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Abstract

In this paper, we revisit the LASSO sparse representa-

tion problem, which has been studied and used in a variety

of different areas, ranging from signal processing and in-

formation theory to computer vision and machine learning.

In the vision community, it found its way into many impor-

tant applications, including face recognition, tracking, su-

per resolution, image denoising, to name a few. Despite

advances in efficient sparse algorithms, solving large-scale

LASSO problems remains a challenge. To circumvent this

difficulty, people tend to downsample and subsample the

problem (e.g. via dimensionality reduction) to maintain a

manageable sized LASSO, which usually comes at the cost

of losing solution accuracy. This paper proposes a novel

circulant reformulation of the LASSO that lifts the problem

to a higher dimension, where ADMM can be efficiently ap-

plied to its dual form. Because of this lifting, all optimiza-

tion variables are updated using only basic element-wise

operations, the most computationally expensive of which is

a 1D FFT. In this way, there is no need for a linear system

solver nor matrix-vector multiplication. Since all opera-

tions in our FFTLasso method are element-wise, the sub-

problems are completely independent and can be trivially

parallelized (e.g. on a GPU). The attractive computation-

al properties of FFTLasso are verified by extensive experi-

ments on synthetic and real data and on the face recognition

task. They demonstrate that FFTLasso scales much more

effectively than a state-of-the-art solver.

1. Introduction

In this paper, we are interested in efficiently solving the

popular LASSO problem, defined as follows:

min
c

}Ac ´ b}2
2

looooomooooon

fpcq

` λ }c}1
loomoon

gpcq

,
(1)

where A P R
mˆn is the sparsifying dictionary and λ is a

positive parameter that trades off between sparsity and da-

ta fitting fidelity. Problem (1) is strongly convex but non-

smooth. Problem (1) describes many applications of inter-

est in both computer vision and machine learning, including

(but not limited to) face recognition [32, 28, 33], face align-

ment [25, 24], tracking [20, 35, 37, 38, 15, 36, 3], super

resolution [34, 27], convolutional sparse coding [6, 14, 17],

image inpainting [30], sparse subspace clustering [11, 10],

image debluring [2, 16, 26], just to name a few.

In many applications (e.g. face recognition and face

alignment), it is important to solve problem (1) for a very

large overcomplete dictionary A (e.g. when m,n " 105).

In face recognition, face alignment, and in tracking, each

m-sized column of A is a vectorized image or image patch

and n is the number of training examples. In some par-

ticular models of face recognition and tracking, the num-

ber of training examples is even larger. For instance, in

[35, 32, 20], the identity matrix Im is concatenated with

the original dictionary (i.e. n Ð n ` m) to handle partial

occlusions at the price of solving a larger LASSO . Also, in

sparse subspace clustering [10, 23], the dimensionality of

the data points (m) is naturally very large and the task is to

cluster the high dimensional data into a set of lower dimen-

sional subspaces. Other applications, such as super resolu-

tion [34], tend to have a large number of dictionary elements

(n) generated from natural images. Moreover, A can also

have specific structure that can be exploited for faster solu-

tions. For example, in image denoising/restoration [2, 16]

and inpainting [30, 26], A is usually based on a 2D con-

volutional operator/kernel, thus, resulting in a Block Cir-

culant with Circulant Blocks (BCCB) or Block Topelitz

with Topelitz Blocks (BTTB) matrices, where each handles

boundary conditions differently. In these cases, A P R
nˆn

is square and n is the number of pixels in the kernel or filter.

Matrix A gets even “fatter” when multiple kernels or filters

are used at the same time, as is the case, in convolutional

sparse coding [6, 14, 17].

Solving problem (1) for large-scale A (especially when

m is large) is usually directly coupled with a performance

gain for the particular application. This idea has been clear-

ly raised and discussed in face recognition [28, 25]. Despite

this gain, these large LASSO problems tend not to be solved

because of their significant computational burden. Instead,
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Algorithm 1: PL-ADMM for Solving Problem (1)

Input : b,A, c “ 0n, z “ 0n,Ψ “ 0m, λ, u1, γ ą 1.

Output: c

while not converged do
c update: solve

p2AJA ` ukInqck`1 “ 2AJb ´ Ψk ` ukzk
z update: zk`1 “ softpck`1 ` Ψk{ukq.

Ψ update: Ψk`1 “ Ψk ` ukpck`1 ´ zk`1q
uk`1 “ γuk

end

the columns of A tend to be downsampled or subsampled to

sizes that are manageable by available LASSO solvers. For

example, in many sparse trackers, templates of the track-

ing target that constitute the columns of A are substantially

downsampled (e.g. 25-50 times the original patch size) [20].

This strategy has a tradeoff between speed and accuracy.

