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Figure 1. 3D Shape-to-Image Matching. (a) Given a shape as a triangular mesh, we associate to each triangle Fi its rigid transformation

τi ∈ SE(3) such that the sum of data and smoothness terms is minimised. (b) The data term Ei(τi) measures how well the transformed

triangle τi(Fi) fits into the volumetric image. (c) The smoothness term Eij(τi, τj) penalises the discrepancy between transformed triangles

τi(Fi) and τj(Fj). (d) Optimising E provides us with a shape-to-image matching.

Abstract

We propose a combinatorial solution for the problem of

non-rigidly matching a 3D shape to 3D image data. To

this end, we model the shape as a triangular mesh and al-

low each triangle of this mesh to be rigidly transformed to

achieve a suitable matching to the image. By penalising

the distance and the relative rotation between neighbour-

ing triangles our matching compromises between image and

shape information. In this paper, we resolve two major

challenges: Firstly, we address the resulting large and NP-

hard combinatorial problem with a suitable graph-theoretic

approach. Secondly, we propose an efficient discretisation

of the unbounded 6-dimensional Lie group SE(3). To our

knowledge this is the first combinatorial formulation for

non-rigid 3D shape-to-image matching. In contrast to ex-

isting local (gradient descent) optimisation methods, we ob-

tain solutions that do not require a good initialisation and

that are within a bound of the optimal solution. We evalu-

ate the proposed method on the two problems of non-rigid

3D shape-to-shape and non-rigid 3D shape-to-image regis-

tration and demonstrate that it provides promising results.

1. Introduction

Matching a shape template to an image is a well stud-

ied problem in computer vision and image analysis. It gives

rise to a wide range of applications, including image seg-

mentation and object detection. An early approach for the

detection of lines and parametrised curves in images is the

voting-based Hough transform [14], which was later gener-

alised to the detection of arbitrary shapes [1].

Whilst the Hough transform considers rigid shapes, the

utilisation of shape information in image segmentation tasks

has also been addressed in the non-rigid case, including

methods based on active shape models [10], level sets [12],

convex shape spaces [13], multiphase graph cuts [58], or

statistical shape models [19, 63]. For the reconstruction

of the shape of an object from a single 2D image, shape-

from-template approaches aim to match a given 3D tem-

plate to the image via a 3D-to-2D projection [50, 38, 46].

Several authors have considered combinatorial formulations

of the non-rigid shape-to-image matching problem for cer-
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tain classes of shapes. For the case of matching contours

[11, 53], or 2D chordal graph polygons [16], the resulting

optimisation problems can be solved globally. However, a

generalisation of these methods to 3D shapes is non-trivial

and we are not aware of previous work addressing this issue.

The purpose of this work is to fill this gap by presenting a

combinatorial formulation for the non-rigid matching of a

3D shape template to a 3D image. For that, we model the

shape as a triangular mesh and allow each triangle Fi of this

mesh to be independently transformed via a rigid transfor-

mation τi ∈ SE(3). Using a discretisation of the unbounded

6-dimensional Lie group SE(3), we formulate the matching

task as a manifold-valued multi-labelling problem that can

be cast as minimising the energy

E(τ ) =

n
∑

i=1

Ei(τi) +
∑

(i,j)∈E

Eij(τi, τj). (1)

Here, the data term Ei(τi) takes the image information into

account, while the smoothness term Eij(τi, τj) measures

the dissimilarity between the observed shape and the mod-

elled shape prior. By penalising the distance and the rel-

ative rotation of neighbouring triangles our matching com-

promises between image and shape information. In general,

minimising functions of the form in (1) is NP-hard [26].

1.1. Related Work

To the best of our knowledge the present paper is the

first one that considers a combinatorial formulation of the

non-rigid 3D shape to 3D image matching problem. In the

following we will summarise methodologies that are most

relevant to our work.

Continuous Optimisation: In many scenarios it is nat-

ural to assume that image or shape deformations are spa-

tially continuous and smooth. Frequently, such problems

are formulated in terms of optimisation problems over the

space of diffeomorphisms [15, 40, 2, 41]. Commonly, gra-

dient descent-like methods are used to obtain (local) optima

of the (typically non-convex) problems. However, a major

shortcoming of these methods is that a good initial estimate

is crucial and in general there are no bounds on the opti-

mality of the solution. To deal with the non-convexity of

a 2D shape-to-image matching problem that is formulated

in terms of optimal transport, the authors in [52] propose to

use a branch and bound scheme.

