these deep convolution neural

networks can be very effective, they often require thousands

of image pairs to pre-train the architecture and hundreds of

image pairs to fine-tune the network to a particular camera

pair [55,60]. To cope with insufficient data, data augmenta-

tion often has to be employed together with triplet embed-

dings [11].

Among all of these metric learning approaches, Maha-

lanobis distance functions [13, 22, 28, 54] received the most

attention in the re-identification community [8]. Köstinger

et al. [28] proposed a very effective and efficient KISS

metric learning that uses a statistical inference based on a

likelihood-ratio test of two Gaussian distributions model-

ing positive and negative pairwise differences between fea-

tures. As this learning has an effective closed-form solution,

many approaches have extended this work by introducing

discriminative linear [34, 41] and non-linear [40, 56] sub-

space embeddings. Mahalanobis-like metric learning usu-

ally requires less training data than deep models (i.e. hun-

dreds of labeled image pairs).

Recently, a trend of learning similarity measures for

patches [4,47,48,64] has emerged. Bak et al. [4] shows that

learning metrics for patches might also effectively multi-

ply the amount of training data (multiple patches may share

the same metric). As a result, patch metrics can be learned

on smaller amounts of labeled images (e.g. using 60 im-

age pairs to infer an effective metric). However, annotat-

ing 60 subjects in each camera pair still does not scale to

real-world scenarios, where a moderately-sized surveillance

camera network can easily have hundreds of cameras.

Unsupervised re-identification Semi-supervised and un-

supervised techniques have been proposed to avoid the scal-

ability issue. Unsupervised approaches often focus on de-

signing handcrafted features [5, 7, 12, 15, 53] that should

be robust to changes in imaging conditions. One can fur-

ther weight these features by incorporating unsupervised

salience learning [52, 58] that looks for features that are far

from the common distribution. Transfer learning has also

been applied to re-identification [25, 63]. These methods

learn the model using large labeled datasets (e.g. fashion

photography datasets [49]) and transfer the discriminative

knowledge to the unlabeled target camera pair.

Dictionary learning and sparse coding [1, 19, 35] have

also been studied in context of re-identification. Dictionary

learning derives from unsupervised settings, thus it can di-

rectly be applied to utilize unlabeled data to learn camera-

invariant representations. To keep the dictionary discrim-
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inative, graph Laplacian regularization is often introduced

either to keep visually similar people close in the projected

space [26,27] or to perform cross-dataset transfer by multi-

task learning [42]. Although the Laplacian regularization

significantly helps, it is not sufficient to fully explore the

discriminative space. As dictionary learning is prone to fo-

cus on invariant representations, there is still a considerable

performance gap relative to supervised learning approaches.

One-shot learning One-shot learning aims at learning a

task from one or very few training examples [16]. Usually,

it involves a knowledge transfer either by model parame-

ters [17] or by shared features [6]. In this work, we propose

a one-shot metric learning approach where one part of the

metric (texture) is transferred directly to the target dataset.

The second part (color) is learned using patch-based metric

learning. In contrast to the existing approaches that learn a

metric from images of people, we learn a color metric using

a single pair of Macbeth ColorChecker chart images [37].

This effectively reduces the amount of training data to a sin-

gle example.

3. Method

Mahalanobis metric learning generates a metric M that

measures the squared distance between feature vectors xi

and xj

d2(xi,xj) = (xi − xj)
T
M(xi − xj). (1)

Köstinger [28] showed an effective closed-form solution

(the KISS metric) to learn M. In this paper, we propose

to split the metric M into independent texture and color

components, which is equivalent to enforcing a block di-

agonal structure: M =

[

I 0
0 G

]

, where the identity matrix

I corresponds to the Euclidean distance between deep tex-

ture features (Sec. 3.1) and G is a color metric (Sec. 3.2)

that is inferred using a single pair of images. In this con-

text, we rewrite Eq. (1) and define the distance between two

bounding box images i and j as

d2(i, j) = (1− γ)||Ti − Tj ||2 + γΦ2(ci, cj ;G), (2)

where Ti and Tj are our deep texture features extracted

after converting i and j to intensity images, ci and cj

are color features extracted from color images and Φ is a

Mahalanobis-like metric. Hyper-parameter γ ∈ [0, 1] con-

trols the importance of color relative to texture.