As for techniques that solve problem (1), many meth-

ods abound in the literature and significant advances have

been made in this realm. For computational reasons, only

first-order LASSO techniques are of interest for large-scale

problems. Among these techniques, those that use aug-

mented Lagrangian methods (ALM) for optimization tend

to be the most efficient [32, 28, 33]. In this paper, we ex-

pand on this type of LASSO solver by lifting problem (1)

first and then optimizing its dual form in the Fourier domain

using one type of ALM, particularly the Alternating Direc-

tion Method of Multipliers (ADMM). This relinquishes the

need to solve many large linear systems and affords the use

of simpler operations, namely 1D FFT and element-wise

vector products. Not only is the computational complexi-

ty per ADMM iteration in the lifted domain lower than the

state-of-the-art solver, but it is also very trivially paralleliz-

able affording further speedup due to hardware acceleration

(i.e. simple GPU implementation).

Mathematical Notation. We use boldface lowercase and

boldface uppercase letters for vectors and matrices, respec-

tively. In is the identity matrix of size n ˆ n. The operator

d denotes element-wise products, the FFT of vector x is

denoted as x̂, and F denotes the normalized discrete Fouri-

er transform (DFT) matrix. Superscripts ˚ and H indicate a

complex conjugation and hermitian operation, respectively.

Lastly, the circular convolutional operator is denoted as ˚.

2. Related Work

LASSO solvers are either first- or second-order methods

[31, 33]. First-order methods are typically based on local

linear approximations with at most linear local error. Ex-

amples are not limited to the proximal point [22], parallel

coordinate descent [5], and iterative shrinkage thresholding

methods (ISTA and FISTA) [1, 7, 22]. Methods of multipli-

Algorithm 2: DL-ADMM for Solving Problem (4)

Input : b,A, c “ 0n, ζ “ 0n,Ψ “ 0m, λ, ρ1, γ ą 1
Output: c

while not converged do
Ψ update: solve

pρkAAJ ` 1

2
ImqΨk`1 “ Apρkζ ´ cq ´ b.

ζ update: ζk`1 “ projℓ8,λpAJΨk`1 ` ck{ρkq.

c update: ck`1 “ ck ` ρkpAJΨk`1 ´ ζk`1q).

ρk`1 “ γρk
end

ers are also first-order. They include ADMM, which can be

applied to problem (1), and we refer to as the primal LASSO

(PL-ADMM). Because of LASSO convexity, ADMM can

also be applied on the dual problem of (1), which we refer

to as the dual LASSO (DL-ADMM). As for second-order

methods, they are often computationally expensive includ-

ing primal-dual interior-point methods [29].

Since first-order methods are very attractive for their

computational complexity and decent convergence rates, we

briefly discuss some first-order methods to solve problem

(1). Problem (1) is an addition of two functions, one smooth

and the other non-smooth. A popular class of methods to

solve this problem uses iterative soft thresholding (ISTA

and FISTA) [1, 7]. Since the smooth part fpcq is gradi-

ent Lipschitz continuous, one can bound it with a quadratic

function and find a sequence of solutions ck that converges

to the global optimum by minimizing the upper bound:

ck`1 “ argmin
c

fpckq ` pc ´ ckqJ∇fpckq

` 1

2Lf

}c ´ ck}2
2

` λgpcq,
(2)

where Lf ą 0 is the gradient Lipschitz constant of fpcq (the

maximum eigenvalue of AJA). Problem (2) has a closed-

form solution (the proximal operator for the ℓ1 norm):

ck`1 “ soft
´

ck ´ Lf∇fpckq, Lfλ
¯

(3)

The iterative soft thresholding method has a sublinear con-

vergence rate. In general, for problems where Lf is taken

to be 1

αk

, it becomes the general proximal point method and

the accelarated proximal gradient method (APG). Despite

its low computational complexity per iteration, both meth-

ods slowly converge in terms of number of iterations [22].

Problem (1) can be solved using coordinate descent,

which updates a single entry of the sparse code c in every it-

eration. The updates have a closed form [31]. However, it is

computationally inefficient overall, as the method requires

access to a column of A in every iteration where element

indexing is only partially parallizable on a GPU [9, 31].
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Problem (1), can be solved by applying ADMM direct-

ly to its primal form, leading to PL-ADMM, or to its d-

ual form, leading to DL-ADMM. As for PL-ADMM, the

primal-dual update steps are shown in Algorithm (1). It is

important to note that the bottleneck of PL-ADMM is in the

c update because it has to solve a n ˆ n positive definite

(PD) linear system. The softp.q operator is the standard soft

thresholding function. Here, the per iteration complexity is

at most Opn3q ` Opmnq. DL-ADMM optimizes the du-

al form of problem (1). Note that since LASSO is convex

and it satisfies Slater’s condition, the duality gap is zero and

both the primal and dual forms lead to the same solution.