Shortest Paths and Dynamic Programming: In con-

trast to the continuous local optimisation methods, many vi-

sion problems can be formulated in a discrete manner such

that they are amenable to solutions based on graph algo-

rithms and dynamic programming (DP) [17]. Since curves

are intrinsically one-dimensional, various curve matching

formulations can also be reduced to finding a shortest-path

in a particular graph. Moreover, based on a recursive formu-

lation using easier-to-solve subproblems, matching prob-

lems with templates that have a tree structure can frequently

be tackled by DP. For a deformable matching of an open

contour to a 2D image, a global solution based on DP has

been proposed in [11]. Also based on DP, in [16] the authors

present a method for solving the problem of deformably

matching a 2D polygon to a 2D image for chordal graph

polygons. In [53], the authors propose a globally optimal

approach for matching a closed contour to a 2D image based

on cycles in a product graph of the contour and the image.

A related formulation that is also based on a product graph

has recently been introduced in [30] for deformable contour

to 3D shape matching.

Graph-cuts: It is well known (see e.g. [4]) that any cut

of a graph can be interpreted as finding a closed manifold

of co-dimension 1 in the ambient space (e.g., closed curve

in 2D, closed surface in 3D, etc.). One such example is the

reconstruction of a 3D shape from a set of sparse 3D points,

where the latter is represented on a discrete 3D grid [35].

Labelling Problems: Labelling problems are ubiqui-

tous in computer vision and appear both in continuous

and discrete settings [62]. The popular Markov Random

Field (MRF) framework offers a Bayesian treatment thereof

[37]. Also, linear programming relaxations of MRFs have

been studied [59]. The continuous approaches to multi-

labelling include various convex relaxations [47, 32, 55,

18], multi-labelling problems with total variation regular-

isation of functions with values on manifolds [33], as well

as sublabel-accurate convex relaxations [42, 31]. Among

the discrete multi-labelling methods are the previously-

mentioned graph-cuts, which can be used to find global

solutions for certain binary labelling problems, including

problems with submodular pairwise costs [25]. For a sub-

class of multi-labelling problems a global solution can also

be found [25]. This sub-class includes pairwise costs that

are convex in terms of totally ordered labels [22]. In ad-

dition, efficient algorithms for finding local optima of gen-

eral multi-labelling problems have been proposed [6, 27],

which even have theoretical optimality guarantees. A more

detailed description of the energy functions that can be op-

timised using graph-cuts is given in [26, 24, 25].

1.2. Main Contributions

The main contribution of this paper is to present for the

first time a combinatorial formulation of the non-rigid 3D

shape to 3D image matching problem. Whilst our problem

is a natural extension to the afore-mentioned “dimension

one” matching approaches [11, 16, 53, 30], a generalisation

to (intrinsic) dimension two problems is more intricate. Our

main contributions are:

• By using a surface mesh transformation model that

makes use of per-triangle rigid transformations, we
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formulate the 3D shape to 3D image matching problem

in terms of a manifold-valued multi-labelling problem.

• We introduce a pairwise term that defines a metric

on the label space SE(3), which itself is a high-

dimensional Lie group. With that, our energy func-

tion is amenable to be minimised by the α-expansion

algorithm [6], which has been shown to work well in

practice, is efficient even for very large label spaces,

and has theoretical optimality guarantees.

• In contrast to continuous optimisation methods that

use gradient descent-like algorithms, our combinato-

rial method does not require a good initialisation.

• In order to deal with the computationally challenging

discretisation of SE(3), we propose to use a coarse-to-

fine discretisation of the Lie group.

2. Non-Rigid 3D Shape-to-Image Matching

In this section we first specify our objective, followed by

a description of the data term and smoothness term. After

introducing the combinatorial problem, we describe the dis-

cretisation of the label space and we discuss the algorithmic

solution of the problem.

2.1. Objective Function

In the following, we assume that a 3D shape S ⊂ R
3

is given as a triangular mesh. This means we have n ∈ N

triangles F1, . . . , Fn ⊂ R
3 such that

S =
n
⋃

i=1

Fi. (2)

We use the set E ⊂ {1, . . . , n}2 to define the neighbour-

hood between pairs of (different) triangles. We assume that

for all (i, j) ∈ E the neighbouring triangles Fi and Fj are

non-disjoint and that the intersection Fi ∩ Fj results either

in a common edge or a common vertex. Also, w.l.o.g. we

assume that for each (i, j) ∈ E it holds that i < j, i.e.