3.1. Texture dissimilarity

Perception of color is very susceptible to illumination

changes. Even deep features [55, 60] learned on thousands

of identities from multiple re-identification datasets require

fine-tuning on unseen datasets. In contrast to these ap-

proaches, we are interested in a representation that does

not require fine-tuning and can be applied directly to any

camera pair. To achieve color-invariance, we drop the color

information and convert all training images to single inten-

sity channel images. We adopt the CNN model from [55]

and train it from scratch using only intensity images to

obtain highly robust color-invariant features for person re-

identification. This model learns a set of high-level feature

representations through challenging multi-class identifica-

tion tasks, i.e., classifying a training image into one of m

identities. As the generalization capabilities of the learned

features increase with the number of classes predicted dur-

ing training [50], we need m to be relatively large (e.g. sev-

eral thousand). As a result, we merge publicly available

datasets into a single set of identities and train the network

as joint single-task learning (JSTL) [55]. When it is trained

to classify a large number of identities and configured to

keep the dimension of the last hidden layer relatively low

(e.g., setting the number of dimensions for fc7 to 256 [55]),

such CNNs form compact and highly robust texture rep-

resentations for re-identification. In the rest of the paper,

we refer to our neural network trained using only intensity

images as JSTLI and the features extracted from fc7 layer

as T . We found that directly using the Euclidean distance

on such trained features is very effective; thus, we com-

pute the dissimilarity score between Ti and Tj using ℓ2 dis-

tance. In Sec. 4.2, we show that this texture representation

has good generalization capabilities without fine-tuning and

achieves competitive performance with semi- and unsuper-

vised methods that utilize color information.

3.2. Color dissimilarity

In this section, we show how to learn a color metric using

a single pair of images. We then allow this metric to vary

spatially to cope with pose changes between images.

3.2.1 One-shot learning

Let cAi and c
B
j be the pair of color features extracted from

two different cameras A and B. Typically [28], the space

of pairwise differences cij = c
A
i − c

B
j is divided into

positive pairwise set c
+
ij when i and j contain the same

person, and c
−

ij otherwise. Learning the KISS metric in-

volves computing two covariance matrices: Σ+ for posi-

tive pairwise differences (Σ+ = (c+ij)(c
+
ij)

T ) and Σ− for

negative pairwise differences (Σ− = (c−ij)(c
−

ij)
T ). From

the log-likelihood ratio, the Mahalanobis metric becomes

G = (Σ+)−1− (Σ−)−1 and measures the squared distance

between two features ci and cj

Φ2(ci, cj ;G) = (ci − cj)
T
G(ci − cj) (3)

= c
T
ij

[

(Σ+)−1 − (Σ−)−1
]

cij . (4)

Covariance Σ
−: In practice, a set of negative examples

can be generated by randomly selecting subjects’ features

from cameras A and B [28]. Even in the rare circumstance

where a randomly generated pair of features corresponds to
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the same individual, the odds of this happening frequently

are nearly impossible.

Covariance Σ
+: Supervision is required for obtaining the

set of positive pairwise examples c
+
ij , thus computing Σ+.

We design separate foreground and background terms to fa-

cilitate learning. Let color features extracted in camera A

be
c
A
i = µi + σA

i + ǫAi , (5)

where µi is an implicit variable that refers to the i-th iden-

tity, σA
i denotes variations of µi, and ǫAi corresponds to

background distortion. The corresponding feature extracted

for the same individual from camera B is cBj = µi + σB
j +

ǫBj (where µj = µi because it is the same identity). Most

approaches ignore foreground/background separation and

assume metric learning will learn to identify and discard

background features. In contrast, we explicitly model back-

ground distortions by ǫ. Computing positive pairwise dif-

ferences we obtain

c
+
ij = c

A
i − c

B
j

= σA
i − σB

j + ǫAi − ǫBj

= ∆σij +∆ǫij . (6)

We assume that ∆σ and ∆ǫ follow two different indepen-

dent Gaussian distributions N (0,Σσ) and N (0,Σǫ), where

Σσ and Σǫ are unknown covariance matrices. The covari-

ance of positive pairwise differences then becomes

Σ+ = Σ+
σ +Σ+

ǫ . (7)

To compute Σ+
ǫ , we only need background images for a par-

ticular camera pair; thus, this information can be acquired

without human supervision. For computing Σ+
σ , we propose

to use a ColorChecker calibration chart that holds informa-

tion on color distribution in a given camera.