The dual of problem (1) can be easily shown to be:

min
Ψ

1

4
}Ψ}2

2
` ΨJb s.t. }AJΨ}8 ď λ (4)

The primal-dual updates of DL-ADMM are shown in Algo-

rithm (2), where ρk ą 0 is a tradeoff coefficient and c is the

primal variable1. Similarly, the bottleneck of DL-ADMM

is solving a mˆm PD linear system.The per iteration com-

plexity is at most Opm3q `Opmnq. Updating ζ is straight-

forward, as it requires a simple projection onto the ℓ8 ball.

It is now clear that the dictionary shape dictates which

of the two methods (PL-ADMM vs. DL-ADMM) would

be the most computationally efficient. In other words, if

A is tall and skinny (i.e. m ą n), it is more desirable to

solve the LASSO using PL-ADMM, while a fat (i.e. m ă
n) A is handled better by DL-ADMM. However, in most

sparse representation problems, A is overcomplete and fat,

so we do not focus on solving a LASSO , where m is larger

than n. Since most dictionaries are either fat or square (i.e.

m ď n), DL-ADMM is the most efficient option to use for

solving a LASSO . In fact, the superiority of DL-ADMM

over PL-ADMM (in terms of runtime) has been extensively

demonstrated in previous work [32, 28, 33].

Comparison to Other Solvers. In this paper, we focus on

solving problem (1) when dictionary A is square or fat and

when both m and n are large. Interestingly, when A is

a concatenation of k circulant matrices (i.e. n “ km, as

in the case of convolutional sparse coding), the linear sys-

tem in each DL-ADMM iteration can be easily inverted by

computing k 1D FFTs, each of size m. This follows from

the fact that circulant matrices can be diagonalized by the

DFT matrix F. This modification to DL-ADMM reduces

the per iteration time complexity from Opm3q ` Opmnq
to Opnm logmq ` Opmnq and has recently been shown

to significantly speedup convolutional sparse coding (CSC)

[6, 14] and sparse trackers [35]. Although CSC is a special

type of LASSO , we gain inspiration from it to propose our

generic LASSO solver, suitably called FFTLasso. We refor-

mulate the LASSO by lifting c from n to mn dimensions,

thus, expanding A into a block circulant matrix and making

1Note that the dual variable of the dual problem is the primal variable.

LASSO equivalent to a particularly constrained CSC prob-

lem. By applying ADMM on the dual of this constrained

problem, we observe that the linear system to be solved in

each ADMM iteration is block circulant, which can be effi-

ciently solved via 1D FFTs akin to CSC.

Another main distinction between FFTLasso and other

LASSO solvers is in how the ADMM dual variable is up-

dated. In all ADMM-based solvers, a conventional gradi-

ent ascent step is performed on the dual problem [4]. In

FFTLasso and following seminal work on smooth uncon-

strained optimization [1], we perform a Nesterov accelerat-

ed gradient ascent step instead, thus, involving the current

and past estimates to update the dual variable. This modi-

fication substantially reduces (usually by 30%) the number

of ADMM iterations needed for convergence.

Contributions. (i) We show that the popular LASSO prob-

lem (1) is equivalent to a particularly constrained convolu-

tional sparse coding problem, whose dual can be efficient-

ly solved using ADMM update steps that only require 1D

FFTs and element-wise vector operations. As such, the

time complexity of our proposed FFTLasso method offer-

s a time complexity of Opmn logmq `Opmnq, as opposed

to Opm3q `Opmnq in the case of DL-ADMM. Since FFT-

Lasso is very trivially parallelizable, it can easily benefit

from hardware (GPU) acceleration. (ii) We perform Nes-

terov accelerated gradient ascent to update the dual vari-

ables in FFTLasso. This modification provides a substantial

speedup in convergence as compared to conventional AD-

MM updates. (iii) Motivated by a thorough computational

analysis and validated by extensive experiments on synthet-

ic and real data, we show that FFTLasso scales much better

than the state-of-the-art LASSO solver (DL-ADMM), thus,

enabling better performance (e.g. face recognition accura-

cy) in the same amount of time.

3. Proposed Method

In this section, we give a detailed discussion of our

FFTLasso solver (see Figure 1). First, we lift the original

LASSO and increase the number of variables by append-

ing extra columns in the dictionary A to generate a larger

dictionary Ã. However, the appended columns have par-

ticular structure. We replace each column in A with al-

l its circular shifts to generate a circulant matrix: Ã “
“

Cpa1q ¨ ¨ ¨ Cpanq
‰

P R
mˆmn, where ai is the ith col-

umn of A. The operator Cp.q generates a circulant matrix

from a vector. The set of all vectors generated by Cpxq
for x P Rm is

 

Pix @i “ 0, . . . ,m ´ 1
(

, where P is a

permutation matrix such that Px “
“

xm, x1, . . . , xm´1

‰J
.