(i, j) ∈ E ⇒ (j, i) /∈ E .

Our objective is it now to match the 3D shape S onto

a volumetric image I : Ω → R
c, where Ω ⊂ R

3 denotes

the compact image domain and c ∈ N describes the amount

of image channels. While we are interested in a non-rigid

shape-to-image matching, we like to favour matchings that

are as-rigid-as-possible, similar to the approach in [54] that

applies (locally regularised) rigid transformations to each

vertex. However, in our case this is done by applying to

each triangle Fi a rigid transformation

τi = (τ̃i, ~τi) ∈ SE(3) = SO(3)⋉R
3, (3)

where τ̃i ∈ SO(3) ⊂ R
3×3 represents the rotational part

and ~τi ∈ R
3 represents the translational part of τi. The

task of finding the best matching τ = (τ1, . . . , τn) can be

formulated as minimising the energy

E(τ ) =

n
∑

i=1

Ei(τi) +
∑

(i,j)∈E

Eij(τi, τj). (4)

In Section 2.2 we define the data term Ei(τi) that evalu-

ates how well the transformed triangle τi(Fi) fits to the im-

age data. In Section 2.3 we define the smoothness term

Eij(τi, τj) that measures the geometric dissimilarity be-

tween the shape model S and the transformed shape

τ (S) :=

n
⋃

i=1

τi(Fi). (5)

Using the proposed piecewise rigid transformation model

we may end up with a model τ (S) having (small) gaps or

intersections between neighbouring triangles. We will later

address this issue and present a simple yet effective way of

dealing with this irregularity.

2.2. Data Term

The data term Ei(τi) ∈ R measures how well the trans-

formed triangle τi(Fi) fits to the image data I . For that,

we introduce the score image J : Ω → [0, 1] that is de-

rived from the image I (e.g. a gradient magnitude image, or

more advanced predictors based on neural networks). For a

triangle F ⊂ Ω, we define

J [F ] :=

∫

F

J(x)dx. (6)

With that, the value J [F ] indicates how well the triangle F
fits to the image data, where a high value of the score image

indicates a good fit. The data term is then given by

Ei(τi) = −J [τi(Fi)]. (7)

In the discrete setting, the data term Ei is computed by

a weighted sum of function values −J(x) over the triangle.

The weights take the rasterisation of the deformed triangle

τi(Fi) in the image into account.

2.3. Smoothness Term

The pairwise term Eij(τi, τj) ∈ R
+
0 penalises the dis-

agreement between neighbouring triangles Fi and Fj after

they have been transformed by τi and τj , respectively.

For defining the pairwise term we first introduce suitable

distances. The expression

dSO(3)(τ̃i, τ̃j) =

√

1

2

∥

∥log(τ̃Ti τ̃j)
∥

∥

F
(8)

is the geodesic distance between the rotations τ̃i and τ̃j
on SO(3) [21], with matrix logarithm log(·). For qi
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and qj being the quaternion representations of τ̃i and τ̃j ,

one can efficiently compute the distance as dSO(3) =
2 cos−1(|〈qi, qj〉|), where 〈·, ·〉 is the quaternion inner-

product [21].

For defining a distance between neighbouring triangles,

we make use of the concept of group actions. To be more

specific, we define

dSE(3),X(τi, τj) = max
x∈X

‖τi(x)−τj(x)‖2 , (9)

where the group SE(3) acts on the non-empty compact set

X ⊆ R
3. In our case we use X = Fi ∩ Fj such that

dSE(3),Fi∩Fj
(τi, τj) can be seen as distance between the de-

formed triangles τi(Fi) and τj(Fj). In this case the maxi-

mum in dSE(3),Fi∩Fj
(τi, τj) is achieved at the common ver-

tices of Fi and Fj , which is attractive from a computational

point of view.

Using the introduced distances, we define our pairwise

term as a weighted sum thereof, i.e.

Eij(τi, τj) = (10)

λBdSO(3)(τ̃i, τ̃j) + λSdSE(3),Fi∩Fj
(τi, τj).