ColorChecker for Re-ID Driven by the idea that a good

metric can be computed on the level of patches [4, 48], we

design a new ColorChecker chart in such a way that corre-

sponding patches across cameras can be used as different

data points to compute c
+
ij , thus obtaining Σ+

σ (Eq. 7). The

standard Macbeth ColorChecker Chart [37] (see Fig. 2(a))

consists of color patches similar to natural objects, such as

human skin, foliage, and flowers. The chart was designed

to evaluate color reproduction processes by comparing the

resulting images to the original chart.

Our design of ColorChecker chart for re-identification is

based on insights from recent patch-based re-identification

methods [4, 47, 48, 64]. The patch size matches the size

of patches used for the re-id problem, and we removed the

thin black borders to enable random sampling of the board

(see Fig. 2(b)). This allows us to sample the space of color

differences more effectively by exploring more points in the

c
+
ij distribution (e.g., combinations of different colors).

200 400 600 800 1000 1200
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700

800
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Figure 2: Macbeth ColorCheckers (a) orignal [37]; (b) our

ColorChecker for re-identification.

3.2.2 Spatial variations

Patch-based approaches [4, 48] generally perform better

when metrics are allowed to vary spatially. Intuitively, re-

gions with statistically different amounts of background dis-

tortion should have different metrics (e.g. patches in the leg

region might contain more background pixels than patches

at the torso). Let us assume that a bounding box image is

divided into N patches. For a patch location n, we incor-

porate spatial variations into our model by redefining the

Gaussian distribution of ∆ǫ to be N (0, α(n)Σǫ), where α(n)

corresponds to the amount of environmental/background

distortions and depends on the location n of the feature dif-

ference cij relative to the full bounding box of the detected

person. As a result, Eq. 7 becomes

Σ+(n) = Σ+
σ + α(n)Σ+

ǫ . (8)

We usually expect α(n) to be detector-dependent (based on

how precisely the detector can generate a tight bounding

box). We learn α(n) using an auxiliary dataset. Let Σ
+(n)
R

be a covariance of positive pairwise differences computed

from patches at location n using annotated individuals. We

can learn α(n)’s by solving N objectives

α(n) = argmin
α

||Σ+
σ + αΣ+

ǫ − Σ
+(n)
R ||F : α ∈ (0, 1), (9)

for n = 1 . . . N . We learn α(n)’s using annotated image

pairs from the CUHK03 dataset and assume them to be

fixed across all evaluation datasets (see Fig 3(a)). Note that

larger amounts of background pixels yield higher values of

α’s (e.g. in head and leg regions). As a result, Φ and G from

Eq. (3) become location dependent

Φ2(ci, cj ;G
(n)) = (ci − cj)

T
G

(n)(ci − cj), (10)

G
(n) = (Σ+

σ + α(n)Σ+
ǫ )

−1 − (Σ−)−1. (11)

Deformable model: In addition to spatially varying met-

rics, the correspondence between patches can also vary spa-

tially. Because of pose changes, features extracted on a

fixed grid may not correspond even though it is the same

person. Therefore, patch-based methods [4, 48] often al-

low patches to adjust their locations when comparing two

bounding box images. In [4], a deformable model con-

sisted of spring constraints that controlled the relative place-
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Figure 3: Spatial variations: (a) learned background distor-

tion coefficients α(n); (b) N ×N cost matrix, which is used

as an input to the Hungarian algorithm for finding optimal

patch correspondence.

ment of patches. These spring constraints were learned di-

rectly from data using structural SVMs. [47] assumed the

correspondence structure to be fixed and learned it using a

boosting-like approach. Instead, we define the patch corre-

spondence task as a linear assignment problem. Given N

patches from bounding box image i and N patches from

bounding box image j we create a N ×N cost matrix that

contains patch similarity scores within a fixed neighborhood

(see Fig 3(b)). To avoid patches freely changing their loca-

tion, we introduce a global one-to-one matching constraint

and solve a linear assignment problem

Ω
∗

ij = argmin
Ωij

(

N
∑

n=1

Φ2(c
Ωij(n)
i , cnj ;G

(n)) + ∆
(

Ωij(n), n
)

)

,

s.t. ∆
(

Ωij(n), n
)

=

{

∞, η(Ωij(n), n) > δ;

0, otherwise,
(12)

where Ωij is a permutation vector mapping patches c
Ωij(n)
i

to patches cnj and Ωij(n) and n determine patch locations,

∆(·, ·) is a spatial regularization term that constrains the

search neighborhood, where η corresponds to distance be-

tween two patch locations and threshold δ determines the al-

lowed displacement (different δ’s are evaluated in Fig 7(a)).