Circulant matrices have several nice properties. (1) They

are tightly related to circular convolutions: Cpxqy “ x ˚

y. (2) They can be diagonalized using F, i.e. Cpxq “
Fdiagpx̂˚qFH, where x̂˚ is the conjugate of the 1D FFT

1718



Figure 1. Relationship between FFTLasso and traditional LASSO .

of x. Therefore, it is easy to show that problem (1) is equiv-

alent to the following:

min
c̃

}Ãc̃ ´ b}2
2

` λ}c̃}1 s.t Dc̃ “ 0, (5)

where D P R
npm´1qˆmn is a selection matrix that chooses

the values of c̃ corresponding to the appended columns in Ã

and sets them to 0. It is also important to note that problem

(5) can be rewritten as follows:

min
c̃

›

›

›

›

›

n
ÿ

i

ai ˚ c̃i ´ b

›

›

›

›

›

2

2

` λ}c̃}1 s.t Dc̃ “ 0, (6)

where c̃J “
“

c̃J
1
, . . . , c̃J

n

‰J
. Note that our LASSO refor-

mulation can be seen as a constrained convolutional sparse

coding (CSC), where the sparse codes are constrained to

have the following structure: c̃J
i “

“

ci, 0
J
m´1

‰J @i and

where ci is the ith element of the LASSO solution of prob-

lem (1). Therefore, it is easy to realize that ai ˚ c̃i “ aici
and

řn
i ai ˚ c̃i “ řn

i aici “ Ac, demonstrating that LAS-

SO is indeed a CSC problem with special constraints.

Solving Problem (5). Now, we focus on developing an ef-

ficient solver for our LASSO reformulation in problem (5).

At first glance, this optimization is much larger than the o-

riginal LASSO and it has many linear equality constraints,

two characteristics that one usually avoids. However, we

will show that the dual of this problem can be solved ef-

ficiently using simple ADMM steps (unlike DL-ADMM),

which do not require operators that are more computation-

ally expensive than 1D FFTs, and that the linear selection

constraints can be trivially handled. It is easy to show that

the dual of problem (5) is as follows:

min
Ψ,θ

1

4
}Ψ}2

2
` ΨHb s.t }ÃHΨ ` DHθ}8 ď λ, (7)

where Ψ is the dual variable. To solve problem (7) using

ADMM, we first add an auxiliary variable: ζ “ ÃHΨ `

Algorithm 3: FFTLasso for Solving Problem (1)

Input : b,A, c̃1 “ ỹ1 “ r̃1 “ e1 “ t1 “ ζ1 “
DHθ1 “ 0mn,Ψ “ 0m, λ, ρ1, γ ą 1, q.

Output: c

while not converged do

compute: ek`1 “ ρkζk ´ ρkD
Hθk ´ c̃k

Ψ̂˚ update: Ψ̂˚
k`1

“
ř

N

i
â

˚

i
dê

˚

ik`1
´b̂

˚

ρk

ř

N

i
âidâ

˚

i
` 1

2
1m

compute: ÃHΨk`1, see Eq (12)

DHθ update:

pDHθk`1q “ pζk ´ 1

ρk

c̃k ´ ÃHΨk`1q
pDHθk`1q1:m:end “ 0n

compute: tk`1 “ ÃHΨk`1 ` DHθk`1 ` c̃k{ρk
ζ update: ζk`1 “ signptk`1q d minp|tk`1|, λq
c̃ update:

c̃k`1 “ ỹk ` ρkpÃHΨk`1 ` DHθk`1 ´ ζk`1q
compute: ỹk`1 “ p1 ` qqc̃k`1 ´ qc̃k
ρk`1 “ γρk

end

c Ð c̃p1:m:endq

DHθ, to separate the ℓ8 constraint from Ψ. Therefore, we

define the augmented Lagrangian function Lρ as follows:

LρpΨ, θ, ζ, c̃q :“ 1

4
}Ψ}2

2
` ΨHb ` It}ζ}8ďλu`

c̃HpÃHΨ ` DHθ ´ ζq ` ρ

2
}ÃHΨ ` DHθ ´ ζ}2

2

(8)

where c̃ is also the vector of Lagrange multipliers corre-

sponding to the ζ constraint. Because of the zero duality

gap, one can show that the primal solution c̃ of problem (5)

is indeed the optimal dual variable of this problem’s dual

formulation. I is the indicator function that penalizes infea-

sible ζ, and ρ ě 0 is the ADMM penalty parameter.