The purpose of the bending term, weighted by λB > 0,

is to ensure that the rotations of neighbouring triangles are

similar. The stretching term, weighted by λS > 0, ensures

that neighbouring triangles stay close together.

2.4. Combinatorial Formulation

A matching τ of shape S to the image I is given by a

solution of the optimisation problem

min
τ∈SE(3)n

E(τ ). (11)

Due to the non-convexity of the feasible set SE(3)n, it fol-

lows that Problem (11) is non-convex. This non-convexity

makes it difficult to solve the problem directly over the un-

bounded continuous space SE(3)n. Our approach is to opti-

mise instead over a discretisation of the search space. With

that, we obtain a multi-labelling problem, for which effi-

cient and effective algorithms are available.

For the discretisation of SE(3) we make use of the fact

that it is a product space of SO(3) and R
3. Thus, we define

L ⊂ SO(3)⋉R
3 = SE(3) to be the (finite) manifold-valued

label space that contains ℓ = |L| elements of SE(3).
Translations: The Lie group SE(3) is non-compact due

to the translational part being encoded by R
3. However,

since the image domain Ω is compact, the image size pro-

vides natural bounds for a discretisation of the translations.

Let nx, ny, nz be the number of voxels of the image I and

ℓx, ℓy, ℓz be the number of labels for the x, y, z transla-

tions. For convenience, and w.l.o.g., we assume that our

template is defined relative to the centre of the image do-

main, i.e. the template’s centre-of-gravity coincides with

the centre of the image. Moreover, w.l.o.g., we assume

that we are looking for a matching such that a substan-

tial part of the (transformed) template lies inside the im-

age1. Let us define Zm(n) = {−n
2 , . . . , 0, . . . ,

n
2 } to be

the set containing m evenly-spaced elements with centre 0,

where m is an odd positive integer. The diameter n de-

fines the difference between the largest and the smallest el-

ements. A discretisation of the translations is given by the

set ~L = Zℓx(nx)×Zℓy (ny)×Zℓz (nz) with | ~L| = ℓx·ℓy·ℓz .

Rotations: Various works that are related to the discreti-

sation of SO(3) have previously been presented. These in-

clude sampling strategies for rigid-body path planning [29],

an approximation of the neighbourhood in SO(3) based on

vector distances [36], or an analysis of various metrics for

3D rotations [21]. Our discretisation of SO(3) is based on

the Hopf fibration, which describes SO(3) in terms of the

circle S1 and the 2-sphere S2. The intuition of this approach

is to transfer a discretisation of S1 and S
2 to the space of ro-

tations. We refer the interested reader to [61] for a detailed

description. Let L̃ denote the so-obtained set of a uniform

sampling of SO(3) containing ℓ̃ = |L̃| elements.

By optimising E over the label space Ln, we now obtain

the combinatorial optimisation problem as

min
τ∈Ln

E(τ ). (12)

3. Algorithm

In order to solve Problem (12), we use α-expansion [6,

26, 5], which greedily updates only one label at a time.

We note that there are also potential alternatives to α-

expansion (e.g. for non-metric pairwise terms [27, 55], or

fusion moves [34]). Whilst α-expansion has the require-

ment that the pairwise term is a metric, it is appealing both

from a practical and a theoretical point of view. To be more

specific, it is efficient, robust with respect to initialisation,

the obtained local optimum is guaranteed to lie within a fac-

tor of the global optimum, and an efficient implementation

that supports the online computation of the smoothness term

is available [6, 26, 5], which is crucial for the size of prob-

lems that we are solving. We now show that our pairwise

term is a metric and thus α-expansion is applicable.

Lemma 1 Let X ⊆ R
3 be a non-empty compact set and

τi, τj , τk ∈ SE(3). The stretching term

dSE(3),X(τi, τj) = max
x∈X

‖τi(x)−τj(x)‖2 ,

is a pseudometric, i.e. it satisfies

(i) dSE(3),X(τi, τj) ≥ 0, dSE(3),X(τi, τi) = 0,

(ii) symmetry: dSE(3),X(τi, τj) = dSE(3),X(τj , τi), and

1If this is not the case, one can increase the image size accordingly.
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(iii) the triangle inequality:

dSE(3),X(τi, τk) ≤ dSE(3),X(τi, τj)+dSE(3),X(τj , τk).