We find the optimal assignment Ω∗

ij (patch correspondence)

using the Kuhn-Munkres (Hungarian) algorithm [29]. This

yields the color dissimilarity:
N
∑

n=1

Φ2(c
Ω

∗

ij(n)

i , cnj ;G
(n)). (13)

3.3. Total dissimilarity

By incorporating patches, Eq. (2) becomes

d2(i, j) = (1− γ)||Ti − Tj ||2 + γ

( N
∑

n=1

Φ2(c
Ω

∗

ij(n)

i , cnj ;G
(n))

)

.

(14)

In the next section, we extensively evaluate both texture and

color components as well as hyper-parameter γ.

Figure 4: Sample images from the CCH dataset: the top

and bottom lines correspond to images from different cam-

eras; columns illustrate the same person and the last column

shows images of our ColorChecker chart.

4. Experiments

We carried out experiments on 5 datasets: VIPeR [20],

iLIDS [61], CUHK01 [31], PRID2011 [23] and our new

dataset, CCH. To learn a texture representation (fc7 of

JSTLI ) and α(n)’s, we additionally used CUHK03 [32].

Re-identification results are reported using the CMC curve

[20] and its rank-1 accuracy. The CMC curve provides the

probability of finding the correct match in the top r ranks.

4.1. Datasets and evaluation protocols

CCH (ColorCHecker) is our new dataset that consists of

23 individuals with 3379 images registered by two cameras

in significantly different lighting conditions (see Fig. 4). A

single pair of images of our ColorChecker chart was used

to compute Σ+
σ .

VIPeR [20] is one of the most popular person re-

identification datasets. It contains 632 image pairs of pedes-

trians captured by two outdoor cameras. VIPeR images

contain large variations in lighting conditions, background

and viewpoint (see Fig. 5(a)).

CUHK01 [31] contains 971 people captured with two cam-

eras. The first camera captures the side view of pedestrians

and the second camera captures the front or back view ( see

Fig. 5(b)).

i-LIDS [61] consists of 476 images with 119 individuals.

The images come from airport surveillance cameras. This

dataset is very challenging because there are many occlu-

sions due to luggage and crowds (see Fig. 5(c)).

PRID2011 [23] consists of person images recorded from

two different static surveillance cameras. Characteristic

challenges of this dataset are significant differences in il-

lumination (see Fig. 5(d)). Although there are two camera

views containing 385 and 749 identities, respectively, only

200 people appear in both cameras.

CUHK03 [32] is one of the largest published person re-

identification datasets. It contains 1467 identities, so it fits

very well for learning the JSTL model [55]. We used this

dataset as an auxiliary dataset for training both deep texture

representation and background distortion coefficients.

Evaluation protocols We fixed the evaluation protocol

across all datasets. For computing color dissimilarity, all
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(a) VIPeR (b) CUHK01

(c) iLIDS (d) PRID2011

Figure 5: Re-identification datasets and their synthesized ColorCheckers. Top and bottom lines correspond to images from

different cameras. Columns illustrate the same person; the last column illustrates our manually generated ColorCheckers.

images of individuals are scaled to be 128×48 pixels and di-

vided into a set of 12×24 overlapping patches with a stride

of 6×12 pixels. This yields 60 patches per image. To extract

color features ci, we concatenate Lab, HSV, YCbCr, LUV,

and RGB histograms, each with 10 bins per channel, into

the 150-dimensional color feature vector, and we reduce the

dimensionality to 30 components using PCA. For texture,

we convert images to a single intensity channel. To fit the

JSTL architecture [55], we scale them to be 160×64 pixels.

For evaluation, we generated probe/gallery images accord-

ingly to the settings in [40,55]: VIPeR: 316/316; CUHK01:

486/486; i-LIDS: 60/60; PRID: 100/649 and CCH: 23/23.

In all experiments, we follow a single shot setting [40]. To

obtain background patches for learning Σǫ, we run back-

ground segmentation [43] and keep the patches that do not

intersect with the foreground mask. For iLIDS and CCH we

extract background patches from frames without subjects.