In what follows, we elaborate on each ADMM update,

which first minimizes Lρ w.r.t. each primal variable (Ψ, θ,

and ζ) separately and then updates the dual variable c̃ via

an accelerated Nesterov dual ascent step. All these steps

are summarized in Algorithm (3).

Update Ψ̂˚: We need to solve the following PD system:

pρÃÃH ` 1

2
ImqΨ “ Ãpρζ ´ ρDHθ ´ c̃q ´ b (9)

We can compute the right hand side of this system effi-

ciently. Setting e “ ρζ ´ρDHθ´ c̃ “
“

eH
1
, . . . , eHn

‰H
, we

have Ãe “ řn
i Cpaiqei “ F

řn
i â

˚
i d ê˚

i . Thus, it is easy

to see that the update for Ψ̂˚ (conjugate of FFT of Ψ) is as:

Ψ̂˚ “
řN

i â˚
i d ê˚

i ´ b̂˚

ρ
řN

i âi d â˚
i ` 1

2
1m

, (10)

where the vector division is done element-wise in the Fouri-

er domain. For this update, we only need to compute the
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m-sized FFT of each of the n parts of e, since the FFT of b

and each ai is done once before ADMM commences.

Update DHθ : We do not need to update θ, since it never

appears alone in any ADMM step. Instead, we update DHθ

by solving the following linear system:

DpDHθq “ Dpζ ´ c̃{ρ ´ ÃHΨq (11)

To compute DHθ, we compute ÃHΨ efficiently in the

Fourier domain. The diagonalization trick can be applied

again for each block of Ã as follows:

ÃHΨ “

»

—

–

Cpa1qH
...

CpanqH

fi

ffi

fl
Ψ “

»

—

–

Fpâ1 d Ψ̂˚q
...

Fpân d Ψ̂˚q

fi

ffi

fl
(12)

Since D is merely a selection matrix for the appended

columns in Ã, we simply set the corresponding npm ´ 1q
elements of DHθ to those of the right hand side. The rest

of the elements in DHθ remain intact.

Update ζ : This is done by solving problem (13).

min
ζ

}ζ ´ pÃHΨ ` DHθ ` c̃{ρq}2
2

s.t. }ζ}8 ď λ (13)

Problem (13) is a Eucledian projection of t “ ÃHΨ `
DHθ ` c̃{ρ onto the ℓ8 ball. It can be computed using

element-wise operators (min and sign) as follows:

ζ “ signptq d minp|t|, λq (14)

Update c̃ : Conventionally, the dual variable c̃ should be

updated by a dual ascent step as follows:

c̃ Ð c̃ ` ρpÃHΨ ` DHθ ´ ζq (15)

However, we propose to speed up the convergence of our

ADMM method by replacing the typical dual ascent step

above with Nesterov’s accelerated ascent step as follows:

c̃k`1 Ð ỹk ` ρpÃHΨ ` DHθ ´ ζq
ỹk`1 Ð p1 ` qqc̃k`1 ´ qc̃k

(16)

where k is the iteration number and q “
?
Q´1?
Q`1

is set ac-

cording to [21]. Here, Q represents the condition number;

however, we set it to a constant throughout all the exper-

iments for convenience. Note that when Q “ 1, the up-

date in (16) degenerates to the standard dual ascent update

in (15). In fact, the Nesterov accelerated gradient ascent

method has been shown to afford a significant speedup in

convergence, when it is compared to regular gradient as-

cent [13]. We exploit this property to reduce the number of

ADMM iterations needed for convergence, which is guar-

anteed regardless of the initialization due to the convexity

of the LASSO problem.

Figure 2. Ratio of iteration runtime between FFTLasso and DL-

ADMM. Only when the dictionary is small and has many more

columns than rows is DL-ADMM competitive with FFTLasso.

The details of FFTLasso are summarized in Algorithm

(3). For a complete mathematical treatment, and for an

efficient implementation with matrix notation we refer the

reader to the supplementary material.

Computational Analysis. By studying the DL-ADMM

method, we know that its per-iteration time complexity is

Opm3q ` Opmnq, while it is Opmn logmq ` Opmnq for

our FFTLasso. The most expensive computational oper-

ation needed in FFTLasso is n 1D FFTs of size m each.

The lifting procedure at the beginning allows our method to

avoid using expensive linear solvers in its updates and is pri-

marily what differentiates us from DL-ADMM in runtime.

Since we set ρ to scale proportionally with mn, we empiri-

cally observe that the number of ADMM iterations needed

for FFTLasso to converge, although much higher than DL-

ADMM, effectively does not grow with mn. We can use

this result to comment on the scale of problems where FFT-

Lasso is expected to be more efficient than DL-ADMM. In

fact, dictionaries with m2 " n logm are best suited for

FFTLasso, where square matrices naturally satisfy inequal-

ity. This means that FFTLasso favors a dictionary A, whose

number of columns is not tremendously more than the num-

ber of its rows, while DL-ADMM is tailored for much fat-

ter dictionaries. This is evident from Figure (2), where the

computational complexity per iteration of FFTLasso con-

sistently improves (reaching a 13ˆ speedup) as compared

to DL-ADMM, especially when both pm,nq are large.