Proof: (i) and (ii) follow directly from the definition. The

triangle inequality holds, since

dSE(3),X(τi, τk) = max
x∈X

‖τi(x)−τk(x)‖2

= max
x∈X

‖τi(x)− τk(x) + τj(x)− τj(x)‖2

≤ max
x∈X

(

‖τi(x)− τj(x)‖2 + ‖τj(x)−τk(x)‖2
)

≤ max
x∈X

‖τi(x)− τj(x)‖2 +max
x∈X

‖τj(x)−τk(x)‖2

= dSE(3),X(τi, τj) + dSE(3),X(τj , τk). �

Proposition 1 For λS , λB > 0 and (i, j) ∈ E , the pairwise

term Eij(·, ·) defined in (10) is a metric.

Proof: Due to the assumption in Section 2.1, for (i, j) ∈
E it follows that X := Fi ∩ Fj 6= ∅ is compact.

Thus, dSE(3),X(·, ·) is a pseudometric (Lemma 1). Whilst

dSO(3)(·, ·) is known to be a metric on SO(3), it is only

a pseudometric on SE(3). Since Eij(·, ·) is a positive

linear combination of two pseudometrics, Eij(·, ·) is also

a pseudometric. To show that Eij(·, ·) is a metric, we

show that Eij(τi, τj)=0 implies τi=τj . For Eij(τi, τj)=0,

it holds that dSO(3)(τ̃i, τ̃j)=0, which implies τ̃i=τ̃j .

Moreover, with Eij(τi, τj)=0 and τ̃i=τ̃j , it holds that

dSE(3),X(τi, τj)=maxx∈X ‖(τ̃i(x)+~τi)−(τ̃j(x)+~τj)‖2 =
‖~τi−~τj‖2 =0, which implies ~τi=~τj . Hence τi=τj . �

3.1. Coarse­to­Fine Processing

In practice, for a reasonably large number of labels ℓ =
ℓ̃·ℓx·ℓy·ℓz , a direct solution of Problem (12) is intractable.

In order to cope with this issue we propose to use a coarse-

to-fine strategy that (approximately) solves Problem (12) at

different levels s of the label space. Let s=0 denote the

coarsest (initial) level and s=smax ≥ 0 the finest (final)

level. Once a solution τ
(s) has been obtained at level s,

for running the algorithm at level s+1 the labelling is ini-

tialised with τ
(s) and the label space is updated accordingly.

For computational efficiency, in the coarse-to-fine approach

each triangle has its own feasible label space. Let L
(s)
i de-

note this feasible label space for the i-th triangle at level

s. Initially, on the base level s=0, the label spaces are the

same for each triangle, i.e. L
(0)
i = L(0). The general idea

for obtaining L
(s+1)
i is to consider a (uniform) discretisa-

tion of the neighbourhood of the transformation τ
(s)
i at level

s, where the radius of the neighbourhood decreases across

the levels. Let us introduce a neighbourhood on SO(3):

Definition 1 (ǫ-ball on SO(3))
The ball on SO(3) with radius ǫ and centre τ̃ ∈ SO(3) is

defined as B
SO(3)
ǫ (τ̃) = {τ ∈ SO(3) : dSO(3)(τ, τ̃) < ǫ}.

Next, we describe the coarse-to-fine structure of the label

space based on its product space nature. Since each label

can be written as

τ
(s)
i = (τ̃

(s)
i , ~τ

(s)
i ) ∈ L̃

(s)
i × ~L

(s)
i ⊂ SO(3)⋉R

3, (13)

we can consider the translations and rotations indepen-

dently. Note that L̃
(s)
i × ~L

(s)
i ⊂ SE(3) is not necessarily a

group anymore. By enforcing that τ
(s)
i ∈ L

(s+1)
i , the solu-

tion τ
(s) at level s is also contained in the new label space.

Thus, the energy cannot increase from level s to s+1.

Translations: We define ~L(0) := ~L (cf. Section 2.4).

For obtaining the set of translations at level s+1 for triangle

i, the new translation grid at level s+1 is centred at ~τ
(s)

i .

Moreover, the diameter from level s is reduced by a factor

of two, leading to

~L
(s+1)
i := (14)

~τ
(s)

i +

(

Zℓx(
n
(s)
x

2
)×Zℓy (

n
(s)
y

2
)×Zℓz (

n
(s)
z

2
)

)

,

where the vector-set addition is element-wise. Initially,

n
(0)
x = nx, n

(0)
y = ny and n

(0)
z = nz .