To capture camera illumination conditions we use the Col-

orchecker chart. In practice, it is better (and easier) to use

a picture of an actual chart. However for comparison pur-

poses with existing datasets, we synthesize the ColorCheck-

ers (see Fig. 5). We first randomly select 24 image pairs and

extract 2 patches from the upper and the lower body parts.

We then select 35 patches for the ColorChecker, while try-

ing to match colors from Macbeth Chart [37]. Labeling 35
patches compares favorably to previous supervised learning

methods that needed hand labeling of hundreds of subjects

across each camera pair. This procedure was repeated 10
times to minimize subjective bias. c+ij is generated by ran-

domly sampling 500 locations of the ColorCheckers.

4.2. Texture invariance

In this experiment we used 5 datasets: CUHK03, CUHK01,

VIPeR, iLIDS and PRID. Similar to [55], we propose a joint

learning scheme for producing an effective generic feature

representation. We divide each dataset into training, test-

rel. perform. drop

METHOD VIPeR CUHK iLIDS PRID min max avg

in
te

n
si

ty JSTLI* 15.8 50.6 44.1 35.0 - -

JSTLI
LOO 9.8 26.8 44.0 21.0 0.2 47.0 31.3

Handcrafted 3.2 4.1 28.9 5.9 34.4 91.8 72.3

co
lo

r

JSTL [55]* 35.4 62.1 56.9 59.0 - -

JSTLLOO 20.9 37.1 43.5 2.0 23.5 96.6 50.3

KISSME [28]* 19.6 16.4 28.4 15.0 44.6 74.5 60.7

Our 34.3 45.6 51.2 41.4 3.1 29.8 17.3

Table 1: CMC rank-1 accuracies, where * corresponds to

the supervised methods. When training in leave-one-out

(LOO) scenarios (unsupervised case), models trained only

on intensity images have better generalization performance

than models trained on color images (compare relative per-

formance drop statistics). Our method is complementary

to JSTLI
LOO and achieves significantly better accuracy than

unsupervised methods and KISSME*, and it is comparable

to supervised JSTL*.

ing and validation sets. As JSTL requires a high number of

identities, all training, testing and validation sets are then

merged into single training, testing and validation sets for

training a single CNN. Individually training each dataset is

usually not effective due to insufficient data [55]. In Tab. 1,

we report comparison of JSTL trained only on intensity im-

ages (JSTLI*) with JSTL trained on color images (JSTL*),

and we refer to this scenario as supervised learning (be-

cause the training split from the test dataset was included in

the merged training set). * is used to highlight supervised

methods. Compared to KISSME [28] for both color and in-

tensity images, it is apparent that a single CNN is flexible

enough to handle multiple dataset variations. Learning on

color images, we achieved better performance in this super-

vised setting.

However, as we are interested in generalization proper-

ties of this CNN (for unsupervised case), we also evaluate

JSTL performance on unseen camera pairs. Similarly to

leave-one-out (LOO) cross validation, we train CNNs from
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scratch while entirely skipping images from the test cam-

era pair (e.g. results of JSTLI
LOO in VIPeR column refers to

JSTL trained using all datasets but VIPeR.). CUHK03 im-

ages were always included in the training phase. The right

side of the table reports the performance drop statistics rel-

ative to the supervised JSTL(
r∗
1
−r1
r∗
1

) for both intensity- and

color-based models: min, max and average performance

drop statistics across all datasets are provided. This experi-

ment reveals that JSTL models trained on color images have

significant relative performance drop, even up to 96.6% for

the PRID dataset (i.e. rank-1 accuracy decreased from 59%

to 2%). The average performance drop for color images

is more than 50%. In contrast, for JSTL models trained

using only intensity images, the performance drop is sig-

nificantly lower and is even unnoticeable for some datasets

(e.g., iLIDS rank-1 dropped from 44.1% to 44.0%). This

implies that models trained only on intensity images are

more invariant to camera changes. JSTLI
LOO achieves rea-

sonable performance without fine-tuning and is very com-

petitive with the supervised KISSME [28] that uses color

information, outperforming it on 3 of 4 datasets.

Intuitively, if we would have a large amount of data cov-

ering all possible color transfer functions, we should be able

to learn features that have good generalization capabilities.