4. Experiments

In this section, we conduct extensive experiments to mo-

tivate and evaluate our proposed formulation both on syn-

thetic data followed by experiments on a popular comput-

er vision task (face recognition). The section is organized

as follows: (1) parameters and implementation details; (2)

speed comparison on different dictionaries sizes and (3)

face recognition results.

Dataset preparation. We conduct experiments on both a

synthetic and real face dataset. In the synthetic experiments,
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we start by generating square dictionaries A P R
nˆn and

regressors b P R
n for n P t103, 1500, 2000, ..., 104u Y

t29, 210, ..., 213u. All dictionaries and regressors are i.i.d.

Gaussian matrices and vectors, respectively. Following con-

vention [31, 33], the columns of A and b have unit norm.

As for the face recognition task, large datasets with pre-

aligned and cropped faces are not readily publicly available.

Therefore, we conduct our experiments on part of the ex-

tended Yale B dataset [12], which contains a total of 16,128

face images from 28 human subjects. The images of each

subject are taken under 9 different poses and 64 different

illumination conditions. Unfortunately, since the faces are

not cropped nor aligned, we run an off-the-shelf face detec-

tor to crop a total of 10,140 images distributed uniformly

across the 28 subjects. The average face size is 245 ˆ 245

pixels. We conduct our experiments at two dimensions for

a non-square dictionary A. In both experiments, we use

n “ 104 training faces, whose face patches are downsam-

pled and vectorized to m P t212, 213u pixels. Note that the

largest face size used in related work [33, 31] is 40 ˆ 30

or 1,200 pixels, which is 4 times smaller than the smallest

m in our experiments. Following convention, five random

test faces are chosen from each class, resulting in 140 test

samples (i.e. 140 values of b). For each test sample b, a

LASSO is solved and its sparse code c is computed. Fol-

lowing convention, we assign b to subject i˚ that leads to

the smallest residual: i˚ “ argmini }Aci ´ b}2
2
, where ci

is the sparse code corresponding to subject i only.

Parameters and implementation details. For a fair com-

parison, we choose the ADMM parameters with the fastest

convergence for both methods at m “ 213 on the synthetic

and face dataset. Then, these parameters are scaled (in the

same way) according to the dimension of the problem. For

DL-ADMM, when m “ n “ 213, we set ρ1 “
?
10 and in-

crease it as ρk`1 “ mintγρk, ρmaxu, where γ “
?
1.001

and ρmax “
?
2000. As for FFTLasso, the correspond-

ing parameters for the same dimension m are ρ1 “ 70,

γ “ 1.0005 and ρmax “ 2000. When the m value changes,

all parameters for both methods are kept the same, except

for ρ1, which is proportionally scaled with m.

The synthetic experiments aim to show the convergence

rate of each method, so a high accuracy solution co is

obtained using a MATLAB mex-function [19, 18] of the

LARS algorithm [8]. Following the evaluation paradig-

m of [33, 31], we terminate DL-ADMM and FFTLasso,

once they reach a low relative argument error w.r.t. co:

}c´co} ď τ}co}. In our experiments, we set τ=1%. We set

λ for each dictionary, so as to achieve « 60% sparsity for

the synthetic experiments and « 85% for the face dataset.

In the face recognition experiments, we let DL-ADMM and

FFTLasso run for the same amount of time (10 minutes),

where the intermediary argument relative error, the recog-

nition accuracy, and the objective error are reported.
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Figure 3. Runtime comparison between FFTLasso-GPU (on Ti-

tanX) and DL-ADMM (multi-core) at different CPU frequencies.

4.1. Comparison on Synthetic Data

In this section, we conduct three experiments, each of

which studies the LASSO problem from a different per-

spective. In the first experiment, we compare the conver-

gence rate between a MATLAB CPU implementation of

DL-ADMM as given in Algorithm (2), against a simple G-

PU implementation of FFTLasso, where the FFTs required

in Algorithm (3) are done in parallel. In the second exper-

iment, we demonstrate the impact of using Nesterov accel-

erated gradient ascent for both DL-ADMM and FFTLasso.

In this case, we use a simple GPU implementation of DL-

ADMM (similar to FFTLasso). FFTLasso’s memory effi-

ciency is established in the last experiment.