Rotations: Let L̃[r] denote a discretisation of (the en-

tire) SO(3) at resolution r containing ℓ̃[r] elements, where

ℓ̃[r] increases with increasing r. L̃[r] should not be con-

fused with L̃
(s)
i , which is the (rotation) label space of the

i-th triangle at level s that is to be defined below. Follow-

ing the construction in [61], we obtain 5 resolutions of the

SO(3) discretisation L̃[r] for r = 0, . . . , 4. After includ-

ing the identity in L̃[r], the number of elements ranges from

ℓ̃[0] = 577 to ℓ̃[4] ≈ 2·106. Let us define a set that contains

a fixed number of p elements from L̃[r] that are “closest” to

the identity, i.e.

L̃[r]
p := L̃[r] ∩ BSO(3)

ǫ (Id), (15)

where for each resolution r the smallest ǫ that fulfils

|L̃
[r]
p | ≥ p is used as radius.

Now, we define L̃(0) := L̃[0], and

L̃
(s+1)
i := {τ τ̃

(s)
i : τ ∈ L̃[s+1]

p ⊆ SO(3)}, (16)

which is the set of compositions of τ̃
(s)
i with all rotations

in L̃
[s+1]
p . We use p = ℓ̃[0] = 577 for all levels s. For

the predefined SO(3) griddings at resolutions r = 0, . . . , 4
there always existed an ǫ such that the above inequality is

tight, i.e. |L̃
[r]
p | = ℓ̃[0] = 577.

By including the identity in L̃
[s+1]
p , we make sure that

τ̃
(s)

i ∈ L̃
(s+1)
i . Since 0 ∈ Z·(·), it follows that ~τ

(s)
i ∈

~L
(s+1)
i . Thus, we have τ

(s)
i ∈ L

(s+1)
i , ensuring that the

energy cannot increase when moving from level s to s+1.
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3.2. Practical Considerations

In this section we describe some aspects for the applica-

tion of the proposed method in practice.

3.2.1 Mesh Connectivity

After applying an individual rigid-body transformation to

each triangle of the template mesh, in general the resulting

mesh may have gaps or intersections between neighbouring

triangles. However, due to the introduced regulariser, these

gaps or intersections can be expected to be rather small. For

recovering the original mesh topology, we replace each sub-

set of vertices having the same position in the mesh template

by their centre-of-gravity after the transformation.

3.2.2 Memory Requirements

For running our algorithm we pre-compute the data term,

requiring memory of O(n·ℓ) (the online computation has

constant memory requirements but leads to a significantly

increased runtime). Since pre-computing the full pairwise

term requires memory of O(n2·ℓ2), we only precompute

the bending term dSO(3), requiring memory of O(ℓ̃2). The

stretching term dSE(3),X is computed online.

4. Results

For the evaluation of our method we focus on demon-

strating the general applicability of our approach. Both

point-set registration [3, 48, 8, 36, 44, 43, 23, 20, 49, 39]

and the related correspondence problem for 3D shapes

[56, 60, 28, 7] can be tackled using our method by recasting

them as shape-to-image matching problem. Hence, in our

evaluation below, in addition to 3D image segmentation, we

also consider the case of deformable mesh registration.

4.1. Deformable Mesh Registration

In the first set of experiments we demonstrate that our

method can be used to perform deformable mesh registra-

tion. To emphasise that our method is insensitive to initial-

isation, we compare it exemplarily with the Coherent Point

Drift (CPD) algorithm [44, 43], a widely-used point-cloud

registration method based on Expectation Maximisation.

Template and Target: For the evaluation we use a low-

resolution mesh of the Stanford bunny as template (n =
498), as shown in Fig. 2 (top left). A total of 20 deformed

versions of the bunny mesh, each with a random pose, are

used as registration targets. For that, we synthetically create

deformed versions of a high-resolution bunny mesh (Fig. 2,

top right) based on random 3D displacement vectors defined

at 8 control points on a cubic grid. These displacement vec-

tors are then transferred to the mesh using a spline-based

interpolation in order to achieve a smooth and nonlinear de-

formation. One such deformed mesh is shown in Fig. 2 (bot-

tom left). Eventually, a random pose transform is applied to

the deformed shape, as shown in Fig. 2 (bottom right).