In practice, with limited training data, our results indicate

that it is more effective to learn deep texture representa-

tion using only intensity images and adapt to camera-pair

specific color changes using the proposed one-shot learning

(the last row in Tab. 1). Our approach significantly out-

performs JSTLLOO and KISSME and achieves comparable

performance to its supervised counterpart – JSTL*.

Furthermore, to compare it with standard handcrafted

texture descriptors, we concatenate HOG, LBP and SIFT

features [58] extracted on a dense patch layout and com-

pute image similarities using ℓ2. From the results, it is ap-

parent that JSTLI
LOO outperforms handcrafted features by a

large margin on all datasets, which demonstrates the effec-

tiveness of learning a set of generic deep texture features.

As a result, we use JSTLI
LOO as our Ti descriptor.

4.3. Color calibration

Inter-camera color variation is an important problem for

multi-camera systems. Standard approaches either (1) pur-

sue color constancy (i.e., perceiving the same color un-

der different illuminations) and perform normalization tech-

niques [18, 24, 30, 46] or (2) search for pair-wise map-

pings that are inferred from image pairs, e.g., a pair of

Macbeth ColorCheckers [3]. We compare our color met-

ric learning to both groups of methods on the CCH dataset

(now without the deep texture component, i.e. γ = 1 in

Eq. (14)). The first group includes: histogram equaliza-

tion (HQ) [24], multi-scale retinex with color restoration

(MSRCR) [46], grey world normalization (GREY) [18] and
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Figure 6: Performance comparison with standard color cal-

ibration techniques. Our approach outperforms other tech-

niques by a large margin for all values of background distor-

tion coefficients. The main improvement comes from learn-

ing metric G.

log-chromaticity (LOG) [30]. The second group, which

employs ColorChecker images, consists of: scene-specific

color calibration (SSCC) [3], inter-camera color calibra-

tion (ICC) [44], and 3D Thin-plate smoothing spline (TPS)

[9, 38]. A comparison in Fig. 6 between the two groups re-

veals that the performance of the second group (indicated

by solid lines) is generally higher. It is also apparent that

our color metric learning significantly outperforms all color

calibration methods. Compensating for background distor-

tions helps (e.g., in Eq. 11, we can set learned coefficients

α = α(n), or neglect background modeling α = 0, or as-

sume max background covariance computed from the train-

ing data across all patches α = 1) but the main improve-

ment comes from learning the metric G for color features

using statistical inference [28]. Our approach yields signifi-

cantly higher performance than standard approaches, which

usually model color transfer either by 1D color histogram

mappings [44] or low-rank matrix transforms [3].