1. Convergence Comparison. To the best of our knowl-

edge, all mainstream solvers for DL-ADMM are imple-

mented using a CPU. Also, implementations of many lin-

ear algebra routines (e.g. matrix inversion and linear system

solving) are highly optimized on the CPU in MATLAB, al-

lowing it to benefit from multi-core high-frequency CPUs

that are available nowadays. Due to these two reasons and

only in this experiment, we compare a multi-core CPU im-

plementation of DL-ADMM at different frequencies against

the GPU version of FFTLasso, denoted FFTLasso-GPU.

Using a GPU exploits the trivial parallelism in FFTLasso,

namely the parallel computation of the 1D FFTs, where we

use a TitanX (1.0GHz/core) for this experiment2. Here, DL-

ADMM runs on 8 cores with varying speeds {1.2, 1.6, 2.0,

2.4, 2.7} GHz/core. All experiments are in single precision.

Figure 3 shows a speed comparison (in log scale) be-

tween DL-ADMM (on multiple cores) with varying CPU

frequency against FFTLasso-GPU on TitanX. We plot the

log ratio of the two methods as log
´

TFFTLasso{TDL-ADMM

¯

.

2Results on the TitanX Pascal GPU (1.4GHz/core) are left to the sup-

plementary material.
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Figure 4. Comparing DL-ADMM against FFTLasso on the same

GPU with and without Nesterov acceleration. Q=1 indicates reg-

ular dual ascent and Q=30 indicates incorporated acceleration.

FFTLasso-GPU benefits from GPU hardware acceleration

much more than DL-ADMM does from multi-core CPU

acceleration. It is also clear that FFTLasso-GPU signif-

icantly outperforms DL-ADMM for all dimensions m “
n ą 3000, even though MATLAB has a very efficient linear

solver for dense matrices. This is mainly because the linear

solver (see Algorithm 2) scales poorly (cubically) with m,

as compared to FFTLasso that only requires independent

1D FFT operations per ADMM iteration. It is also impor-

tant to highlight the non-monotonic decreasing nature of the

plot. We observe that the runtime gain of FFTLasso over

DL-ADMM can decrease with m (visualized as jumps in

the plot), especially at values of m that are not powers of 2.

This is due to the fact that the FFT routine we use has radix

2, so it is most efficient when m “ 2v for an integer val-

ue v. In fact, applying FFTLasso for m slightly larger than

2v (e.g. 2v ` ǫ) would require the computation of FFTs of

size 2v`1 (by zeroing padding), thus, incurring unnecessary

extra computation and decreasing the speed of FFTLasso.

Of course, FFT routines with higher radix can be used to

alleviate this. Since FFTLasso is best suited for radix 2, we

will only consider these dimensions in the rest of the paper.

2. Nesterov Speed Up. Here, we demonstrate the effect

of using a Nesterov accelerated gradient ascent step instead

of the conventional dual ascent step in both FFTLasso and

even DL-ADMM. From this experiment onwards, we will

be comparing FFTLasso-GPU to DL-ADMM-GPU, which

is a GPU implementation of DL-ADMM similar to that of

FFTLasso-GPU. The results of this runtime comparison are

shown in Figure 4. Setting Q “ 1 is equivalent to regular

dual ascent (no acceleration). However, when Q “ 30, both

DL-ADMM-GPU and FFTLasso-GPU experience a signif-

icant boost in speed, since a fewer number of ADMM it-

erations are needed for convergence. At m “ n “ 213,

our method requires 35% less iterations due to the Nes-

Table 1. Memory efficiency comparison between DL-ADMM and

FFTLasso on a TitanX GPU with 12GB memory. Dimensions

marked with ✓(*) are reached using simple dictionary splitting

that is only possible for FFTLasso. Refer to the text for details.

Dictionary Size 2
12 6500 2

13 8500 9000 9500

DL-ADMM ✓ ✓ ✗ ✗ ✗ ✗

FFTLasso ✓ ✓ ✓ ✓ ✓(*) ✓(*)

terov acceleration, while this reduction is 13% for DL-

ADMM. When comparing our proposed solver (FFTLasso-

GPU with Nesterov) to conventional DL-ADMM-GPU, we

observe that the runtime gap between the two methods in-

creases with m, reaching 37% at m “ 213.

3. Memory Efficiency. To compare the memory efficiency

of both DL-ADMM and FFTLasso, we run both methods on

different sized dictionaries in double precision. As shown

in Table (1), DL-ADMM cannot handle dictionaries where

m “ n ą 6500 due to the overhead in solving the linear

system in Algorithm (2). However, the 1D FFT operation

has less memory overhead, so FFTLasso handles much big-

ger dictionaries reaching m “ n “ 8500, where it breaks.