Figure 2. Bunny meshes. Top left: template. Top right: high-

resolution target. Bottom left: deformed target (with original tar-

get overlay). Bottom right: deformed target with random pose.

Figure 3. Qualitative results for registrations of the bunny tem-

plate to the deformed target with random pose (cf. Fig. 2, bottom

right). Top left: CPD result (shape destroyed). Top right: CPD

error. Bottom left: our result. Bottom right: our error.

Score Image: In order to use our method for mesh

registration we create a score image for each target mesh

and then fit the template mesh to the score image. For

d : Ω → R
+
0 we denote by d(x) the distance of position

x to the boundary of the target mesh. Now, we define the

score image as J(x) = exp(−d(x)
β

), where we used β=2.
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Figure 4. Percentage of vertices (vertical axis) which have an error

that is smaller than or equal to the value on the horizontal axis.

Parameters: We set λS = 54· g
max({nx,ny,nz})

and

λB = 27· g
π

, where the normalisation factor g = ncmax

2|E|

takes the problem size into account. The positive num-

ber cmax is an upper bound for the largest possible abso-

lute value of the data term for a single triangle (cf. eq. (6)),

which we compute by multiplying the largest value of the

score image by the area of the largest triangle. The size

of the label space is |L(0)| = 93·577 = 420,633, and the

dimensions of the score image range from 2083 to 2623,

which resulted in an average processing time of ≈ 92 min-

utes per registration on a MacBook Pro (2.5GHz, 16GB).

Results: In the case of CPD, we first solve for a

rigid registration and then for a non-rigid registration (per-

forming a non-rigid registration directly performed worse).

Since CPD is highly initialisation-sensitive it fails in 17 out

of the 20 evaluated cases, where one representative failure

case is depicted in Fig. 3 (top row). This extreme amount of

corrupt registrations emphasises the necessity of a method

that is robust with respect to initialisation. In contrast, in all

20 cases our method is able to achieve a good registration,

see Fig. 3 (bottom row) for a representative result. In Fig. 4

we present a quantitative evaluation.

Discussion: Whilst we do not claim to present an

exhaustive evaluation of mesh registration methods, we

demonstrated the insensitivity to initialisation of our

method in a proof of concept manner. One advantage of

our approach is that we neither have the necessity of com-

patible mesh topologies, nor of compatible mesh discreti-

sations, since the target is represented in terms of the score

image. Since the score image is a discrete representation of

the target shape surface, our approach amounts to a surface-

based registration, rather than a point-based registration as

CPD, which is biased towards aligning points to be as close

as possible. Moreover, the score image offers further flex-

ibility since additional information can be integrated (e.g.

uncertainties, mesh texture, shape features, etc.).

4.2. Segmentation

In the second set of experiments we apply our method

to the segmentation of four brain structures (substantia ni-

gra & subthalamic nucleus as single object and the nucleus

ruber, both bilaterally) in 16 multi-modal 3T magnetic res-

onance images. The delineation of the subthalamic nucleus

is known to be a challenging task, even for humans [51].

The main difficulties include weak image contrasts and the

small size of the brain structures (the structures shown in

Fig. 5 are contained in a bounding box of ≈6×3×2.5cm3,

with the MRI image covering a volume of ≈203cm3).

Template: For capturing the inter-relation between the

brain structures, we use a multi-object template (n=379), as

shown in Fig. 5. The template connects neighbouring brain

structures by (degenerate) triangles, referred to as “phantom

triangles”, which are used only for the smoothness term and

are “free” with respect to the data term.

Figure 5. Brain structure template.

Parameters: We set λS = 135· g
max({nx,ny,nz})

and

λB = 90· g
π

, where g is defined as before. The size of the

label space is |L(0)| = 113·577 = 767,987, and the dimen-

sion of all score images is 364×436×364, which resulted

in an average processing time of ≈ 58 minutes per fitting.

Score Image: In order to perform image segmentation

with our method, we use a data term that is based on the re-

cently proposed 3D U-Net CNN [9]. For all 16 images we

train the network in a leave-one-out manner for the predic-

tion of volumetric segmentations. In the centre column of

Fig. 7 three examples of so-predicted volumetric segmenta-

tions are shown. For this challenging segmentation task the

U-Net is able to identify the (rough) location of the brain

structures, but does in many cases not produce an output

that resembles the shape of the brain structures (the first two

rows in Fig. 7). Thus, we complement the U-Net segmenta-

tions with geometric information using our method.