4.4. Comparison to re­identification methods

Table. 2 reports the performance comparison of our one-

shot metric learning with state-of-the-art approaches across

4 datasets. We report the results of unsupervised, semi-

supervised and supervised approaches. Semi-supervised

approaches usually assume the availability of one third of

the training set. The #IDs column provides the average

number of labeled identities used for training correspond-

ing models. Our method outperforms all semi- and un-

supervised methods on all datasets, and it achieves maxi-

mum improvement on the PRID dataset. We improve the

state of the art by more than 16% on rank-1 accuracy com-

pared to the previous best reported result, including re-

sults from unsupervised GL [26] and semi-supervised TL-

semi [42] approaches. Further, our approach achieves com-

petitive performance with the best supervised methods that

require hundreds of training examples. For example, our

results on the PRID dataset outperform all supervised ap-

2996



METHOD #IDs VIPeR CUHK01 iLIDS PRID

se
m

i/
u

n
su

p
er

v
is

ed

Our, α = α(n) 1 34.3 45.6 51.2 41.4

Our, α = 0 1 30.1 39.6 49.9 31.9

JSTLI
LOO 0 9.8 26.8 44.0 21.0

JSTLLOO 0 20.9 37.1 43.5 2.0

Null Space-semi [57] 80 31.6 - - 24.7

GL [26] 0 33.5 41.0 - 25.0

DLLAP-un [27] 0 29.6 28.4 - 21.4

DLLAP-semi [27] 80 32.5 - - 22.1

eSDC [58] 0 26.7 15.1 36.8 -

GTS [52] 0 25.2 - 42.3 -

SDALF [15] 0 19.9 9.9 41.7 16.3

TSR [49] 0 27.7 23.3 - -

TL-un [42] 0 31.5 27.1 49.3 24.2

TL-semi [42] 80 34.1 32.1 50.3 25.3

su
p

er
v

is
ed

FT-JSTL+DGD [55] 2629 38.6 66.6 64.6 64.0

KISSME [28] 240 19.6 16.4 28.4 15.0

LOMO+XQDA [34] 240 40.0 63.2 - 26.7

Mirror [10] 240 42.9 40.4 - -

Ensembles [40] 240 45.9 53.4 50.3 17.9

MidLevel [59] 240 29.1 34.3 - -

DPML [4] 240 41.4 35.8 57.6 -

kLDFA [56] 240 32.8 - 40.3 22.4

DeepNN [2] 240 34.8 47.5 - -

Null Space [57] 240 42.2 64.9 - 29.8

Triplet Loss [11] 240 47.8 53.7 60.4 22.0

Gaussian+XQDA [36] 240 49.7 57.8 - -

Table 2: CMC rank-1 accuracies. The best scores for un-

and semi-supervised methods are shown in blue. Our ap-

proach performs the best among all these methods across all

datasets. The best scores of supervised methods are high-

lighted in red. Our results are comparable with supervised

methods that require hundreds or thousands of identified

image pairs for training.

proaches except FT-JSTL+DGD [55]. This model was pre-

trained on 2629 subjects, and hundreds of image pairs were

used to fine-tune the model on the target dataset. In a real-

world scenario, collecting these hundreds of images pairs

might be very difficult, if not impossible. Our model needs

only a single pair of images, which is a reasonable require-

ment for real-world deployments.

4.5. Model parameters

Deformable model Fig. 7(a) illustrates the impact of a de-

formable model on recognition accuracy. We also compare

the effectiveness of different neighborhoods on the overall

accuracy. In Eq. (12), we constrain the displacement of

patches to δhorizontal×δvertical number of pixels. Interestingly,

allowing patches to move vertically (δvertical > 0) generally

decreases performance. We believe that this is due to the

fact that images in all of these datasets were annotated man-

ually and vertical alignment (from the head to the feet) of

people in these images is usually correct. Allowing patches

to move horizontally consistently improves the performance

for all datasets. The highest gain in accuracy is obtained on

the VIPeR dataset (+3.2%), which was originally designed

for evaluating viewpoint invariance. This indicates that our

linear assignment approach provides a reliable solution for

pose changes.
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Figure 7: Models parameters: (a) comparison of different

allowable neighborhoods (horizontal×vertical) when ap-

plying Hungarian algorithm for matching patches; (b) sen-

sitivity of hyper-parameter γ.

The color importance Intuitively, it seems that color

should hold the most discriminative information of a per-

son’s identity. Conversely, we find that by employing only

the intensity channel, we can achieve a fairly strong baseline

for person re-identification. Color, although discriminative,

is very susceptible to illumination changes. Interestingly, it

is not clear which has more impact on the final performance

– our one-shot color metric learning or the deep texture rep-

resentation. Compare two extremes in Fig. 7(b): using only

texture γ = 0, and using only color γ = 1. Texture alone

performs better than color alone on two datasets (iLIDS,

CUHK01) but it is outperformed on two others (VIPeR,

PRID). Combining texture and color components consis-

tently increases the recognition accuracy in all datasets.

Computational complexity Eq. (12) requires solving Hun-

garian algorithm for relatively sparse 60 × 60 matrix (see

Fig. 3(b)). Given k non-infinite entries in this matrix, we

employed QuickMatch algorithm [39] that runs in linear

time O(k). The deep texture feature extraction is the slow-

est part and it depends on the GPU architecture (e.g. on

Tesla K80 VIPeR experiment takes 45s, with 39s spent on

deep feature extraction).

5. Summary

Supervised re-identification approaches require hundreds of

labeled image pairs to train effective models for each cam-

era pair. This does not scale to real-world scenarios where

the number of cameras in a surveillance network could be

large. In this paper, we presented a novel one-shot learn-

ing approach that achieves competitive performance with

the best supervised learning approaches, but only requires a

single image from each camera for training. We assume a

metric can be split into independent color and texture com-

ponents without loss of performance. For texture, we learn

deep color-invariant features that can be directly applied to

unseen camera pairs without fine-tuning. Color variations

for specific camera pairs are captured by sampling patches

on registered images of a ColorChecker chart and learning a

color metric for patches. Our method leads to new state-of-

the-art performance in practical and scalable solutions for

re-identification.
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