Interestingly, FFTLasso’s memory efficiency can be trivial-

ly extended to handle dictionaries of larger size (reaching

m “ n “ 9500) by horizontally splitting the dictionary A

into two pieces A1,A2 P R
m

2
ˆn and applying m

2
FFTs on

the columns of A1 and A2 independently, thus, minimiz-

ing memory overhead. The two FFTs of A1 and A2 can be

merged later only using replication and multiplication with

complex exponentials. This simple extension is well-known

and trivial to implement; however, it cannot be trivially car-

ried over to solving large linear systems (DL-ADMM). We

refer the reader to the supplementary material for details.

4.2. Face Recognition

Two main experiments are conducted for the face recog-

nition task. The dictionaries A and the test samples b

are based on the YaleB face dataset [12], where the dic-

tionary size is pm “ 212, n “ 104q in one experiment and

pm “ 213, n “ 104q in another. Note that the face images

are downsampled more in the first experiment than the oth-

er. For fair runtime comparison between DL-ADMM (GPU

implementation) and FFTLasso (GPU implementation), we

run both for the same amount of time (600 seconds) for ev-

ery test sample. Intermediary solutions are recorded during

the optimization at uniform time intervals.

In Figure 5, we plot both the average relative argument

error among all 140 test samples at each time interval, as

well as, the recognition accuracy on the test set at some of

these intervals for both dictionaries. We denote the recog-

nition accuracy obtained when co (i.e. the solution both

FFTLasso and DL-ADMM should converge to) is used as

the target accuracy. For the smaller dictionary size pm “
212, n “ 104q, Figure 5(a) compare the convergence behav-
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Figure 5. Comparison between DL-ADMM-GPU and FFTLasso-GPU on the YaleB face dataset with two different dictionaries. Figures

(a,b) demonstrate the convergence rate of the relative argument error with the corresponding accuracy for the datasets of sizes pm “
2
12,m “ 2

13q respectively. Instances of accuracies indicated in red are the first instances where a solver converged to the co accuracy.

ior of both methods w.r.t. relative argument error w.r.t. co.

In this case, the target accuracy is 92.14%. It is clear that

FFTLasso converges much faster than DL-ADMM in argu-

ment error and reaches 92.14% in « 230 seconds, while it

takes more than 600 seconds for DL-ADMM to converge to

the same accuracy. Similarly, we consider the larger dictio-

nary pm “ 213, n “ 104q in the second experiment and Fig-

ure 5(b) summarizes the results. Here, the target accuracy

is 97.86%. FFTLasso and DL-ADMM both reach the target

accuracy in « 240 seconds; however, FFTLasso has much

faster convergence in argument error as compared to DL-

ADMM. It is important to note that the relative speedup of

FFTLasso w.r.t. DL-ADMM increases from what it is in the

first experiment. This verifies what our comparative com-

putational analysis concluded earlier, i.e. FFTLasso will be

faster than DL-ADMM when the dictionary A grows larger

so long both dimensions grow in a reasonably similar way.

Also, the time required for either DL-ADMM or FFT-

Lasso to converge to high precision relative argument error

is much higher than the case for the synthetic experiment in

Figure 4. This is due to the high coherence of the columns

of the dictionary A as opposed to the random dictionary. An

important result from these experiments is that the accuracy

obtained for the larger dimension dictionary (i.e. when face

images are subsampled less) is 5% higher than the one ob-

tained for the smaller dictionary (i.e. when face images are

subsampled more). A similar conclusion is reached in pre-

vious work on smaller subsets of YaleB [32, 28, 33]. We are

aware that the faces in our dataset are not perfectly cropped

and aligned (due to errors in the automated face detector),

reaching an impressive accuracy of 97.86% is now possi-

ble by solving a larger LASSO . Thus, having an efficient-

scalable LASSO solver maps to higher accuracy.

5. Discussion

Now, we summarize the types of dictionaries that FFT-

Lasso is best suited for. In general, FFTLasso is the pre-

ferred LASSO solver for large-scale square and close-to-

square (m2 " n logm) dictionaries. If the dictionary A fits

in GPU memory, FFTLasso is best suited for the case when

m “ 2v . If A is too big to fit in memory and/or no avail-

able linear solver can handle its size, the dictionary can be

split into smaller pieces and FFTLasso can be trivially dis-

tributed across multiple GPUs (or even CPUs), due to the

parallelizable nature of the updates in Algorithm (3).

6. Conclusions

In this paper, we propose a new equivalent formulation

to the Lasso problem to handle large scale dictionaries. The

new formulation is a special case of constrained convolu-

tional sparse coding. All the updates of the subproblems

are element-wise operations in the Fourier domain where no

linear solvers nor a matrix vector multiplication is needed

leading to a computation effective updates. The proposed

FFTLasso can be trivially benefit from a GPU hardware

acceleration. Also, Nesterov’s accelerated gradient is ap-

plied to standard ADMM and demonstrated the potential

for faster convergence. Experiments on synthetic and real

data have been conducted to verify the conclusions.
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