For each of the four brain structures o ∈ {1, 2, 3, 4} we

use an individual score image Jo. Given the binary U-Net

segmentation Iunet
o : Ω → {0, 1} for brain structure o, we

first extract the (predicted) boundary using morphological

operations. For do : Ω → R
+
0 we denote by do(x) the

distance of position x to the so-extracted boundary. Then,

we use a Gaussian kernel to define the score image as

Jo(x) = wo exp

(

−
−d2o(x)

2σ2
o

)

. (17)

The weight wo and bandwidth σo are used for incorporating

the confidence about the U-Net segmentation Iunet
o of brain

structure o. To this end, for

Yo = {x ∈ R
3 : Iunet

o (x) = 1} (18)
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being the one-level set of Iunet
o that represents the point-

cloud of segmented voxels, we use the average of the (per-

coordinate) median absolute deviation (MAD) as robust

dispersion measure, computed as

MAD(Yo) =
1

3
‖MAD(Yo)‖1, (19)

for MAD(Yo) = median(|Yo −median(Yo)|) ∈ R
3.

The median is understood in a per-coordinate sense, and

both the set-vector difference and the absolute value are un-

derstood element-wise. Now, for Y ′
o denoting the point-

cloud of segmented voxels of structure o as given by the

template, the absolute value of the average MAD difference

is given by ho = |MAD(Yo) −MAD(Y ′
o)|. With that, we

define σo = ρ(ho+1), scaled by ρ=3. Thus, if the aver-

age MAD for the U-Net segmentation and the template are

equal, the bandwidth corresponds to ρ, whereas a larger dif-

ference in dispersion leads to a larger bandwidth, account-

ing for more uncertainty in the U-Net segmentation. More-

over, we define wo = 1
ho+1 such that an increased uncer-

tainty in the U-Net segmentation of brain structure o leads

to a decreased weight for its data term.

Results: For the evaluation of the segmentation we use

the Dice Similarity Coefficient (DSC) as volumetric overlap

measure, which is defined as
2|Y∩Y′|
|Y|+|Y′| , for Y and Y ′ each

being point-clouds of segmented voxels. We compute the

DSC for each individual brain structure, and then report the

average of the four DSC values. Quantitative results com-

paring the plain U-Net segmentation and our obtained seg-

mentations are presented in Fig. 6. The boxplot on the left

reveals that in overall our method achieves higher volumet-

ric overlaps across the 16 cases. Moreover, the plot of sorted

DSC differences on the right emphasises that applying our

method improves the DSC in most cases (the values above

zero), and in only a few cases it is reduced slightly. In Fig. 7

our unet
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Figure 6. Left: Boxplot of the DSC of our method versus the U-

Net segmentation. Right: Sorted DSC differences for the 16 cases

(values above zero indicate an improvement upon U-Net).

qualitative results for three segmentation cases that corre-

spond to the best, median and worst cases in Fig. 6 (right)

are shown. In the first row of Fig. 7 it can be seen that in

some cases our method is even able to achieve a reasonable

segmentation based on a poor U-Net segmentation. This

was possible by putting a stronger emphasis on the shape

information relative to the data term, which also biases the

method towards the shape information. A related discus-

sion on the biasedness of model-to-data fitting approaches

in structure-from-motion can be found in [45].

ground truth U-Net our
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ed
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n
w

o
rs

t
Figure 7. Qualitative results for the brain structure segmentation

experiments. Each row shows a different instance of results, where

from top to bottom we present the best, median and worst DSC

differences (cf. Fig. 6, right).

5. Conclusion

We introduced the first combinatorial method for non-

rigidly matching a 3D shape to a 3D image. The key idea

is to represent the 3D shape as a triangular mesh and to

solve a manifold-valued multi-labelling problem on the set

of triangles. We determine an assignment of a rigid-body

transformation associated with each triangle by minimis-

ing a cost function where the unary terms encode the local

matching cost in the image and the pairwise terms penalise

the amount of non-rigidity in the deformation. In particu-

lar, we propose an efficient discretisation of the unbounded

6-dimensional Lie group of rigid motions. Moreover, we

solve the large and NP-hard optimisation problem with a

graph theoretic algorithm that is insensitive to initialisation

and has the guarantee that the obtained solution is within a

factor of the global optimum [6]. Experimental validation

confirms these benefits.
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